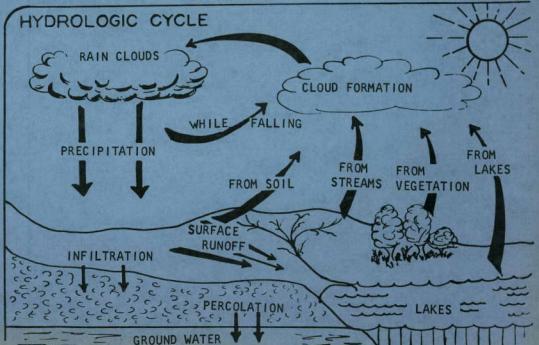


GROUND-WATER SURVEY OF THE AMENIA AREA

CASS COUNTY, NORTH DAKOTA N.D. S.W.C.C. PROJECT NO.1322


> By Larry L. Froelich, Geologist

NORTH DAKOTA GROUND WATER STUDIES

NO. 59

PUBLISHED BY NORTH DAKOTA STATE WATER CONSERVATION COMMISSION 1301 STATE CAPITOL, BISMARCK, NORTH DAKOTA

1964

"BUY NORTH DAKOTA PRODUCTS"

GROUND WATER SURVEY OF THE AMENIA AREA CASS COUNTY, NORTH DAKOTA

By Larry L. Froelich, Geologist North Dakota State Water Commission

North Dakota Ground-Water Studies No. 59

Published by North Dakota State Water Commission 1301 State Capitol Bismarck, North Dakota

CONTENTS

	Page
Introduction	1
Geology and hydrology	4
Water quality	7
Recommendations	10

ILLUSTRATIONS

Figure I.	Map showing physiographic provinces of North Dakota and location of the Amenia area	2
2.	System of numbering wells and test holes.	3
3.	Map of the Amenia area showing location of selected wells and test holes	6

TABLES

Table	1.	Drinking water standards of the U.S. Public Health Service	8
	2.	Record of chemical analyses	9
	3.	Records of selected wells and test holes.	12
	4.	Logs of test holes	13

GROUND WATER SURVEY OF THE ALENIA AREA CASS COUNTY, NORTH DAKOTA

INTRODUCTION

Amenia, population 117 (1960 census), is in central Cass County (See Fig. 1). The village is served by a branch line of the Great Northern Railway and State Highway 18. The average temperature is 40.9°F as recorded in the annual summaries of the U.S. Weather Bureau from 1950 to 1962. Average precipitation for the same period is 20.51 inches. The elevation is 954 feet above sea level at the Great Northern depot in Amenia.

This study was made by the State Water Commission in June 1963 to locate an additional supply of water for the village. The survey was under the direct supervision of the author. Test drilling was done by Lewis and Lanny Knutson. Chemical analyses were performed by the State Laboratories, Bismarck.

Simpson (1929, p. 97-108) discussed the geology and ground water of Cass County in a general study of the State. Abbott and Voedisch (1938, p. 50-51) include a chemical analyses from the Amenia area in their discussion of municipal supplies. Two North Dakota Ground-Water Studies have been performed near Amenia; these are the Fargo study (Dennis, et al., 1949) and the Hunter area (Brookhart and Powell, 1961). A county-wide ground-water study is presently in progress in Cass County. Field work is scheduled for completion in 1965, reports are scheduled for 1967.

The present water supply (1964) at Amenia consists of two flowing wells. Well I, on the west side of main street, is 271 feet deep, and Well 2, on the east side, is 286 feet deep. Water storage facilities have not been provided for, therefore, the water is drained into an underground pressure tank to

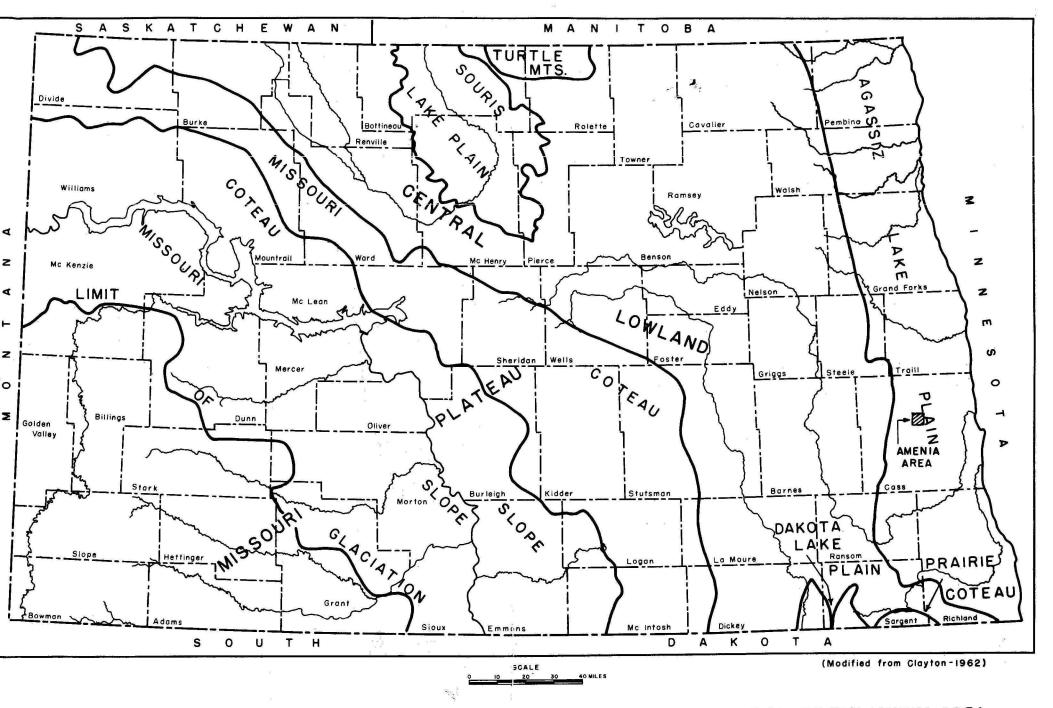


FIGURE I-- MAP SHOWING PHYSIOGRAPHIC PROVINCES OF NORTH DAKOTA AND LOCATION OF THE AMENIA AREA

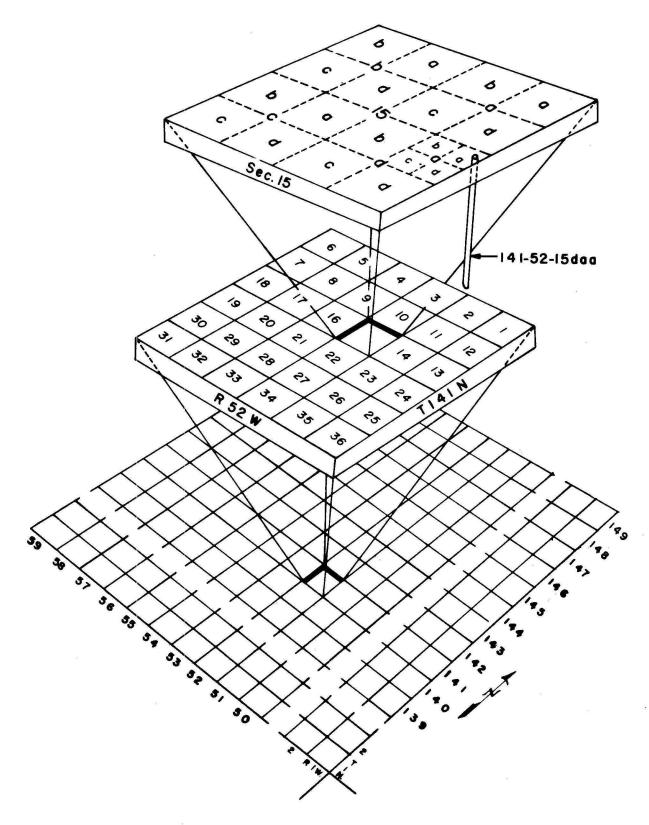


FIGURE 2--SYSTEM OF NUMBERING WELLS AND TEST HOLES.

supply water, under pressure, to the residents of the village. The water supply is generally adequate under average conditions; but because of the low yield of the wells (approximately 5 gallons per minute each) and the lack of storage facilities, water is not available for peak demands or fire protection. Water mains and laterals were installed several years ago and are reported adequate.

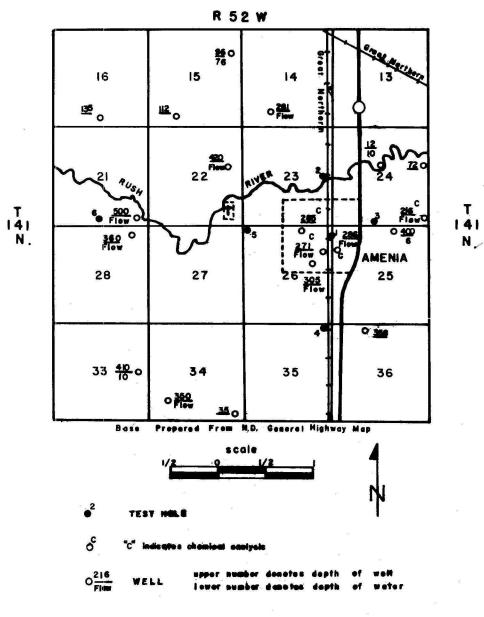
The well-numbering system used in this report, Illustrated in Fig. 2 is based upon the location of the well within the grid established by the U. S. Bureau of Land Management's survey of the area. The first number denotes the township north of the base line that extends laterally across the middle of Arkansas, - the second number denotes the range west of the fifth principal meridian, - and the third number denotes the section in which the well is located. The letters a, b, c, and d designate, respectively, the northeast, northwest, southwest and southeast quarter sections, quarter-quarter sections and quarter-quarter-quarter sections (IO-acre tracts). Thus, well 141-52-15daa is in the NE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ of Section 15, Township 141 North, Range 52 West.

GEOLOGY AND HYDROLOGY

The Amenia area, as described in this report, consists of 16 square miles in Township 141 North, Range 52 West. The area is located on a broad flat glacial-lake plain formerly occupied by glacial Lake Agassiz. The only topographic features worthy of note in the area are the shallow valley of the Rush River and the gentle ridge that trends northeast-southwest from the south center of Section 21 (Fig. 3).

The Rush River is a Recent stream with few tributaries. Alluvium In the narrow channel is thin and consists essentially of clay and silt. It is not a good source of water supply in the area, although well 141-52-24bdd

(Fig. 3) is apparently receiving a meager supply from a sandy alluvial deposit. The U. S. Geological Survey maintains a gaging station near the highway bridge .6 mile north of Amenia. The drainage area upstream from the station consists of 116 square miles. Average discharge of the Rush River at the gaging station for 16 years (1946-1962) was 7.51 c.f.s. (cubic feet per second). The Rush River is perennial, however, short periods of no flow have been recorded during each year.


The gentle ridge in Section 21 was believed to be an extension of the McCauleyville Beach, a depositional feature of glacial Lake Agassiz. No beach deposits were encountered in test hole 6 (Fig. 3), therefore, the ridge is believed to be an erosional feature of Lake Agassiz and probably a wave-cut terrace of scarp. No water-bearing materials were encountered at this site.

Surface materials throughout most of the Amenia area consists of yellowish brown to gray lake clay. The thickness of the clay ranges from 17 to 31 feet and averages 26 feet. A second buried clay unit was encountered in test holes 2 and 5 with thicknesses of 5 and 12 feet, respectively. The second clay unit may represent local ponding of glacial meltwater during the last glacial advance or they may indicate a glacial lake prior to Lake Agassiz. Thirteen test holes in the Hunter area (Brookhart and Powell, 1961), 13 miles north of Amenia, encountered a second clay unit which strongly suggests the existence of two glacial lakes in the Red River Valley. The lake clays do not yield water to wells.

The principal source of water supply to wells in the Amenia area is the sand and/or gravel deposits associated with glacial till. Till is a heterogeneous mixture of clay, silt, sand, pebbles, cobbles, and boulders that was deposited by the glacier with little or not sorting by running water. The

OF SELECTED WELLS AND TEST HOLES

SHOWING LOCATION FIGURE 3 -- MAP OF AMENIA AREA

sand and gravel was deposited by streams on, along, within, or beneath the ice sheet. Two distinct tills are present in the Amenia area; a dark gray, tight, clayey till and a light gray, more permeable, very sandy clay till. Both tills are essentially impermeable, but function as a weak aquifer supplying water to the deposits of sand and gravel. Wells penetrating sand or gravel recover water under artesian pressure and many are flowing wells. The pressure is believed, by the author, to be due to valley artesian conditions with the increase in head to the west where the till emerges in the Central Lowland from beneath the Agassiz Lake Plain (Fig. 1).

The Benton Shale immediately underlies the glacial drift. It consists essentially of a brownish black, silty to sandy clay or shale. In test hole I, (Fig. 3, Table 4) a white to light greenclay was encountered below typical Benton Shale sediments. This clay is believed to be a decomposition product of underlying granitic rocks. Unaltered granite probably exists at a depth of 614 feet at test hole I, however, samples were not recovered for positive identification. Neither the Benton Shale or the granite, unaltered or decomposed, are sources of a municipal supply in the Amenia area.

WATER QUALITY

The quality of water for public supply and domestic use commonly is evaluated in relations to standards of the U.S. Public Health Service for drinking water. These standards, adopted in 1914 to protect the health of the travelling public, were revised several times in subsequent years. The latest revision by the U.S. Public Health Service (1962) is, in part, as follows:

Table I -- Drinking water standards of the U.S. Public Health Service -

<u>Constituent</u>	Haximum Concentration		
Iron (Fe)	.3 ppm 1/		
Sulfate (SO_A)	250 ppm		
Chloride (CI)	250 ppm		
Fluoride (F)	1.7 ppm 2/		
Nitrate (NO3)	45 ppm		
Dissolved Solids	500 ppm		

1/ ppm - parts per million 2/ Based on 5-year annual average of maximum daily air temperature at Amenia, North Dakota

Table 3 lists chemical analyses of 5 water well samples, one taken directly from the Rush River, and one taken directly from the tap in the post office. All samples, with the exception of the WDAY-TV transmitter station well and the tap water, exceeded the limit of iron, however iron concentration up to 1 ppm is still considered good. Sodium content is high in all but the Rush River sample. Sodium in percentage over 50% in water used on plants, lawns, and gardens is harmful. The sulfate content is exceeded in all samples and may exert a laxative effect on persons unaccustomed to drinking the water. The chloride concentration was exceeded in all but the Rush River and tap water samples, however, the concentrations were not sufficiently high to give the water a salty taste.

The school well and village well I, and also well 141-52-23 taken from Abbott and Voedisch (1938), contain excessive concentrations of fluorides. Determination of fluoride in drinking water has become very important following the discovery (Smith, et al., 1931) that it is the definite causitive agent to the disfiguring dental malady known as enamel dystrophy, or more commonly as mottled enamel of teeth. Extremely small concentrations of fluoride are

		9a		TA	2 RECORD OF				
			(ana i y		resu	results in parts e		
	Depth of	Date of	Silica	Iron	Calcium	ŀlag- nesium	Sod i u _{í.} .	Potassium	Bic arb ona
Location	well Aquifer (feet)		(Si0 ₂)	(Fe)	(Ca)	(Mg)	(Na)		(HCO ₃)
141-52-22dda	- Rush Ri	ver 6-13-63	25	.76	142	69	130	17	444
*141-52-23	300 -	1936(?)	35	.8	82	50	625		327
141-52-24ddd	216 Sand	6-13-63	20	.30	124	54	302	13	249
141-52-25bbc	280 -	6-13-63	23	.60	120	49	524	17	298
**141-52-26bbb	Tap in – post office	11- 6-62		0	120	46	352		232
141-52-26ada	259.5 -	6-13-63	17	•56	40	19	720	14	273
4 -52-26aba	285 -	6- 2-63	22	•44	56	15	738	7.	5 322

* From Abbott and Voedisch, 1938, p. 50-51

** From N. D. State Department of Health, 1964

CHEMI	CAL AN	ALYS	ES				9b			Ratio		
Carbona te	Sulfate Uliate	Chloride	Fluoride	Nitrate	Boron	otal		ardness	К	iodium bsorption	Specifi conduc-	
(co ₃)	(so ₄)	(01)(F)	(NO ₃)	(B) d		as CaCO3		Sodium	SAR	tance mmhos/c	pH m
9.6	491	46		3.0		1,220	640	260	30	2.3	1,893	8.3
0	920 57 I	393 294	2.2		06	2,364	268			 E 0		7 0
0	818	402	.8	5.0		1,576	530 500	325	55 69	5.8	2,370	7.9 8.1
33	825	71	•5			1,687	490	255 		 	3,168 2,010	8.4
			×		• •		÷ .					
14	900		2.7			2,230	180	0	89	24	3,574	8.4
0	914	418	3.4	6.0	2.56	2,394	200	0	88	24	3,762	8.2

sufficient to produce harmful effects, however, fluoride in concentrations of .8 to 1.5 ppm in water drunk by children is generally believed to be beneficial in the reduction of tooth decay. Other than mottled enamel, Abbott (1937, p. 10) states other pathological effects caused by excessive fluorides such as alteration of bone structure, enlargement of the thyroid gland, reduction of calcium content of the blood with serious disturbance of the body metabolism, high blood pressure, and the development of marked nervous disorders.

Total dissolved solids are quite high in all samples. The U. S. Public Health Service allows a concentration of 1000 ppm where water of better quality is not available, however this limit was also exceeded in all samples. Nearly all waters that contain more than 1000 ppm dissolved solids have a taste due to the dissolved minerals. The North Dakota State Department of Health recommends a maximum hardness concentration of 140 ppm. This limit was exceeded in all samples, but the concentration can be easily removed by a water softener.

Perhaps the best source of acceptable quality water in the Amenia area is the Rush River. The water from the WDAY-TV station well is of fairly good quality compared to other wells in the area.

RECOMMENDATIONS

There are three possible ways residents of the Amenia area may enhance their water supply. First, one or more additional wells may be drilled into the glacial drift. A test hole should precede each well to determine if waterbearing deposits of sand and gravel are available at the site. The well or wells will yield only small amounts of water and the quality may be such that it will require treatment. Secondly, an artificial reservoir might be constructed near the Rush River and water from the river can be utilized for

the municipal supply. Lastly, the residents of Amenia might contact residents of other villages and towns in the vicinity, as well as the farmers, and construct a pipeline network to a proven area of readily available good guality water.

Type of well:	Dr, drilled; Du, d	lug				ی ک		iter: D, dome S, stock; T,	stic; PS, public test hole
Location No.	Owner	Depth (feet)	Diameter (inches)	Type	Date completed	Depth to water below land surface (feet)	Use of water	Aquifer	Remarks
141-52-14cdc	Frank King	281	3	Dr		Flow	 D,S		Hard.
141-52-15ada	Omar Erb	96	3	Dr	-	76	D,S	Gravel	Hard,doesn't kill grass.
141-52-15ccd	Elmer Nohr	112	3	Dr	-	-	D,S		Hard.
141-52-16cdd	Clemence Kuklok	135	З	Dr	-	-	D,S		Soft.
141-52-21cdd	Test hole 6	63	4 3/4	Dr	6-22-63	-	Т		See log.
141-52-21ddd	Smith Investment C	co. 500	2	Or	-	Flow	D,S		
141-52-22add	C.G. Anderson	420	2	Dr	-	Flow	D,S	-	Salty。
141-52-23daa	Test hole 2	357	4 3/4	Dr	6-18-63	-	Т	-	See log.
141-52-24add	Paul L. Cripe	72	3	Dr	-	-	D,S		
141-52-24bdd	Paul L. Cripe	12	36	Du		10	D,S	Sand	Hard.
141-52-24dcc	Test hole 3	357	4 3/4	Dr	6-19-63		Т		See log.
141-52-24ddd	WDAY-TV station	216	4	Dr	1962	Flow	D	12' of sand	Chemical analysis.
141-52-25abb	Eugene Cederburg	400	3	Dr	-	6	D	Sand	Hard, doesn't kill grass.
141-52-25bbb	Test hole I	614	4 3/4	Dr	6-21-63	-	т	-	See log.
141-52-25bbc	Village well #2	286	5	Dr		Flow	PS	-	Chemical analysis.
141-52-26aba	Amenia School	285	4	Dr			D	-	Chemical analysis.
141-52-26ada	Village well #I	271	5	Dr	-	Flow	PS	-	Chemical analysis.
141-52-26ad	Monroe Fornes	305	3-14	Dr	-	Flow	D,S	Gravel	Hard.
141-52-26bbb	Test hole 5	357	4 3/4	Dr	6-20-63	-	т	-	See log.
141-52-28aa	Kenneth Lindstrom	360	2	Dr	-	Flow	D,S	Gravel	Soft,salty,kills grass.
141-52-33add	Leo. L. Baumler	410	3-11	Dr		10	D,S	Fine sand	Soft,kills grass & weeds.
141-52-34cca	William Johnson	350	3	Dr	-	Flow	D	-	Soft,salty,kills grass.
141-52-34ddd	Alphons Schneider	35	3	-	-	-	D	-	Soft,salty,doesn't kill grass.
141-52-35aaa	Test hole 4	357	4 3/4	Dr	6-19-63	-	Т	-	See log.
141-52-36baa	William Sinz	358	4 3/4 3-1-	Dr			Ď.S	-	Soft.

TABLE	4	 Logs	of	Test	Holes	

Formation	Material	Thickness (feet)		<u>Depth</u> (feet)
			From	To
	Test Hole 6 141-52-21cdd			
Glacial Drift:	Topsoil, very fine sandy loam, black Clay, sandy, yellowish gray Clay, silty to sandy with pebbles, dusky yellow to moderate olive	2 3	0 2	2 5
	brown, moderately soft, oxidized (till)	18	5	23
	Clay, silty to sandy with pebbles, olive gray, tight, unoxidized (till). Silt, clayey with sand grains and	17	23	40
	pebbles, olive gray, tight, cohesive (till)	23	40	63
	Test Hole 2 141-52-23daa			
Glacial Drift:	Topsoil, silty loam, black	I	0	I
5	Clay, silty to sandy, yellowish gray, soft Clay, sandy, dark to dusky yellowish	2	1	3
	brown, soft, occasional snail fragments Clay, dusky yellow to light olive	7	3	10
	brown with greenish gray and black areas, soft, smooth, plastic Silt, clayey with sand grains and	. 12	10	22
	pebbles, dusky yellow, soft, cohesive oxidized (till) Silt, clayey with sand grains and	2, . 17	22	39
	pebbles, olive gray, tight, unoxidize (till) Clay, olive gray, soft, smooth,plastic Clay, sandy, olive gray, moderately soft to slightly hard; contains thin	26	39 65	65 70
	lenses of fine to medium, subangular to subrounded, poorly sorted gravel (till)	. 5	70	75
	Clay, silt to sandy with pebbles, olive gray, moderately soft, tight (till) Clay, very sandy, light olive gray,	• 32	75	107
	soft, moderately compacted, gravelly in spots (till)	• 27	107	130

	TABLE 4 Logs of Test Holes - Conti	nued		
Formation	Material	Thickness (feet)		Depth (feet)
			From	То
	Test Hole 2 4 -52-23daa (continued)			
	Gravel, fine to coarse, subangular to subrounded, poorly sorted Clay, sandy with pebbles, olive gray, moderately soft (till); very gravelly,	3	130	133
	rough drilling	17	133	150
	Boulder, limestone Clay, silty to sandy with pebbles and cobbles, olive gray, moderately soft,	2	150	152
	tight; rough drilling in spots (till). Clay, silty and sandy, olive gray,	58	152	210
	variable amounts of gravel (till) Clay, sandy with numerous gravel lenses,	27	210	237
	olive gray, rough drilling (till) Clay, very sandy, light olive gray,	33	237	270
Benton Shale:	soft, slightly friable, gravelly (till)	72	270	342
x	Clay, silty to sandy, olive gray to olive black, moderately soft,massive, noncalcareous; contains light olive gray streaks and light greenish gray silt and fine sand	15	342	357
	Test Hole 3 141-52-24dcc			
Glacial Drift:	Topsoil, silty loam, black Silt, clayey, olive black, crumbly,	2	0	2
	Dorous Clay, silty, yellowish gray, soft,	3	2	5
	oxidized Clay, yellowish gray to dusky yellow with greenish gray areas, soft, smooth,	5	5	10
	plastic, slippery, tight, oxidized Clay, siltyand sandy with pebbles, olive gray, soft, cohesive,unoxidized	16	10	26
	(till)	42	26	68
	Gravel, fine to coarse, poorly sorted Clay, silty with sand and pebbles, olive	4	68	72
	gray, soft, tight, cohesive (till) Clay, very sandy, light olive gray, soft, slightly friable, gravelly near base	28	72	100
	of section (till)	27	100	127

Formation	Material	<u>Thickness</u> (feet)	5	<u>Depth</u> (feet)
			From	То
	Test Hole 3 141-52 -2 4dcc (continued)			
	Clay, silty with sand, pebbles and cobbles, olive gray, moderately soft, tight (till) Clay, very sandy, light olive gray, moderately soft, slightly friable; very gravelly and rough drilling	63	127	190
	in parts (till)	63	190	253
	Gravel, fine to coarse, clayey	7	253	260
	Clay, sandy, olive gray, many thin	•		
	gravel layers (till) Clay, silty to very sandy, light olive gray to olive gray, moderately soft to slightly hard; gravelly and hard	12	260	272
	drilling in parts (till)	67	272	339
Benton Shale:	Clay, silty, olive black, moderately soft, moderately to tightly consoli- dated, noncalcareous	18	339	357
	Test Hole 4 -52-25bbb			
Glacial Drift:	Railroad fill - fine to coarse sand and fine to medium gravel	4	0	4
	Clay,light olive gray, soft, smooth,			
	plastic Clay, dusky yellow to light olive gray,	6	4	10
	smooth,slippery, oxidized Clay, olive gray, soft, smooth, unoxi-	16	10	26
	dized Clay, moderate olive brown, soft,smooth,	6	26	32
	partially oxidized Clay, silty to sandy with pebbles, mod- erate olive brown, soft, cohesive,	4	32	36
	oxidized (till) Clay, silty to sandy with pebbles, olive gray, tight, unoxidized (till); contai interbedded olive gray uniformly sorte	ns	36	40
	silty clay		40	76
	Sand, fine to coarse, moderately sorted.	5	76	81

TABLE	4	 Logs	of	Test	Holes	 Continued

Formation	Material	Thickness (feet)	Depth (feet)	
	Test Hole 4 -52-25bbb (continued)		From	То
	Clay, silty to sandy with pebbles and gravel stringers, olive gray, moderately soft, cohesive (till); rough drilling in parts Clay, very sandy, light olive gray, soft, moderately compacted, slightly to moderately cohesive (till); very gravelly with cobbles and boulders,	22	81	103
	cobbles, and boulders, olive gray, moderately soft, tight, cohesive	36	103	139
	(till)	27	139	166
	Gravel, fine to coarse, poorly sorted Clay, silty to sandy with sand and grave stringers,olive gray, cohesive (till);	2	166	168
	rough drilling Clay, very sandy, light olive gray, soft, moderately compacted, cohesive	16	168	184
	<pre>(till); gravelly in parts Clay, sandy with pebbles, olive gray, moderately soft, tight, cohesive (till); occasional gravelly stringers,</pre>	12	184	196
Benton Shale:	cobbles, and boulders Gravel, fine to coarse, poorly sorted,	61	196	257
	rough drilling Clay, silty to sandy with pebbles and thin gravel lenses, olive gray, moderately soft, tight, cohesive,	3	257	260
	moderately plastic (till) Sand, fine to medium, olive gray, well-	55	260	315
	sorted, subrounded Clay, silty to sandy, olive gray, moderately soft, cohesive (till); occasional gravel stringers, cobbles,	4	315	319
	and boulders Till, as above, cobbles and boulders	19	319	338
	more common	19	338	357
	Clay, silty, olive black, moderately soft, slightly calcareous; with sandy reddish brown clay and pitch black oil	у		
	Clay	19	357	376

Formation	Material	<u>Thickness</u> (feet)	<u>Depth</u> (feet)	
			From	То
	Test Hole 4 -52-25bbb (continued)			
	Clay, sandy (very fine), light greenish gray, rounded, friable, micaceous, noncalcareous; with light buff to yellowish gray clay and olive gray			
Bedrock, Undiffere	silt	17	376	393
	Clay, white to light gray, very soft, noncalcareous Clay, dusky yellow to moderate olive brown, soft, oxidized (?), slightly	6	393	399
	calcareous. Clay, olive gray, soft, calcareous; included partially oxidized (?) moderat olive brown streaks and calcite	 :e	399	410
	crystals Clay, light green, soft, smooth, noncal- careous; with white, soapy clay and	29	410	439
	occasional indurated areas Clay, white and light green, smooth Note: Unaltered granite is believed to exist at 614 feet, but no samples were recovered.	91 84	439 530	530 614
	Test Hole 5 141-52-26bbb			
Glacial Drift:				
	Topsoil, silty loam, black Clay, dark yellowish brown to yellowish	2	0	2
	gray, soft, smooth, plastic, oxidized. Clay, olive gray, soft, smooth, plastic,	23	2	25
	unoxidized Clay, silty to sandy with pebbles,olive gray, moderately soft, tight, cohesive	7	25	32
	(till)	29	32	61
	Clay, olive gray, smooth, soft,plastic Clay, silty to sandy with pebbles and gravel stringers, olive gray, moderately soft, cohesive (till);	12	61	73
	rough drilling	10	73	83

TABLE	4	-	Loas	of	Test	Holes	-	Continued
1 The holes			2030					

Formation	Material	<u>Thickness</u> (feet)		<u>Depth</u> (feet)
			From	То
	Test Hole 5 141-52-26bbb (continued)			
	Gravel, fine to coarse, poorly sorted, generally subrounded	3	83	86
	Clay, silty to gravelly, olive gray (till)	11	86	97
	Gravel, fine to medium, moderately sorted	2	97	99
	Clay, sandy to gravelly, light olive gray (till)	7	99	106
	Gravel, fine to medium, moderately sorted Clay, verysandy with pebbles and gravel	2	106	108
Benton Shale:	stringers, light olive gray, soft, slightly friable (till)	26	108	134
	Sand, fine to medium, clayey, light olive gray, loose, well-sorted Clay, silty to sandy with pebbles,	4	134	138
	cobbles and boulders, olive gray, moderately soft, tight, cohesive (till) rough drilling Clay, sandy to gravelly, light olive); 42	138	180
	gray, moderately soft, slightly friable (till) Clay, silty to sandy with cobbles and boudlers, olive gray, moderately	30	180	210
	soft, tight, cohesive (till); rough drilling Clay, silty to sandy with gravel stringer	72 rs,	210	282
	olive gray, moderately soft, cohesive (till)	52	282	334
	Clay, sandy, olive black, soft,moderately consolidated, noncalcareous; contains light gray and grayish brown sandy clay	y 23	334	357

Formation	Material	<u>Thickness</u> (feet)	Depth (feet)	
			From	To
Glacial Drift:	Topsoil, very fine sandy loam, black Silt, sandy, yellowish gray, soft	2 3	0 2	2 5
	Sand, fine, dark yellowish brown, well- sorted, subrounded	4	5	9
	Clay, yellowish gray, soft, smooth, plastic, oxidized Clay, silty to sandy with pebbles,	8	9	17
	moderate olive brown, soft,cohesive, oxidized (till) Clay, silty to sandy with pebbles,	22	17	39
	olive gray, soft, tight, cohesive, unoxidized (till) Clay, silty with very fine sand and	24	39	63
r	pebbles, olive gray, soft, tight, cohesive (till) Clay, silty to sandy with occasional	9	63	72
	gravel stringers, olive gray, tight, cohesive (till) Clay, very sandy, light olive gray,	34	72	106
	soft, slightly friable (till); occasional gravel stringers Clay, silty and sandy with pebbles,	43	106	149
	olive gray, moderately soft, tight, cohesive (till); gravel stringers Clay, sandy, light olive gray to olive gray, moderately soft, slightly plast	38 i.c	49	187
	(till)	23	187	210
	Clay, silty to sandy with pebbles, olive gray, very tight (till) Clay, silty to sandy with gravel	52	210	262
	stringers, olive gray, moderately soft, cohesive (till)	11	262	273
	Gravel and boulders, very hard drilling Clay, silty to sandy with pebbles, olive gray, moderately soft to	8	273	281
Benton Shale:	slightly hard, compacted, cohesive (till)	63	281	344
	Clay, sandy, olive black, moderately soft, massive, noncalcareous; some light gray clay	13	344	357

REFERENCES

- Abbott, G. A., 1937, The fluoride content of North Dakota ground waters: N. D. Geol. Survey Bull. 9, 16 p.
- Abbott, G. A., and Voedisch, F. W., 1938, The municipal groundwater supplies of North Dakota: N. D. Geol. Survey Bull. 11, 99 p.
- Brookhart, J. W., and Powell, J. E., 1961, Reconnaissance of geology and ground water of selected areas in North Dakota: N. Dak. Ground-Water Studies No. 28, 91 p.
- Clayton, Lee, 1962, Glacial Geology of Logan and McIntosh Counties, North Dakota: N. D. Geol. Survey Bull. 37, 84 p.
- Dennis, P. E., Akin, P. D., and Worts, G. E., Jr., 1949, Geology and ground-water resources of parts of Cass and Clay Counties, North Dakota and Minnesota: N. Dak. Ground-Water Studies No. 11, 177 p.
- North Dakota State Department of Health, 1964, Chemical analyses of municipal waters in North Dakota: Environmental Health and Engineering Service, N. Dak. State Department of Health, Bismarck, 25 p.
- Public Health Service, 1962, Drinking water standards: U. S. Dept. of Health, Education and Welfare, Public Health Service Pub. No. 956, 61 p.
- Simpson, H. E., 1929, Geology and ground-water resources of North Dakota, with a discussion of the chemical character of the water by H. B. Riffenburg: U. S. Geol. Survey Water-Supply Paper 598, 312 p.
- Smith, M. C., Lantz, E., and Smith, H. S., 1931, Cause of mottled enamel: Arizona Agri. Experiment Station Tech., Bull. 32, pp. 811-815.
- United States Geological Survey, 1962, Surface water records of North Dakota and South Dakota: U. S. Department of the Interior - Geol. Survey, 254 p.