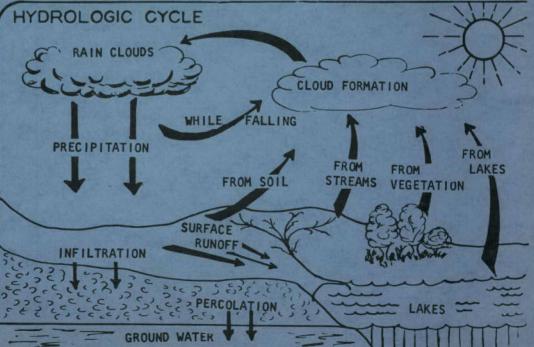


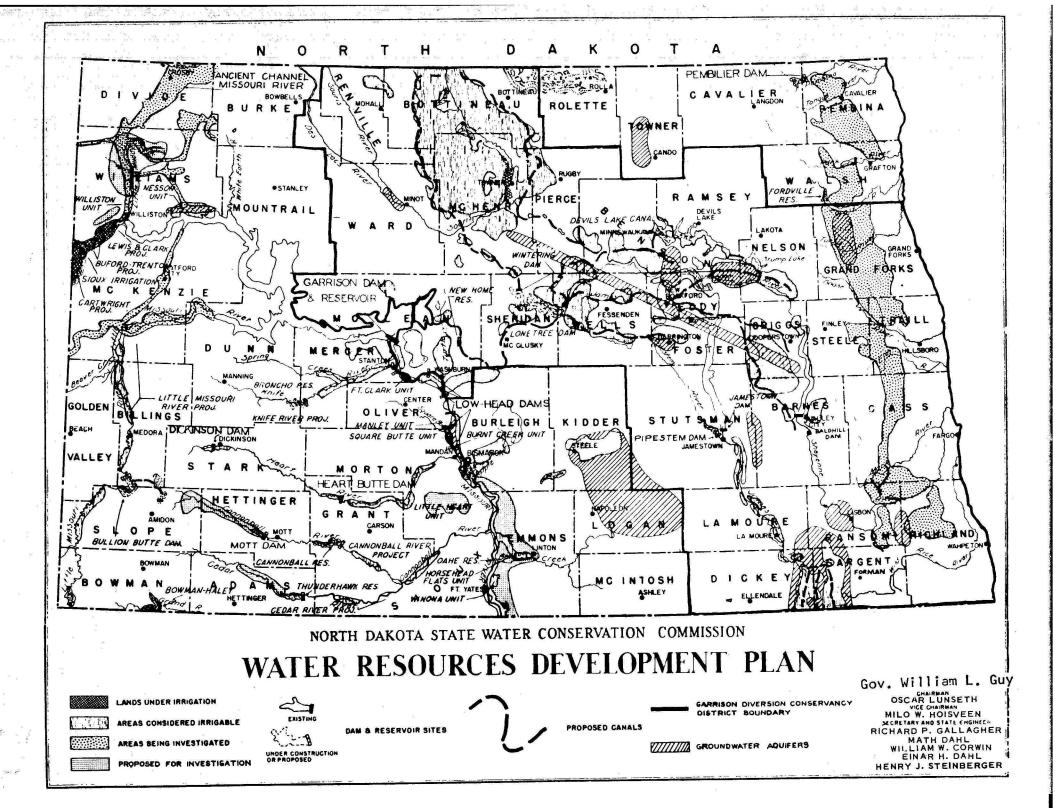
GROUND-WATER SURVEY OF THE SURREY AREA

WARD COUNTY, NORTH DAKOTA N.D.S.W.C.C. PROJECT NO. 992

by


Larry L. Froelich, Geologist

NORTH DAKOTA GROUND WATER STUDIES


NO. 58

PUBLISHED BY NORTH DAKOTA STATE WATER CONSERVATION COMMISSION 1301 STATE CAPITOL, BISMARCK, NORTH DAKOTA

1964

BUY NORTH DAKOTA PRODUCTS"

NORTH DAKOTA STATE WATER COMMISSION NEWS RELEASE

July 1, 1964

Groundwater Report of Surrey Area Released by Water Commission

Installation of wells in an aquifer near Surrey would provide adequate water supplies for that city according to a report released by the State Water Commission today.

Quality of the water is fair for most purposes, and is suitable for a municipal supply. Chemical analyses were made by the State Laboratories Department and State Health Department in Bismarck.

Locations and logs of the test holes drilled, well inventory, quality analyses, along with a map of the area are included in the report.

The State Water Commission cooperated with the City of Surrey in making the survey. Larry L. Froelich, Commission Groundwater Geologist, is author of the report, copies of which are available at the Water Commission office in Bismarck.

North Dakota State Water Commission

1301 State Capitol

223-8000 Ext 41

Bismarck, North Dakota 58501

LETTER OF TRANSMITTAL

RE: Groundwater Study Reports

We are enclosing a copy of a groundwater study report published by the State Water Conservation Commission because of your interest in such reports released by this office.

Should you desire further information regarding this report, feel free to contact the State Water Conservation Commission office in Bismarck.

Sincerely yours,

Milo W. A

Milo W. Hoisveen A Engineer-Secretary

MWH:hs

Mimeo #160

Governor William L. Guy Chairman Oscar Lunseth, Vice Chairman Grand Forks Einar H. Dahl Watford City Richard P. Gallagher Mandan Henry J. Steinberger Donnybrook Gordon K. Gray Valley City Math Dahl. Ex-Officio Member Comm. of Agriculture & Labor Milo W. Hoisveen, Secretary Chief Engineer & State Engineer

NORTH DAKOTA PRODUCTS

GROUND WATER SURVEY OF THE SURREY AREA

WARD COUNTY, NORTH DAKOTA

NORTH DAKOTA STATE WATER COMMISSION PROJECT NO. 992

By

Larry L. Froelich, Geologist North Dakota State Water Commission

North Dakota Ground-Water Studies No. 58

Published By North Dakota State Water Commission 1301 State Capitol, Bismarck, North Dakota

COI ITENTS

Page

x

Introduction	Ł
Scope and Purpose of the survey。。。。。。。	1
Previous investigations。。。。。。。。。。。	2
Location and general features of the area	2
Present water supply	5
Well-numbering system	5
Geology and occurrence of ground water	5
Introduction	5
Hydrologic concepts	7
Bedrock	10
For Wills Formation	11
Fox Hills Formation	11
Hell Creek Formation。。。。。。。。。。。。	13
Cannonball Formation	13
Tongue River Formation。。。。。。。。。。	16
Glacial Drift。。。。。。。。。。。。。。。。	17
Till	17
Outwash	19
Meltwater channel deposits	21
Quality of water	24
Synthesis of data。。。。。。。。。。。。。。。。。。	29
Recommendations	31
References	62

ILLUSTRATIONS

Page

Figu re	۱.	Map showing physiographic provinces of North Dakota and location of the Surrey area	3
	2.	Map showing the nature of the bifurcating meltwater channels in the Surrey area	6
	3.	Sketch illustrating the well-numbering system	8
	4.	Cross-section of deep well logs	12
	5.	Nap of the Surrey area showing the location of wells and test holes	14

TABLES

Table	1.	Geological formations and their water- bearing characteristics。。。。。。。。。	26
	2.	Drinking water standards of the U.S. Public Health Service。。。。。。。。。。	27
	3.	Record of chemical analyses。。。。。。	30
	4.	Record of wells and test holes	33
	5.	Logs of test holes	39
	6.	Logs of test holes used in report but located outside report area	61

GROUND-WATER SURVEY OF THE SURREY AREA

WARD COUNTY, NORTH DAKOTA

North Dakota Ground-Water Study #58 North Dakota State Water Commission #992

INTRODUCTION

Scope and Purpose of the Survey

On January 12, 1963, a resolution by the Village of Surrey requesting the North Dakota State Water Commission to perform a ground-water survey for the village was received in the office of the Water Commission. On January 28, 1963 the Water Commission entered into an agreement with board members of Surrey to perform the ground-water survey and preliminary research were initiated.

During the month of April, field work and test drilling was accomplished in an effort to determine the availability of ground water for a village supply. The field work consisted of a reconnaissance of the area, a partial well inventory, collection of water samples for chemical analyses, and acquisition of pre-existing data.

On November 4 and 5, 1963, two more test holes were drilled and a preliminary pumping test on Reinhold Elker's well was completed. A total of 21 test holes were drilled with the State-owned rotary drilling rig. The project was under the direct supervision of the writer. Test drilling was done by Lewis and Lanny Knutson. Chemical analyses were performed by the North Dakota State Laboratories, Bismarck.

Special thanks are due to Mr. Tom Zook, Mr. Bonaventure Kraft and Mr. Reinhold Elker for their assistance during the survey. Their interest and complete willingness to cooperate is greatly appreciated. Mr. W. F. Arksey of the Great Northern Railway Company was very helpful in providing drill logs and comments pertinent to the Surrey study.

Previous Investigations

A general study of the geology and ground-water resources of Ward County was made by Simpson (1929, pp. 250-262, 304-305) in which he discussed the water-bearing strata of the county and included a compilation of numerous wells and chemical analyses.

Beginning in midsummer of 1945 the United States Geological Survey (Lemke, 1960) began an investigation of a 5,500 square mile area in the Souris River drainage basin to supply basic geologic data to Federal agencies engaged in the Missouri River Development Program. Mapping was completed in the fall of 1949 and the final interpretative report was published in 1960.

Concurrent with the geologic study of the Souris Basin, the United States Geological Survey was also conducting a hydrologic study of a 4,300 square mile area within the drainage basin of the Souris River. The interpretative report (LaRocque, Swenson, and Greenman, 1963a) was published as a North Dakota Ground-Water Study. An open-file report (LaRocque, Swenson, and Greenman, 1963b) containing tables of data collected during the study is available for consultation at the United States Geological Survey or North Dakota State Water Commission offices in Bismarck, North Dakota.

Between October 1954 and October 1955, Mr. W. F. Arksey, fuel and water engineer for the Great Northern Railway Company, supervised the drilling of 20 test holes in and adjacent to the Surrey area. The purpose of the test drilling was to find a water supply for the railroad retarder yard located between Surrey and Minot.

Location and General Features of the Area

The Surrey area, as described in this report, is 6 by 6 miles in size and includes the west half of Twp. 155 N., Rge. 81 W. and the east half of Twp. 155 N., Rge. 82 W. in eastern Ward County. It is included in the Central Lowland

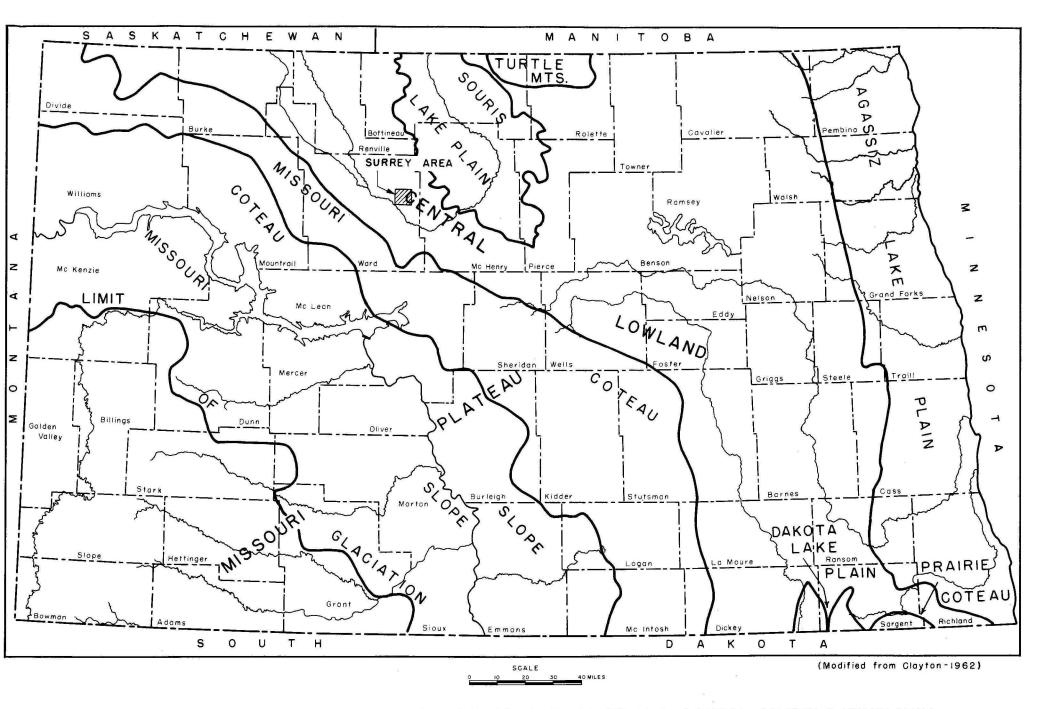


FIGURE I-MAP SHOWING PHYSIOGRAPHIC PROVINCES OF NORTH DAKOTA AND LOCATION OF THE SURREY AREA

physiographic province of North Dakota as shown in Figure 1. Simpson (1929, p. 5) would place the Surrey area in the Souris River Valley division of the Drift Prairie physiographic province.

Topographically the Surrey area is gently to moderately undulating with a range in elevation from 1693 feet in Section 27 in the southwestern part of the area to 1543 feet in the extreme northeast corner of the area, a difference of 150 feet. Although not always apparent to the casual observer, the area is unusual in that it contains a maze of bifurcating channels (Fig. 2) which have been entrenched from 10 to 30 feet into the surface of the land.

Even though the area is criss-crossed with channels, an integrated drainage pattern has not developed. The divides between the channel are pock-marked with numerous potholes, and sloughs are common in lower portions of the channels. There are no perennial streams in the area.

Dryland farming is the major occupation in the Surrey area. The general soil type is the Barnes Loam (Holowaychuk and Boatright, 1938) which is moderately sandy and has a tendancy to 'blow' or drift when it is dry and in unprotected pr cultivated areas.

Surrey, population 309 in 1960, is the only town in the area. It is located on U. S. Highway 2 and is served by the Great Northern Railway. Climatological data from the U. S. Weather Bureau at the Minot airport, located 7 miles west and $l\frac{1}{2}$ miles north of Surrey, show the long-term mean temperature to be 39.5°F, based on a 57 year mean. Long-term mean precipitation at the same station, based on a 57 year mean, is 15.62 inches per annum (Personal communication, U. S. Weather Bureau, Bismarck).

Present Water Supply

At the present time (1964) the Village of Surrey has no public waterworks or sewage facilities. Approximately 30 private wells supply the needs of the village residents. The wells range in depth from about 20 feet to over 500 feet. Buildings with indoor plumbing have private cesspools or septic tanks. Several of the villagers purchase bottled water for drinking from Granite Springs Water and Ice Company of Minot.

The village has three public supply wells. Two shallow wells are equipped with hand pumps. A 135 foot well is electrically powered and is equipped with a coin meter for dispensing water.

Well-numbering System

The well-numbering system used in this report, illustrated in Figure 3, is based on the location of the well in the Federal system of rectangular surveys of public lands. The first number denotes the township north and the second number denotes the range west, both referred to the Fifth principal meridian and base line; the third number denotes the section in which the well is located. The letters a, b, c, and d designate respectively the northeast, northwest, southwest, and southeast quarter sections, quarter-quarter sections and quarter-quarter-quarter sections (10-acre tracts). Consecutive terminal numbers are added if more than one well is located in a 10-acre tract. Thus well 155-82-15daa would be located in the NE¹/₄NE¹/₄SE¹/₄ Sec. 15, Twp. 155 N., Rge. 82 W.

GEOLOGY AND OCCURRENCE OF GROUND WATER

Introduction

Contrary to the popular belief that underground water occurs in 'veins' or buried rivers or lakes, scientific investigations have proven that nearly everywhere, at varying depths, the rock material composing the earth's crust is saturated with water. It is the geologic structure and the composition of the rock

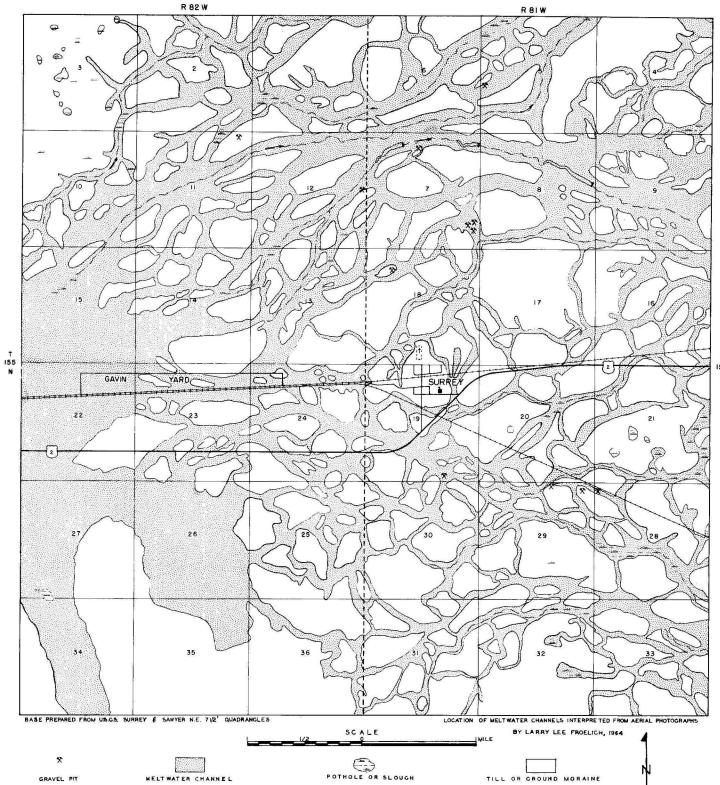


FIGURE 2-- MAP SHOWING THE NATURE OF THE BIFURCATING MELTWATER CHANNELS IN THE SURREY AREA

T 155 N materials that determine whether water can be withdrawn in sufficient quantities for an intended purpose from a well penetrating these materials. Since the occurrence of ground water is dependent upon geological relationships the two must be examined contemporaneously to determine the availability of ground water in any given area.

In the Surrey area there are present two major geologic units--namely bedrock and the overlying glacial drift. However, before the occurrence of water in the two major units is discussed, certain basic hydrologic concepts are presented as a means of introducing to the reader terminology and general ground-water conditions which exist in the area.

Hydrologic Concepts

Essentially all ground water of economic importance is meteoric, or that water derived from precipitation. After soil and vegetation requirements have been satisfied, excess precipitation either runs off the land surface to lower elevations or percolates through the ground to where the earth material is saturated with water. The upper surface of this zone of saturation, which generally conforms with the earth's surface, is called the water table. Water also reaches the water table, in certainareas, by percolation from streams, ponds, and lakes. Some areas, because of the composition of the surficial material, allow water to enter the ground and reach the water table more readily than other areas and these are called recharge areas.

Practically all ground water is in the process of movement from the recharge area to a place of disposal or a discharge area. Discharge areas are the result of lateral movement of ground water after the downward movement of precipitation has raised the water table sufficiently to intercept the land surface. Hence, discharge areas are visible at the land surface and occur as springs and lakes or rivers which retain surface water throughout the year. Natural discharge of

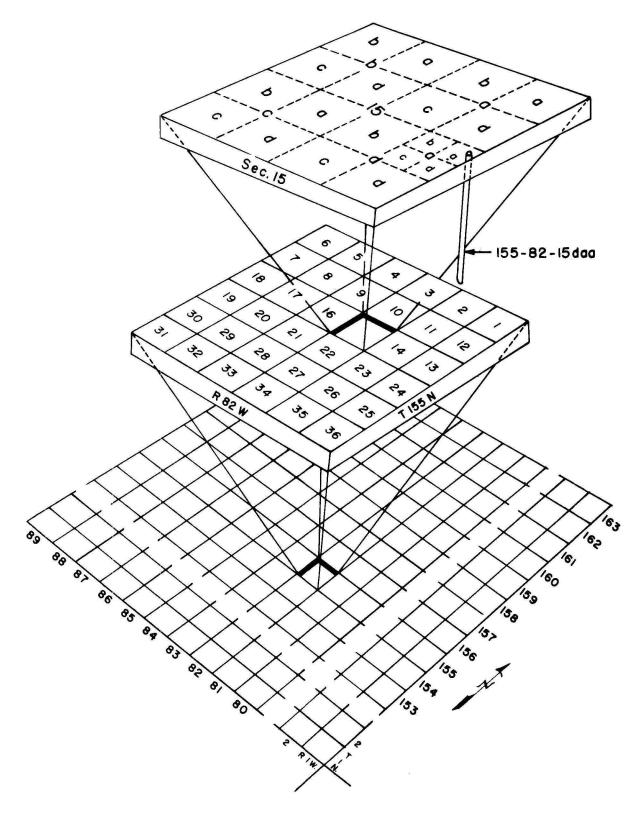


FIGURE 3--SYSTEM OF NUMBERING WELLS AND TEST HOLES.

ground water also occurs as direct evaporation from the soil surface and bodies of open water, and as transpiration from plants. Ground water may also discharge directly from one ground-water reservoir to another, or by slow percolation from one reservoir to another through a separating formation.

Any formation or stratum that will yield water in sufficient quantity to be of importance as a source of supply is called an 'aquifer'. The water moving through the aquifer from recharge areas to discharge areas is considered as water in 'transient storage'. The amount of water that can be stored in an aquifer depends upon the amount of open space in the material, or its porosity, and upon the dimensions of the entire aquifer.

The capacity of an aquifer to yield water is less than the porosity would indicate because part of the water will be retained in pore spaces by molecular attraction, much as a sponge or wet towel after it has stoppped dripping. The amount of water which is free to drain out of an aquifer under natural conditions and expressed in percentage of the total volume of the aquifer is called the 'specific yield'. 'Specific retention' refers to that part of water which will be retained, hence, porosity (water holding capacity) = specific yield + specific retention.

If the pore spaces are large and interconnected, as they commonly are in sand and gravel, the water movement is less restricted and is transmitted more or less freely, and the material is considered permeable. If the pore spaces are very small or not connected, as they are in clay or silt, the water is transmitted very slowly and the material is said to be impermeable. Unconsolidated material such as sand and gravel is generally more permeable than consolidated rocks such as shale, sandstone, and limestone and, therefore, are considered more important as ground-water reservoirs.

If the water in an aquifer is not confined by impermeable strata, the water is considered to occur under water table conditions. If the aquifer is separated from the main ground-water reservoirs by impermeable strata above the water table, a perched water table condition may develop。 In either case, water may be obtained from storage in the aquifer by lowering the water level, as in the vicinity of a well being pumped, which results in gravity drainage. However, if water is confined in the aquifer by an overlying impermeable stratum, so that the water in a well rises above the top of the aquifer under hydrostatic pressure, the water is said to occur under artesian conditions. In this case, if ideal artesian conditions prevail, water is yielded as the water level in the well is lowered, but the aquifer remains saturated and the water is yielded because of its own expansion and the compression of the aquifer due to lowered pressure rather than by gravity drainage. The water yielding capacity is called the 'coefficient of storage' and is very much smaller than the specific yield of the same material when drained by gravity. The coefficient of storage is defined as the volume of water that will be released from storage in each vertical column of the aquifer having a base one foot square, when the artesian level falls one foot.

Bedrock

Geologic information on bedrock formations in the Surrey area was gained essentially from one deep hole drilled in connection with the Surrey study and from 4 oil test logs (Fig. 4, Tables 4 and 5). Bedrock formations below and including the Pierre Shale are not and should not be considered possible sources for a municipal water supply for economic reasons. The log of one oil test drilled near the Surrey area (Hunt Oil Co.-Joe Wald No. 1, 155-81-23cd) indicates the presence of formations below the Pierre Shale from the following geologic systems - Cretaceous, Jurassic, Triassic, Mississippian, Devonian, Silurian, and

Ordovician. Precambrian granite was encountered at a depth of 8,617 feet.

Fox Hills Formation - The Fox Hills Formation overlies the Pierre Shale in the Surrey area. As evidenced from the cross-section in Figure 4, the Fox Hills Formation rises and thins towards the east. Westward from Surrey the Fox Hills Formation dips into the Williston Basin and continues on into Montana.

Fifty-three feet of what is believed to be Fox Hills sediments were penetrated in the Surrey area. The material consisted of sand, sandstone, lignite, and silty to sandy clay which in some places was highly organic. The formation top was picked at a depth of 435 feet from the electric log of Test Hole I (155-81-19abb, Fig. 5, Table 4). The electric log indicates that a highly porous condition prevails throughout the section penetrated. Correlation between the two nearest oil tests indicates approximately 50 feet more of Fox Hills sediments can be expected below the total depth of 588 feet drilled in Test Hole I.

The presence of lignite and organic matter in the sediments possibly suggests a marine shallow water depositional environment. A large inland sea is believed to have existed in North Dakota in Late Cretaceous time and the Fox Hills sediments in the Surrey area are probably shoreline or near-shore depositional features.

Little is known concerning the occurrence of water in this formation in the Surrey area. Only one known well (Mike Burckhard, 155-81-19aba, Table 4) obtains a domestic supply from the Fox Hills Formation, the supply was reported adequate. The water level in this well could not be measured, so therefore, it is not known whether artesian conditions are present. The Fox Hills Formation does yield water under hydrostatic pressure in central and south-central North Dakota, so artesian conditions may be assumed also in the Surrey area.

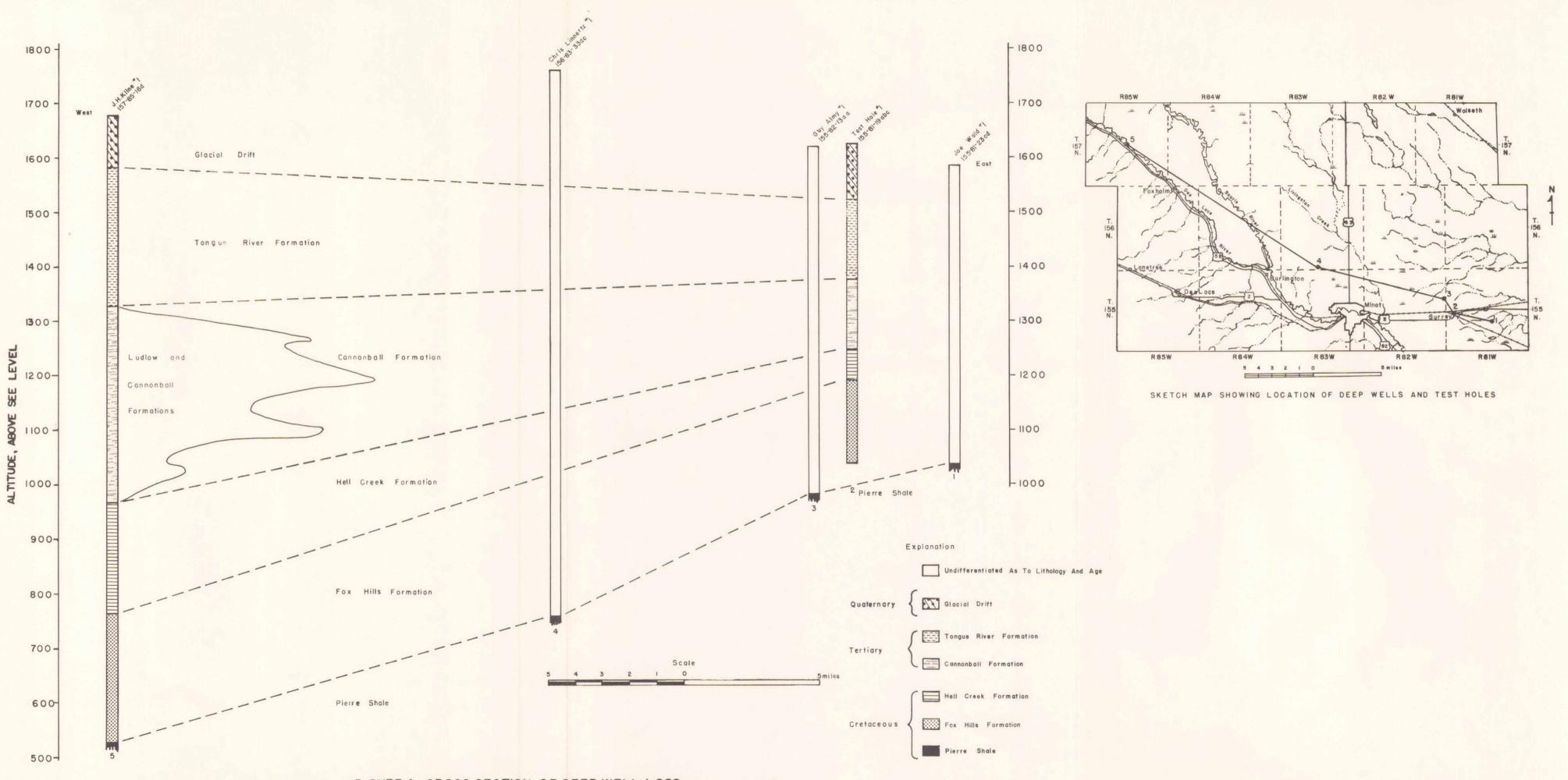


FIGURE 4--CROSS SECTION OF DEEP WELL LOGS.

Apparently the formation is fairly permeable in the area and it is estimated that a well which completely penetrates the aquifer and is properly developed should be capable of producing IOO gallons per minute or more. An aquifer test by qualified personnel would be required before a safe yield could be determined however.

<u>Hell Creek Formation</u> - Fifty-eight feet of bluish gray, silty to sandy clay believed to represent the Hell Creek Formation were penetrated in Test Hole I. As shown in Figure 4, it is thinning more rapidly to the east than the underlying Fox Hills Formation.

The formation top was picked at a depth of 377 feet from the electric log of Test Hole I. The electric log indicates water development much less favorable than in the underlying Fox Hills Formation but possibly slightly better than the majority of the overlying bedrock formations. No wells are known to tap the Hell Creek Formation in the Surrey area. Because the formation does not appear to be significant as a major aquifer in western North Dakota, it should not be considered as a possible source of supply other than for small domestic or stock demands in the Surrey area.

<u>Cannonball Formation</u> – The Cannonball Formation and the overlying Tongue River Formation are treated as the Cannonball and Tongue River Members of the Fort Union Formation by Lemke (1960) and LaRocque, et al (1963a & b). Because the two units contain separate physical, lithologic, and hydrologic characteristics and can be differentiated in the subsurface as well as at the surface in areas where they outcrop, they are treated as separate formations of the Fort Union Group in this report.

At the close of Cretaceous time which witnessed the deposition of the Hell Creek Formation, there followed a period characterized by erosion rather than deposition in North Dakota. At the beginning of Tertiary time, a large

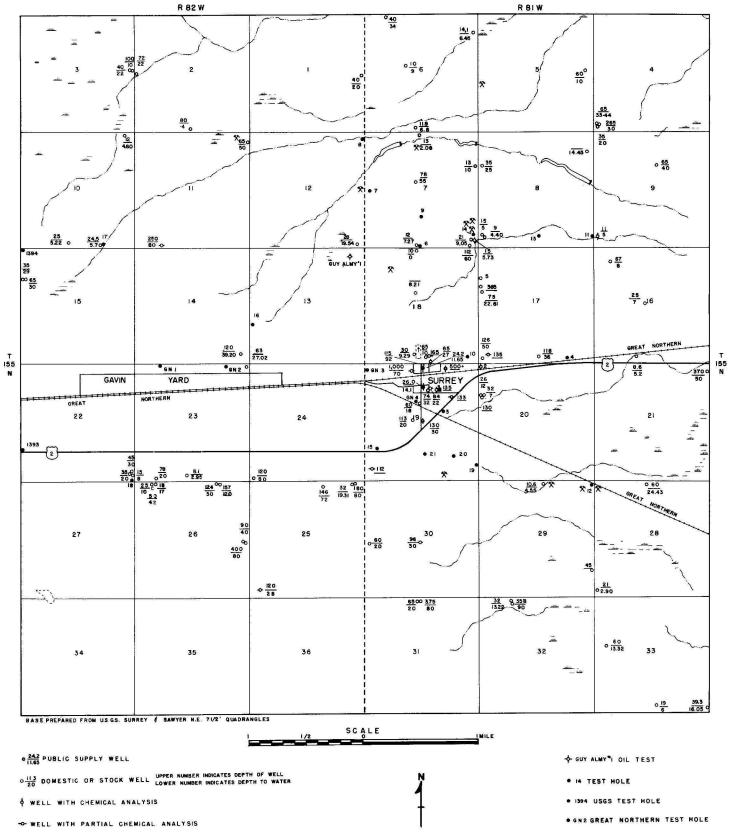


FIGURE 5--MAP OF THE SURREY AREA SHOWING THE LOCATION OF WELLS AND TEST HOLES

inland sea, somewhat similar to that of Fox Hills time, covered central and western North Dakota and adjacent areas and deposited the sediments of the Cannonball Formation. LaRocque, et al (1963a, p. 17) believes the westernmost advance of the Cannonball sea was a line almost coinciding with the course of the DesLacs River.

In conjunction with the shallow Cannonball sea, streams and rivers were transporting debris from a part of the Rocky Mountain regions and depositing : it on the broad plain bordering the sea. These deposits are collectively known as the Ludlow Formation. Because of fluctuations of sea level and the variation in deposition, the sediments of the Cannonball and Ludlow Formations intertongue and are extremely difficult to differentiate in western North Dakota. Lemke (1960) includes both in the measured section of the J. H. Kline #1 (Fig. 4), but only Cannonball deposits are believed by the writer to be present in the Surrey area.

The top of the Cannonball Formation in the Surrey area was picked at a depth of 249 feet from the electric log of Test Hole I. The formation is composed, for the most part, of silty and sandy clay but includes shale, sandstone, lignite and silt strata. The electric log indicates only the sandstone is capable of yielding water to wells and these yields can be expected to be low.

Several wells have been developed in the Cannonball Formation and produce sufficient water for ordinary domestic and stock demands. The water level may vary from 30 to 90 feet below land surface and should fluctuate only slightly because artesian conditions are present. Recharge areas to the Cannonball Formation (and presumably to the underlying Hell Creek and Fox Hills Formations) is for the most part from the south and southwest where the formation crops out. LaRocque, et al state,

"The Cannonball 'Member' is exposed on the walls of the Souris River from a point about midway between Minot and Velva to a point about 9 miles downstream from Velva." (1963a, p. 17)

Although the supply to wells penetrating sand or sandstone strata in the Cannonball Formation is adequate and reliable, it is doubtful if a sufficient quantity could be obtained to support a small municipal water supply in the Surrey area.

<u>Tongue River Formation</u> - After the final retreat of the Cannonball sea, deposition of continental deposits extended over the entire area and continued uninterupted throughout Tongue River time, which lasted to the end of the Paleocene Epoch. The Tongue River thickens west of the Surrey area and in the unglaciated portion of southwestern North Dakota occurs at the surface throughout the majority of the region.

All test holes drilled in connection with the Surrey study encountered the Tongue River Formation at variable depths. The deepest it was found was 103 feet in Test Hole I. The formation consists largely of light-colored interbedded clay, sandy clay, sand, sandstone, shale and silt. The sediments were deposited, for the most part, in swamps and shallow lakes and shifting of the water bodies during accumulation caused the resulting layers to be disconnected and uneven in thickness.

The majority of wells in the Surrey area, which do not obtain their supply from the overlying glacial drift, tap sandy parts of the Tongue River. Due to the sporadic nature of the sandy strata, wells in the area are variable in depth and show a marked variance in water levels. Water in nearly all of the wells is under hydrostatic pressure but yields are low. The largest known yield from a well developed in Tongue River sediments in the Surrey area is reported to be 11 gallons per minute (Donald Erck-Minot well driller, oral communication, April 1963).

Because of the fine-grained nature of the sediments and poor hydrologic connections it is very doubtful if any one well penetrating the Tongue River

Formation would be capable of supplying the demand of a municipal supply in the Surrey area. It does yield small but adequate and reliable quantities for ordinary domestic and stock-watering purposes, however.

Glacial Drift

Glacial drift refers to all stratified or unstratified materials deposited directly or indirectly by glacial action. It occurs at the surface and immediately underlying the entire Surrey area. The average thickness of drift in the Surrey area is approximately 62 feet and varies from 36 to 103 feet.

Glaciers, heavily laden with bedrock materials and glacial debris which had been picked up and transported by the ice, moved southward across the area during the Pleistocene Epoch. As the margins of the glaciers melted back to the north, the rock material carried within the glacier was left as a mantle on the surface overridden by the ice. Streams of meltwater flowing from the ice deposited sorted materials in mounds and ridges and cut a network of meltwater channels in the surface throughout the majority of the area. The present surface is essentially as the ice and meltwater left it.

<u>Till</u> - Till is the part of the glacial drift characterized by an unstratified mixture of clay, silt, sand, pebbles, and cobbles which was deposited directly by the glacier with little or no transportation by water. Two tills, representing two separate glacial advances, were noted during test drilling. The lower till is a tightly compacted, olive gray clay; the upper till is less compacted, yellowish brown to olive gray, sandy clay. Both tills contain variable amounts of silt, sandy, and pebbles. Cobbles and small boulders are included in either till, but are not common.

During the waning stages of the last glaciation, the surface of the Surrey area consisted of a gently undulating till plain or ground moraine. Numerous

saucer-shaped depressions, called kettles or potholes, dotted the entire area. These potholes are the result of the melting of ice blocks which had been deposited with the till by the glacier as it retreated. Many of the potholes were later eroded by a complex of meltwater channels, but the original pockmarked surface is still visible on the divides between the channels.

Tillis essentially impervious and does not readily yield water to wells. In general, wells recovering water from the glacial drift, tap outwash sand and/or gravel deposits at the surface or included in the till. It is possible to obtain variable amounts of water from a well dug or bored into the till, if the till contains cracks called fractures or joints. Aerial photographs indicate a predominant fracture pattern may exist in the Surrey area. Numerous northwestsoutheast striking linear traces were identified on the photos. The traces are not affected by changes in topography and range from several tens to several hundreds of feet in length. Providing these traces are fractures, and if they continue on below the water table, small or possibly moderate supplies of water might be recovered from a well dug directly over the fracture. The yield naturally will be determined by the size, width, and depth of the fracture and its degree of hydraulic connections. The traces are nearly indiscernable on the ground but quite evident on aerial photographs because of the linearity which is almost perpendicular to the general topographic dip to the northeast.

Most of the recharge to the till is due directly to precipitation which accumulates in the potholes and surficial materials and gradually percolates downward. It is doubtful if the till or any part of the glacial drift in the Surrey area recharges the underlying bedrock and, in fact, because hydrostatic pressure exists, the bedrock may actually be recharging the immediately overlying glacial drift.

<u>Outwash</u> - Outwash refers to all detrital material swept out of the melting glacier by meltwater streams. Outwash is irregularly distributed throughout the Surrey area at the surface, included within the till, and within the confines of the meltwater channels. It varies in thickness from inches to over 40 feet and in degree of sorting from poorly sorted to well sorted.

Outwash deposits at the surface are difficult to distinguish topographically because of the erosion by the meltwater channels. They can be observed, however, in exposed areas such as roadcuts and gravel pits. Aerial photographs are especially helpful in locating surficial outwash in that it shows up as a white to medium-light gray tone. Also there is a definite lack of potholes and recent erosion because of the high degree of permeability, and the channel bottoms in outwash are flat whereas those cut through till are U-shaped. The largest concentration of surficial outwash is in the northern half of the Surrey area. Test Hole 7 (155-81-7cbb, Table 5) encountered 44 feet of outwash material, the upper 16 feet of which consisted of poorly sorted gravel. Test Hole 14 (155-81-7da, Table 5) encountered at least 33 feet of outwash material, the majority of which was gravel. Both Test Holes 7 and 14 are near gravel pits.

Nearly all test holes encountered variable amounts of outwash within the till. These deposits cannot be foretold by surface expression and must be located by test drilling or geophysical exploration. In general, these deposits are restricted in lateral extent and occur as small lenses and stringers, however, concentrated test drilling or geophysical exploration may prove some to be fairly extensive. The shallow aquifer supplying village wells numbers I and 2 (Table 4) apparently exists throughout the northern portion of the

village. A U. S. Geological Survey test hole drilled in the NE¹/₄ Sec. 13, Twp. 155 N., Rge. 81 W., located 6 miles east of Surrey, indicates a potential aquifer. The log of the test hole (Table 6) shows 9 feet of sand and gravel from 27 to 36 feet and 44 feet of coarse sand and gravel from 43 to 87 feet. This area definitely holds a possibility for the development of a moderately large water supply.

Dutwash deposits associated with the meltwater channels are largely the result of reworking and redeposition of previously deposited surficial outwash by the meltwater which carved the network of channels in the area. They will be discussed more fully in the following section on meltwater channel deposits.

Outwash deposits consist of clay, silt, sand, and gravel. The clay and silt are essentially impermeable and do not readily yield water to wells. The sand and gravel deposits on the other hand are quite permeable and supply the majority of water to glacial drift wells. Small domestic and stock wells encountering as much as one or two feet of saturated sand and gravel are reported as supplying adequate quantities of water for those purposes. The yield of such wells would be approximately I to 3 gallons per minute. Larger yields can be expected from greater thickness of saturated sand and gravel; long-term, higher pumping rates will depend on the degree of hydrologic connections in the sand and gravel and the aerial extent of the recharge area.

Hydrologic connections in surficial sand and gravel are usually very good and a well penetrating the deposits will draw water from the majority of the deposit. If a well is intended to produce for any purpose other than domestic or stock uses, a pumping test should be performed to determine a safe yield. Recharge to surficial outwash sand and gravel is dependent on precipitation. Discharge through surficial sand and gravel to nearby meltwater channels is probably quite rapid and should be taken into consideration before developing a well any distance from the channel.

The simplest and most economical means of determining the availability of water in buried outwash associated with the till is a pumping test. If a well penetrating buried sand or gravel deposits can be pumped dry in a short period of time, a lenticular condition exists in the sand or gravel and it is probably completely surrounded by nearly impervious till with no recharge area to draw from except the till. If the well can be pumped at a steady rate with no serious drawdown of the water level, good hydraulic connections are present and a safe pumping rate can be determined by careful analyses of the pump test data. This data along with records of water level measurements of nearby observation wells will indicate recharge and discharge characteristics of the aquifer.

The outwash deposits associated with certain meltwater channels are perhaps the best suited for development of a municipal water supply in the Surrey area. The occurrence of water in these deposits will be discussed in the following section on meltwater channel deposits.

<u>Meltwater channel deposits</u> - During the final phase of glaciation as the wasting glacier was retreating to the north, a large mass of ice blocked the Souris River Valley south of Minot causing meltwater to spill to the east through the Surrey area. Lemke offers the following explanation for the present day surface

"In the complex braided network of outwash channels in the vicinity of Surrey, in the eastern part of Ward County, it appears that several channels may have carried meltwaters simultaneously and that the melt waters flowed between many blocks of ice. If blocks of ice had not been present, probably only a few large channels would have formed at successive positions marginal to the ice because of the northeast slope of the ground surface" (Lemke, 1960, p. 88).

Eventually as the mass of ice south of Minot melted, meltwater was diverted south but a portion of the history of the Souris River was recorded on the surface in the Surrey area.

Meltwater channel deposits range from a thin veneer of silt and clay with local patches of sand and gravel in the gently rounded channel bottoms eroded into till, to 30 or 40 feet of sand, gravel, silt, and clay in the wider flat-bottomed channels. Minor amounts of recent alluvium and slopewash consisting of clay, silt, and fine sand overlie outwash deposits in the larger channels, but they are thin and do not constitute a significant source of water supply in the area.

Test drilling indicates that strata of relatively clean, sorted sand and gravel occur as discontinuous lenses along portions of the meltwater channels and that they are probably separated by less permeable materials such as silty or clayey sand, clayey silt, or even reworked till. The lack of continuity in the sands and gravels is primarily due to varying conditions of sedimentation caused by meltwaters which were forced to flow among stagnant blocks of ice rather than in continuous defined channels. The supply of meltwater, the amount and size of material being transported, and the presence or absence of an unobstructed course are conditions which determined whether the meltwater was eroding a channel or depositing material in it. Frequent channel changes contributed to the discontinuity of the meltwater channel deposits by eroding, reworking, and redepositing parts of the pre-existing deposits. The thicker sand and gravel beds are the best potential aquifers. In much of the area, however, meltwater channel deposits do not have sufficient thickness to be important as a source of ground water for a municipal supply.

Although generally thin and apparently discontinuous in part, certain **meltwater** channel deposits, namely sand and gravel, are moderately to highly

permeable and are known to yield sufficient water for stock and domestic purposes in the Surrey area. The municipal supply wells of Mohall and Glenburn, North Dakota, tap meltwater channel deposits. Because little was known regarding the yield potential of meltwater channel deposits in the Surrey area, a preliminary pumping test was performed on Reinhold Elker's stock well (155– 81-7ddd₃, Fig. 5, Table 4).

The stock well, 18 inches in diameter and 21 feet deep, consists of four 4-foot concrete culverts and one 5-foot galvanized steel culvert. The steel culvert, perforated in several places to allow water to enter the well as it is pumped, was set at the bottom of the bored hole. The well was not gravelpacked or developed. On November 5, 1963, as part of this study, the well was pumped for a period of 8 hours at a rate of 60 gpm (gallons per minute). Accurate drawdown measurements could not be obtained from the well because of its construction, however, the water level surprisingly was never lowered sufficiently to affect the rate of 60 gpm. An old stock well (155-81-7ddd₂, Table 4), located 142 feet east of the pumped well, was used as an observation well. Periodic measurements were taken on this well during pumping to determine the influence of the pumped well. The observation well was lowered .09 foot after 5 hours of pumping and remained static for the next three hours.

Accurate predictions regarding a municipal supply well at this location cannot be made since data collected was incomplete. However, because the pumped well was not designed to produce 60 gpm, the belief that the well does not penetrate the entire thickness of saturated gravel, and that the apparent recharge area is fairly extensive; it can be safely assumed that a properly developed municipal supply well at this location will be capable of producing at least 60 gpm for a period of at least 8 hours. A well pumping 60 gpm for 8 hours will yield 28,800 gallons of water. It is estimated that a supply of 25,000 to 28,000 gallons of water per day would be sufficient to supply all

residents of the village of Surrey under average conditions.

Significant amounts of recharge to the meltwater channel deposits occur through direct penetration of rainfall and also by lateral movement of ground water into the channels from the till or outwash deposits. However, the most important source of recharge to the channel deposits occurs during the spring runoff when substantial surface flows result from the melting of accumulated snow. During the spring runoff generally much more water is available than can be absorbed by the deposits and the surface runoff may be thought of as 'rejected recharge', or water that would have been absorbed by the deposits had they not been saturated. A dam across the meltwater channel will help to retain the majority of the rejected recharge.

Although some of the water in the meltwater channel deposits may seep into underlying or adjacent deposits, the greater part moves down the long axes of the channels. Water in the channels not withdrawn through wells, consumed by vegetation, or evaporated, is discharged into a surface drainage course, a lake, or a marsh. A subsurface dam or clay core will prevent the subsurface drainage down the channel and retain large quantities of water that otherwise would be lost.

QUALITY OF WATER

Ground water in the Surrey area is primarily of meteoric origin. Meteroic water, or water precipitated as rain or snow, contains only small amounts of dissolved mineral matter. As soon as it reaches the earth, however, it begins to react with the minerals of the soil and rocks with which it comes in contact. The amount and character of the mineral matter dissolved by meteoric waters depend upon the chemical composition and physical structure of the rocks with which they have been in contact, the temperature, the pressure, the duration of contact, and the material aiready in solution. The solvent

action of the water is assisted by carbon dioxide in solution which is derived from the atmosphere and organic processes in the soil through which the water passes.

Quality of shallow ground water, in general, varies inversely with the quantity; where abundant, it is commonly potable; where sparse, it is commonly highly mineralized. Extent of mineralization, in general, varies directly with depth; deeper bedrock waters being usually more highly mineralized than shallow waters. Deep artesian water is usually highly mineralized. Shallow water is, however, more likely to be polluted from surface sources.

The purity of water as regards the sanitary conditions must be determined by inspection of the source and its surroundings and by bacteriological examination of the water. The condition of a water as regards pollution may change so quickly that the results of an examination at one time do not necessarily bear any relation to the purity of the water at another time. The mineral constituents, on the other hand, are fairly constant in water from a given source unless the source is a stream or river that carries different quantities of dissolved material at different stages.

The quality of water for public supply and domestic use commonly is evaluated in relation to standards of the United States Public Health Service for drinking water. The standards, adopted in 1914 to protect the health of the traveling public, were revised several times in subsequent years. The latestrevision by the U. S. Public Health Service (1963), approved by the Secretary of Health, Education and Welfare, is, in part, as follows:

Table I -- Geologic Formations

Era	Period	Epoch	Formation	Lithologic Character	
CENOZOIC		Recent	Alluvium	Clay, silt, and fine sand	
	RY	Pleistocene	Meltwater channel ⊄deposits	Clay,silt, and fine to coarse sand and gravel	
	QUATERNARY		Cutwash	Clay, silt, and fine to coarse sand and gravel	
	d			Clay and sandy clay, yellowish brown to olive gray; limestone and granitic pebbles	
	TERTIARY	Paleocene	Tongue River Formation	Light-colored interbedded clay, sandy clay, sand, sandstone,shale and silt; some lignite	
		rareotene	Cannonball Formation	Silty and sandy clay, shale, sand, sandstone, silt and lignite	
MESOZOIC	CRETACEOUS	Upper Cretaceous	Hell Creek Formation	Bluish-gray silty to sandy clay	
			Fox Hills Formation	Greenish-gray sand, sand- stone, and silty to sandy clay; lignitic	
	CK		Pierre Shale	Gray shale and clay; lumpy, bentonitic	

and their water-bearing characteristics

Maximum thickness (feet)	Water-bearing characteristics		
2	Too thin to constitute a source of water supply		
44 <u>+</u>	Sand and gravel generally well-sorted, moderately to highly permeable; in places may yield enough water for small or medium municipal, industrial, or irrigation developments		
19±	Sand and gravel poorly-to moderately -sorted, moderatel permeable; in places may yield enough water for small municipal or industrial development		
90 <u>+</u>	Relatively impermeable; may yield sufficient supply for small domestic or stock demands		
146 <u>+</u>	Slightly permeable, poor hydrologic connections; may yield up to ll gpm		
128	Slightly permeable; sand or sandstone strata may yield IO-15 gpm		
58	Not known to be a source of supply for other than domestic or stock wells		
203 <u>+</u>	Permeable; may yield 100 gpm (estimated)		
1292 <u>+</u>	Impermeable; not usually a source of supply		

Table 2 - Drinking water standards of the U. S. Public Health Service

Iron (Fe)	.3	ppm (parts per
Magnesium (Mg)	125	million) ppm
Suifate (SO ₄)	250	p p m
Chloride (Cl)	250	ppm
Fluoride (F)	1.5	ppm
Nitrate (NO ₃)	45	ppia
Dissolved solids	500	ppm

Seventeen complete and partial chemical analyses of well water in the Surrey area are shown in Table 3. The partial analyses were taken from the tables of LaRocque, et al.(1963b). The complete analyses were performed by the State Laboratories in connection with this study.

The Fox Hills Formation contains highly mineralized sodium chloride water in the Surrey area (155-81-19aba, Table 3). The water, similar to sea water but in lesser concentrations, acquires its poor quality from water and minerals trapped in the sediments as they were deposited. The water is soft and preferred for laundering but the high concentration of boron, sodium, and total dissolved solids make the water unsuitable for watering plants, lawns and gardens. Because treatment of this water is difficult and expensive, the Fox Hills Formation should not be considered as a source for a municipal supply of water.

Waters of the Cannonball Formation are of the sodium chloride or sodium bicarbonate type, slightly saline, soft, and unsuitable for gardening. The water is similar to that from the Fox Hills, but apparently less alkaline. Alkalinity can be judged in the pH column (Table 4). The range of pH is from O to I4. A solution with a pH of 7 is said to be neutral. Progressive values below 7 denote increasing acidity, those above 7 denote increasing alkalinity. Tongue River Formation waters are characterized by the sodium bicarbonate type. The waters are very soft averaging about 16 ppm, but quite alkaline with an average pH of 8.3. The average sodium concentration is less than waters of the Fox Hills or Cannonball Formations but the average of 98% sodium is the same, making the water unfit for irrigation. Chloride content of the Fox Hills and Cannonball average 1,000 ppm while those of the Tongue River average 53 ppm. This difference is because of marine deposition of the Fox Hills and Cannonball sediments and the continental deposition of the Tongue River sediments. If the chloride concentration is much over 400 ppm, water will have a salty taste. Tongue River waters contain the highest iron concentration in the area and average about 2.5 ppm. Although the U. S. Public Health Service recommends .3 ppm, up to 1 ppm is acceptable; I to 3 ppm is fair and over 3 ppm objectionable. Staining of plumbing fixtures and clothing may occur if the iron concentration is over 1 ppm.

Glacial drift waters are generally of the calcium sulfate type although deeper drift wells may contain sodium sulfate waters due in part to contamination by infiltrating bedrock waters. The major differences between drift and bedrock waters, other than the type, is the hardness and % sodium. Glacial drift waters are very hard averaging about 820 ppm. The North Dakota State Department of Health recommends a maximum hardness of 140 ppm for municipal supplies. Hardness can be easily and economically removed by water softeners. The % sodium is usually very low in drift waters, unless contaminated by bedrock waters, and suitable for all types of irrigation, making it more desirable than bedrock waters for a municipal supply. The sulfate content of drift waters, as well as those from the Tongue River Formation, generally exceed the limit of 250 ppm. Excess sulfate will cause a laxative effect, but concentrations up to 600 ppm can be used without any noticeable adverse effects. Drift waters are only slightly alkaline, the pH averaging approximately 7.5.

Neither bedrock nor drift waters contain excessive amounts of flouride or nitrates in the Surrey area. Fluoride in concentrations from .08 to 1.5 ppm in water drunk by children is generally believed to be beneficial in the reduction of tooth decay. The presence of nitrates of more than 10 ppm indicate contamination by sewage or other organic matter. Studies indicate that nitrate in excess of about 45 ppm in drinking water may be a contributing factor or the cause of a condition in infants known as methemoglobinemia or "blue babies" (Lohr and Love, 1954).

SYNTHESIS OF DATA

The village of Surrey, contemplating the installation of a municipal waterworks to supply the 310 residents, requested the North Dakota State Water Commission to study the area in and around the village and report on the availability of water. Field work was carried out in April and November, 1963, to locate a favorable area for the development of a well to supply adequate water of good quality for village use. All geologic units above the Pierre Shale in the Surrey area were considered.

Bedrock aquifers include the Fox Hills, the Cannonball, and Tongue River Formations. The Fox Hills Formation is permeable and a well penetrating the entire thickness may yield 100 gpm, however, the water is highly mineralized, salty, and unfit for watering plants, lawns, and gardens. The Cannonball and Tongue River Formations are slighly permeable and yield small quantities of water. Waters from these formations also contain high sodium concentrations making them unfit for watering plants, lawns, and gardens. Treatment of bedrock waters would be difficult and expensive.

Glacial drift aquifers include the outwash and meltwater channel deposits. Large diameter wells penetrating saturated sand and gravel deposits over 10

29

		30a TABLE 3							المراجع والمراجع وال		
		×				(a		ical ı		ts in	
Location	Depth of well	Aquifer	Date of collection	(Si0 ₂)	5 느 (Fe)	(calcium	Magnesium)	(Na)	A Potassium	Bicarb- onate	
	(feet)	Aquiter	correctron	(3102)	(16)		(mg)	(140.)	(n)	(1003)	
155-81-7dda 155-81-9ccc 155-81-17cc 155-81-18dcc 155-81-18dc2 155-81-19aba 155-81-19abb1 155-81-19abc1 155-81-19aca 155-81-19acb 155-81-19acb 155-81-19acc 155-81-19ad1 155-81-19ba1 155-81-19cc	174 130 133 1,000 112	Qd Qd Qd(?) Qd Tc Kfh Qd Qd Ttr Ttr Ttr Ttr Ttr Ttr	4-18-63 4-17-63 6-17-47 4-2-63 6-17-47 4-2-63 4-2-63 4-2-63 4-2-63 4-2-63 4-2-63 4-2-63 4-2-63 6-17-47 6-17-47 6-17-47	17 10 20 6.8 21 19 22 9.5 9.5 		273 8.0 4.8 6.4 	88 45 7.3 173 146 0 0 0 	I,125 205 55 580 596 657 	8.4 5.6 20 13 28 9.6 6.6 2.7 9.3 	632 1,147 883 1,040 850 940	
55-8 -20bbb 55-82- ccd	38 250	Qd Tc	4-9-63 9-11-47	21 6.0	۱.2 47	132 7.5	92 3.9	64 980	14 7 . 2	400 1,030	

Aquifer: Qd- Glacial Drift Ttr- Tongue River Formation Tc- Cannonball Formation Kfh- Fox Hills Formation

CHEMICAL ANALYSES

1

30b

Եր	LITCAL	ANALTS	91.9 91.9			200					
pou- pou-	re Fe	Chloride Flouride			s ind ica te	2d)			i um orption io		
cpo	Sul fa	2 3	Nitrate	Boron					1 ST		
Car ate	2	공 문	Ę	õ					Sod Absi Rat		
					Total	Total ha		%		Specific	
(003	$(S0_4)$	(CI)(F) (NO ₃) (B)	dissolved	as CaCO3		Sodiu	im SAR	conducta	
					solids		carbonate			mahols/c	m
0	415	54 .5	10	.12	1,014	610	342	19	1.2	1,566	7.6
õ	270	40.3		0	699	400	190	26	1.5	1,080	7.7
		70		~~						2,500	
0	905	34 .6		.58	1,918	540	0	62	8.0	2,749	7.4
_		,060								4,350	*
Q		,300 .5		2.82	3,095	44	0	98	70.0	5,498	8.1
Ģ	1,200	70 1.0			2,484	1,390	859	24	2.5	3,071	7.5
ō	950	50 .7		.10	1,924	1,280	921	9	.7	2,374	7.3
48	450	32 .7		1.13	1,716	20	0	98	50.7	2,610	8.3
0	1,011	56			2,119	372		75		2,972	7.7
õ	254	82 .6		1.3	1,628	12	0	99	90.0	2,610	8.2
58	550	44 .6		,60		16	0	98	73.3	2,901	8.3
		38								2,310	
-	-	1,000							-	4,190	*
		33								2,310	+
Ó	500	10.6	0	.20	1,130	710	380	16	1.1	1,740	7.5
Ó	.8	940 .5		2.4	2,450	34	0	98	-	4,340	7.6*
2			1.1		and the second s					-	

*LaRocque, G. A., Jr., Swenson, H.A., and Greenman, D. W.,1963b, Tables of hydrologic data, Crosby-Mohall area, North Dakota, U.S. Geol. Survey open-file report, 508 p.

feet thick may produce sufficient water for a municipal supply depending on the grain size, the degree of sorting, the hydrologic connections and the recharge area available. These conditions can be determined by test drilling and pumping tests on small diameter pilot wells. Generally glacial drift waters are chemically suitable for a municipal supply but are very hard. Hardness can easily and economically be reduced by a water softener.

RECOMMENDATIONS

On the basis of information gained during the survey, the meltwater channel in the extreme SE $\frac{1}{4}$ Section 7, Township 155 North, Range 81 West apparently contains a potential aquifer near the village of Surrey. The site was chosen for several reasons, some of which are:

- Test Hole 14 penetrated at least 23 feet of well-sorted, clean, highly permeable gravel.
- 2) Gravel pits and aerial photographs indicate that sand and gravel deposits extend, perhaps somewhat discontinuously, at least one mile to the northwest. These permeable deposits allow for immediate infiltration and downward percolation of precipitation to recharge the aquifer.
- 3) Several bifurcating meltwater channels converging toward the site are capable of carrying excess runoff water and perhaps significant amounts of ground water to the immediate area from as far away as Gavin Yard, the Great Northern retarder yard located between Minot and Surrey.
- 4) The preliminary pumping test on Reinhold Elker's stock well indicates at least 60 gpm can be produced for at least 8 hours. A properly developed well penetrating the entire thickness of saturated gravel will undoubtedly produce a larger quantity of water. A pumping test will determine the length of time the well could produce a specific rate.

- 5) The meltwater channel marrows considerably as it enters Section 8 to the east. By excavating the permeable deposits in the channel, perhaps along the section line road, and replacing the deposits with a clay core, ground water moving down the axis of the channel can be retained and stored in a natural underground reservoir.
- 6) The quality of water, with the exception of the hardness is suitable for a municipal supply.

Disadvantages of a municipal supply well at this site are:

- The distance from the well to the village requiring over one mile of pipeline.
- 2) The danger of contamination from surface sources.
- 3) Extended periods of drouth may sufficiently lower the water table to restrict the rate of pumping.

If the village of Surrey proposes to install a well in the $SE_4^{\frac{1}{4}}$ of Section 7 or any other location in the area, it is recommended the State Water Commission be notified so observation well installation and collection of pumping test data may be made. Pumping test data will permit personnel of the Water Commission to analyze hydrologic characteristics of the aquifer and determine a safe yield of the well.

After the well is completed and producing, a water right should be acquired to protect the supply. Daily records of water level measurements, pumping rates, and pumping time should be registered for future reference. The North Dakota State Health Department, Bismarck, requires all towns or cities with a municipal supply to send in periodic water samples for bacteriological and chemical analyses.

	and tenths o levels in fe Type of well:	well: Dr.,drilled; Du, dug; Dv, en; Bo, bored; g.p.m., gallons per te							Depth of well: Measured depths in feet and tenths; reported depths in feet. Use of water: D, domestic; U, unused; PS, public supply; S, stock; T, test hole; O.T., oil test hole; O, observation well					
	*LaRocque, G.A., Jr., Swenson, H.A., and Greenman, D. W., 1963b, Tables of hydrologic data, Crosby-Mohall area, North Dakota, U. S. Geol. Survey open-file report, 508 p. Elevations considered correct to within 5 feet							to t 81-1 5 un	he near 9ac ₁) a 1ess a	est 40 ac re not sh partial c	19 located res (e.g. 155- own on Figure hemical the water.			
Ē	c	ildered correct to with	Depth (feet) (feet)	Diameter (inches)	Type Date completed	Depth to water below land surface (feet)	te of ssurement	e of ter	Aqui fer	evation	Remarks			
i,	2	3	C f	ā	Type Date comp	Na I ai	Dat	Use wate	and the second second days and the second se	ធ	Rei			
	155-81-4cci	Harold Dickinson	65	22	Du	33.44	5-26-47	D,S	Qd	1589.0	*			
	155-81-4cc2	Harold Dickinson	265	4	Dr	30		D,S	Tc	1590				
	155-81-4cc3	Usuald Diskinson	76	31										
		Harold Dickinson	35	36		20		D,S	Qd	1590				
	155-81-5ad	D.E. McAllister	60	24	80	10	5-26-47	S	Qd	1593	*			
	155-81-6aa	D.E. McAllister Unknown	60 14.1	24 14	Bo Bo	10 6.45	10-16-45	S S,O	Qd Qd	1593 1563.0	*			
a.,	155-81-6aa 155-81-6ba	D.E. McAllister Unknown Lena VonBerg	60 14.1 40	24 14 24	80 80 80	10 6.45 34	10-16-45 5-26-47	S S,O S	Qd Qd Qd	1593 1563.0 1597				
°	55-8 -6aa 55-8 -6ba 55-8 -6bd	D.E. McAllister Unknown Lena VonBerg Lena VonBerg	60 14.1 40 10	24 14 24 36	Bo Bo Du	10 6.45 34 9	10-16-45 5-26-47 5-26-47	S S,0 S S	Qd Qd Qd Qd	1593 1563.0 1597 1579	*			
ъ.	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd	D.E. McAllister Unknown Lena VonBerg Lena VonBerg John Kauffman	60 4. 40 0 .9	24 14 24 36 30	Bo Bo Du Du	10 6.45 34 9 6.8	10-16-45 5-26-47 5-26-47 10-16-45	S S,0 S S,0 S,0	Qd Qd Qd Qd	1593 1563.0 1597 1579 1565.0				
8.	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad	D.E. McAllister Unknown Lena VonBerg Lena VonBerg John Kauffman S. M. Sheets	60 14.1 40 10 11.9 13	24 14 24 36 30 42	Bo Bo Du Du Du	10 6.45 34 9 6.8 10	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47	S S,0 S S,0 D,S	Qd Qd Qd Qd Qd Qd	1593 1563.0 1597 1579 1565.0 1581	* * * *			
s. A	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7ba	D.E. McAllister Unknown Lena VonBerg Lena VonBerg John Kauffman S. M. Sheets A. Korgel	60 4. 40 0 1.9 3 3	24 14 24 36 30 42 16	Bo Bo Du Du Du Bo	10 6.45 34 9 6.8 10 2.08	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47	S S,0 S S,0 D,S D,S D,S	Qd Qd Qd Qd Qd Qd Qd	1593 1563.0 1597 1579 1565.0 1581 1581	* * * *			
с я	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7ba 155-81-7bd	D.E. McAllister Unknown Lena VonBerg Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel	60 14.1 40 10 11.9 13 13 13 78	24 14 24 36 30 42 16 16	Bo Bo Du Du Du Bo Bo	10 6.45 34 9 6.8 10 2.08 55	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47	S,0 S S S,0 D,S D,S D,S	Qd Qd Qd Qd Qd 	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602	* * * *			
s. A	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7bd 155-81-7cad	D.E. McAllister Unknown Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel Test Hole 9	60 14.1 40 10 11.9 13 13 78 63	24 14 24 36 30 42 16 16 16 4 3/4	Bo Bo Du Du Du Bo Bo Dr 4-15-6	10 6.45 34 9 6.8 10 2.08 55 3 6.64	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47 4-19-63	S S,0 S S,0 D,S D,S D,S T	Q d Q d Q d Q d Q d Q d Q d Q d	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602 1578	* * * * * See log			
с. Х	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7bd 155-81-7cad 155-81-7cad	D.E. McAllister Unknown Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel Test Hole 9 Test Hole 7	60 14.1 40 10 11.9 13 13 78 63 84	24 14 26 30 42 16 16 4 3/4 4 3/4	Bo Bo Du Du Du Bo Dr 4-15-6 Dr 4-15-6	10 6.45 34 9 6.8 10 2.08 55 3 6.64 3 14.32	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47 4-19-63 4-17-63	S S,0 S S,0 D,S D,S D,S T T	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602 1578 1595	* * * * See log See log			
s a	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7bd 155-81-7cad 155-81-7cbb 155-81-7cbb	D.E. McAllister Unknown Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel Test Hole 9 Test Hole 7 George Luchsinger	60 14.1 40 10 11.9 13 13 78 63 84 12	24 14 24 36 30 42 16 16 4 3/4 4 3/4 24	Bo Bo Du Du Du Bo Dr 4-15-6 Bo Bo	10 6.45 34 9 6.8 10 2.08 55 3 6.64 3 14.32 7.27	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47 4-19-63 4-17-63 4-15-63	S S,O S S,O D,S D,S T T S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602 1578 1595 1586	* * * See log See log Hard			
	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7ba 155-81-7cad 155-81-7cbb 155-81-7cbb 155-81-7cdd 155-81-7cdd	D.E. McAllister Unknown Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel Test Hole 9 Test Hole 7 George Luchsinger Test Hole 6	60 14.1 40 10 11.9 13 13 78 63 84 12 63	24 14 24 36 30 42 16 16 4 3/4 4 3/4 24 4 3/4	Bo Bo Du Du Du Bo Bo Dr 4-15-6 Bo Dr 4-15-6	10 6.45 34 9 6.8 10 2.08 55 3 6.64 3 14.32 7.27 3 14.8	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47 4-19-63 4-17-63 4-15-63 4-19-63	S S,0 S,0 D,S D,S D,S T T S T	Qd Qd Qd Qd Qd Qd Qd Qd Qd Qd	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602 1578 1595 1586 1598	* * * * See log See log Hard See log			
z.	155-81-6aa 155-81-6ba 155-81-6bd 155-81-6cd 155-81-7ad 155-81-7bd 155-81-7cad 155-81-7cbb 155-81-7cbb	D.E. McAllister Unknown Lena VonBerg John Kauffman S. M. Sheets A. Korgel J. Korgel Test Hole 9 Test Hole 7 George Luchsinger	60 14.1 40 10 11.9 13 13 78 63 84 12	24 14 24 36 30 42 16 16 4 3/4 4 3/4 24	Bo Bo Du Du Du Bo Dr 4-15-6 Bo Bo	10 6.45 34 9 6.8 10 2.08 55 3 6.64 3 14.32 7.27 3 14.8	10-16-45 5-26-47 5-26-47 10-16-45 5-27-47 5-29-47 5-29-47 4-19-63 4-17-63 4-15-63	S S,O S S,O D,S D,S T T S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1593 1563.0 1597 1579 1565.0 1581 1587.0 1602 1578 1595 1586	* * * See log See log Hard			

	Location No.	Owner	Depth (feet)	Diameter (inches)	Type	Date completed	Depth to water below Je nd surface (feet)	Date of measurement	Use of water	Aqui fer	Elevation	Remærks
	155-81-7ddd2	Reinhold Elker	15	60	Du		5.73	11-5-63	S,0	Qd	1578	Chem.ana I ys i s
	155-81-7ddd ₃	Reinhold Elker	21	18	Bo		9.05	11-5-63	S	Qd	1581	Pumping test - 60 gpm for 8 hours
	155-81-8aa	Unknown			Bo		14.45	10-16-45	U		1588.0	
	155-81-8bcb	L. Curtis Luchsinger	r 35	24	Bo		25		D,S	Qd	1581	
	155-81-8ccc1	Sophionia Erb	15	48	Du		5		ร์	Qd	1572	
	155-81-8ccc2	Sophionia Erb	9	6	Du		4.40	5-27-47	D,S	Qd	1572.0	D *
	155-81-8dcc	Test Hole 13	63	4 3/4		4-17-63	-		Т	-	1560	See log
x	155-81-8ddd	Test Hole II	63	4 3/4		4-17-63	3.4	4-19-63	Т	Qd	1563	See log
	155-81-9abc	Eugene Dickinson	65	24	Bo		40		D,S	Qd	1582	
	155-81-9ac	Harold Dickinson	100	24	Bo		50	5-26-47	D,S	-	1584	* ¥
	155-81-9ccc	Leonard Elker	11	48	Du		5		D,S	Qd	1588	Chem。 analysis 🗂
	155-81-16bb	J. Erb	67	24	Во		8	6-4-47	D,S	Qd	1591	
	155-81-16bd	J. Erb	25	36	Du		7	6-4-47	S	Qd	1590	Unsuitable for domestic use *
	155-81-16cd	Unknown	8.6	48	Du		5.20	10-17-45	0	Qd	1595.0	0 +
	155-81-17bcb	Test Hole 5	84	4 3/4	Dr	4-8-63	17.2	4-19-63	Т	Qd		See log
	155-81-17bcc	Keith Burns	365	4	Dr		-	-	D	-	1612	
	155-81-17bc	0. Herbroson	75	18	Bo		22.81	5-29-47	S	Qd	1614.0	* C
	155-81-17ccc	Lawrence Unrah	126	6	Dr		50		D,S	Ttr	1620	
	155-81-17cc	L. Andre	135	4	Dr		-	-	D,S	Qd (?)	1614	Partial chem。 analysis *
	155-81-17dc	T. Elsberry	118	4	Dr		36	5-29-47	D,S	-	1605	*
	155-81-17ddc	Test Hole 4	74	4 3/4	Dr	4-8-63	3.0	4-19-63	Т	Qd	1583	See log
	155-81-18ba	Greslivold	10	7	Du		0	5-29-47	D,S	Qd	1588	*
	155-81-18bd	Greslivold	-	48	Du		8.21	5-29-47	ร์	Qd	1624.	0 *
	155-81-18cd	G. Heger	30	24	Bo		9.29	6-12-47	U	Qd	1621.0	0 *
	155-81 - 18dcc	Chester L. Keith	65	4	Dr		27		D	Qd	1625	Chem.analysis
	155-81-18dc	D. E. Benell	65	20	Bo		10	6-4-47	D	Qd	1626	*
	155-8 -18dc2	D. E. Benell	365	4	Dr				D,S	-	1626	Partial chem. analysis *

. . . .

ť

;

:

Location No.	Owner	Depth (feet)	Diameter (inches)	Type Date completed	Depth to water below land surface (feet)	Date of measurement	Use of water	Aquifer	Elevation	Remarks
155-81-18ddd	Test Hole 10	84	4 3/4	Dr 4-15-6	3 14.23	4-19-63	т	Qd	1615	See log
155-81-19aa	P. A. Yoder	25	14	Во	15	6-6-47	D	Qd	1621	*
155-81-19ab	Surrey Township	40	48	Du	20	6-6-47	D	Qd	1630	\$
155-81-19ab.2	G. B. Hardy	23	24	Du	8	6-6-47	D	Qd	1630	*
155-81-19ab 3	Lewis Cook	55	18	Bo	25.78	6-6-47	D	Qd	1630	*
155-61-19at ₄	Wayne Grabow	75	4	Dr	25	-	D	Qd	1625	26 grains hardness
155-81-19aba	Mike Burckhard	500+	-	Dr	-	-	D	Gfh	1625	Chem.analysis
155-81-19abb	Village well #1	24.2	-		11.65	4-2-63	PS	Qd	1625	Chem.analysis
155-81-19abb2	Earl Hall	115	4	Dr	92	-	D	Ttr	1627	
155-81-19abc)	Village well #2	26.0	-		14.1	4-2-63	PS	Qd	1630	Chem.analysis See log
155-81-19abc2	Test Hole I	588	4 3/4	Dr 3-4-63	10.65	4-10-63	т		1625	See log Ŭ
155-81-19aca	Surrey School	135	2	Dr	-	-	D	Ttr	1633	Chem.analysis
155-81-19aca2	0. J. Hunter	84	4	Dr	22	-	D		1628	Partial chem. analysis
155-81-19acb	Tom Zook	174	4	Dr	32	-	D	Ttr	1628	Chem.analysis
155-81-19acc	Village well #3	130	4	Dr	30	-	PS	Ttr	1625	Chem.analysis
155-81-19acd	Test Hole 3	84	4 3/4	Dr 4-8-63	12.9	4-10-63	Т	Qd	1614	See log
155-81-19ac	Unknown	10.0	48	Du	7.55	10-27-45	S	Qd	1630	*
155-81-19ac2	A. C. Withun	55		Bo	20	6-6-47	D	Qd	1630	•
155-81-19ac3	Stake		6	Du	14.12	6-6-47	U	Qd	1630.	5-Unsuitable for domestic use *
155-81-19ac4	Tom Zook		16	Bo	13.12	6-6-47	D		1630	*
155-81-19ad	Surrey School Dist.	. 133	2 1/2	101			D	Ttr	1617	Partial chem. analysis *
155-81-19ad ₂	T. Stein	24	36	Bo	4.22	6-10-47	D,S	Qd	1617	*
155-81-19ad a	J. Styer	50	18	Bo	22.06	6-10-47	S	Qd	1617	*
155-81-19ad4	A. L. Dompkin	20	6	Bo	12	6-6-47	Ū.	Qd	1617	*
155-81-19ad 5	W. J. Conners	60	18	Во	29.18	6-6-47	Ø	ିର୍ପ	1617.	1 *
55-8 -19ba	P. W. Thom	,000	4	Dr	70	6-6-47	D	inin kupi	1623	Partial chem. analysis *

Location No.	Owner	Depth (feet)	Diameter (inches)	Type Date	Depth to Water below land surface (feet)	Date of measurement	Use of water	Aquifer	Elevation	Remarks
155-81-19ba 2	Great Northern Railwa	v 20	12	Bo	16	6-6-47	DisS	Qd	1623	*
155-81-19ba a	Unknown	20	36	Du	16	6-6-47	ບ໌	Qd	1623	*
155-81-19bbb	Great Northern test 3			Dr 4-6-5	5	-	т		1628	See log
155-81-19bda	Wm. H. Linnertz	60	12	Bo	18	-	D	Qd	1620	Hard
155-81-19bda 2	Great Northern test 4	180		Dr 4-28-	55	-	т		1625	See log
155-81-19bdd	Bonaventure Kraft	113	4	Dr	20	-	D	Ttr	1625	Soft
155-81-19bd	R. Breyt	30	6	Dr	18.61	6-6-47	U	Qd	1630	*
155-81-19bd2	S. Dugle	60	24	Bo	16	6-6-47	S	Qd	1630	Unsuitable for
										domestic use *
155-81-19ca	Great Northern Railwa		6	Bo,Dr		-	D	Qd	1630	*
155-81-19cbc	Test Hole 15	84		Dr 4-18-	53 16.29	4-19-63	Т	Qd	1615	See log
155-81-19cc	Floyd Kauffman	112	3	Dr		-	D,S	Ttr	1636	Partial chem.w
										analysis * o
155-81-19cd	S. N. Yoder	40	18	Bo	20	6-10-47	D,S	Qd	1622	*
155-81-19da	Steward Dugle	20	24	Bo	5.86	6-6-47	S	Qd	1636	*
155-81-19dc	S. Yoder	60	12	Bo	32	6-6-47	D	Qd	1622	*
155-81-19dcb	Test Hole 21	73날		Dr 11-4-0		-	T		1610	See log
155-81-19ddb	Test Hole 20	84		Dr 11-4-0		-	T	Qd	1608	See log
155-81-19ddd	Test Hole 19	84		Dr 4-19-0		4-19-63	Ţ	Qd	1605	See log
155-81-20bbb	Test Hole 2	84	4 3/4	Dr 4-6-6	8 10.15	4-19-63	Т	Qd	1615	See log,
155 01 20hah	laha lughaimaan	1.70		0					1415	chem.analysis
155-81-20bcb	John Luchsinger	130	4	Dr			D, S		1615	
155-81-20bc	John Luchsinger	32 26	18 24	Bo	7 12	-	D, S	Qd	1610	*
155-81-21aaa	John Luchsinger John Stip		100000-000	Bo		6-10-47	D, S	Qd	1615	*
155-81-28ba	-	370 60	4	Ðr	50		D, S		1580	
155-81-28cc	J. Hauptmann John Luchsinger		14 18	Bo	24.43	6-10-47	D, S	Qd	1607	*
155-81-28dd	T. Aberle	21	(2) 1225 (s	Bo	2.90	6-5-47	D, S	Qd	1606	*
155-81-29aaa	Test Hole 12	 84	12	B0			U	Qd	1605	*
155-81-29ab	Unknown	10.6		Dr 4-17-6		4-19-63	Т	Qd	1603	See log
155-81-29da	L. Guthrie	45	48	Du	4.55	10-17-45	0	Qd	1600	*
	L. OUTITE	40	12	Во	20	6-10-47	D, S	Qd	1616	*

Location No .	Owner	Depth (feet)	Diameter (inches)	Type	Date completed	Depth to water below Iand surface (feet)	Date of measurement	Use of water	Aqui fer	Elevation	Remarks		
155-81-29dda	Howard Guthrie	45	16	Bo		-		D,S	1000	1616			
155-81-30ca	J. V. Thompkins	96	4	Dr		30	6-12-47	D,S	Ttr	1631	Partial ch analysis	en:. *	
155-81-30cb	Floyd Kauffman	60	12	Bo		20	6-10-47	D,S	Qd	1620	*		
155-81-31 baa	John Wald	375	4	Dr		80		D,S		1625	Soft		
155-81-31ba	T. C. Anderson	65	18	Bo		20	6-10-47	S	Qd	1626	*		
155-81-32bab	imarcus Effertz	358	44	Dr		90		D	-	1621			
155-81-32ba	Marcus Effertz	358	4	Dr		60	6-10-47	D,S	-	1621	*		
155-81-32ba	Marcus Effertz	72	18	Bo		13.22	6-10-47	S	-	1621	*		
155-81-32cb	T. C. Anderson	40	20	Bo		13.58	6-10-47	S	Qd	1626	*		
155-81-32cb2	T. C. Anderson	15	36	Du		5.42	6-10-47	S	Qd	1626	*		
155-81-33bc	T. Aberle	60	18	Bo		13.32	6-5-47	U	Qd	1614	*		37
155-81-33dc	Edith Luchsinger	19	6-1불	Du,D)r	6	6-5-47	S	Qd	1621	*		7
155-81-33dd	Unknown	39.3	24	Du		16.05	10-18-45	D,S,O	Qđ	1609	*		
155-82-1daa	Donald Poltry	40	18	Bo		20	6-11-47	D,S	-	1608			
155-82-2cb	G. V. Furnam	72	18	Bo		22	6-11-47	ร์	Qd	1626	*		
155-82-2cdd	Chas. Abernathy	80	18	Bo		4		D,S	Qd	1608	Hard		
155-82-2dc	C. Hamback	82.5	24	Bo		26.05	10-16-45	บ้	Qd	1608	*		
155-82-3ad	G. V. Furnam	40	18	Bo		22	6-11-47	ป	Qd	1626	*		
155-82-3add	Gene F. Furnam	100	4	Dr		10	-	D,S	Ttr	1628			
155-82-10aa	Frank Hrdlicka	12	48	Du		4.60	10-16-45	D,0	Qd	1632	*		
155-82-10cd	E. Foley	25	18	Bo		5.22	6-12-47	S	Qd	1630	*		
155-82-10dcd	Unknown	24.5	12	Bo		5.7	4-3-63	U	Qd	1595			
155-82-10dcd ₂	Test Hole 17	63	4 3/4	Dr	4-19-63	10.0	4-19-63	Т	Qd	1590	See log		
155-82-11aa	C. Abernathy	65	24-18	Bo		50	6-11-47	D,S	Qd	1612	*		
155-82-11ccd	Marion Swanson	250	3	Dr		80	6-12-47	D,S	Tc	1632	Chem.analy:	sis *	f
 55-82- 2aaa	Test Hole 8	47	4 3/4	Dr	4-15-63	6.38	4-19-63	Т	Qd	1575	See log		
155-82-12dd	Lloyd Elsberry	28	18	Bo		19.54	6-12-47	S	Qd	1616	*		
155-82-13aa	₩m. H. Hunt-Guy A Oil test #l	lmy 7300	10 3) to 7	/4 Dr	7-20-54	-	-	от	-	1632	See log		

Locetion No.	Owner	Depth (feet)	Di a meter (inches)	Type	Date completed	Depth to water below land surface (feet)	Date of measurement	Use of water	Aquifer	Elevation	Remarks
155-82-13cbc	Test Hole 16	84	4 3/4	Dr	4-18-63	6.05	4-19-63	T	Qd	1603	See log
155-82-14dd	John Balarud	120	4	Dr		39.20	10-17-45	0	-	1638	•
155-82-15bbb	USGS Test 1394	94날	4 3/4	Dr	9-17-58	-	-	Т	-	1641	See log
155-82-15bc	T. Thompson	35	18	Bo		29	6-12-47	S	Qd	1611	÷.
155-82-15bc2	T. Thompson	65	24	Bo		30	6-12-47	S	Qd	1611	•
155-82-22ccb	USGS Test 1393	105	4 3/4	Dr	9-17-58	-	-	Т	-	1625	See log
155-82-22ddd	Woo I edge	15	36	Du		8	10-17-45	D,S	Qd	1634	*
155-82-22ddd2	Woo I edge	45	24	Bo		30		D,S	Qd	1635	Hard, good
155-82-22ddd3	Wooledge	35	24	Bo		20		D,S	Qd	1635	Hard, good
155-82-22ddd	Test Hole 18	84	4 3/4	Dr	4-19-63	7.42	4-19-63	Т	Qd	1629	See log
155-82-23aab	Great Northern Test										
	#2 	410	12-10		355			Ţ	-	1640	See log w
155-82-23aa	W. W. Perry	63	18	Bo		27.02	6-12-47	D,S	-	1634	• 8
155-82-23bba	Great Northern Test		8-6	Due	11- 54			-		1640	See log
155 00 0000	#l B. Mormon	390 78	8-0 24	Dr Bo	11- 54	20	6-12-47	T D,S	-	1650	see rog
155-82-23cc 155-82-23cd	Unknown	8.1	36	Du		2.95	10-17-45	0,3	Qd	1641	*
155-82-24ccc	Harold Kauffman	120	3	Dr		80	10-11-40	D,S	Ttr	1637	Soft, no good
155-82-2500	Unknown	180	3날	Dr		80	10-17-45	D,S	-	1628	*
155-82-25aa	Evert Ehr	32.0	21	Bo		19.31	8-9-50	s,s	Qd	1628	*
155-82-25ab	Evert Ehr	146	6	Dr		72	8-9-50	S	-	1638	•
155-82-25cc	D. G. Kauffman	120	3	Dr		28	6-12-47	D,S	Qd	1636	Partial chem.
			-								analysis *
155-82-26aba	A. C. Glick	157	4	Dr		120	-	D,S	Ttr	1652	Soft, poor
N55-82-26ab	A. F. Glick	124	4	Dr		30	6-12-47	D,S	-	1652	*
155-82-26bbb	Roy Nartin	18	24	Bo		10	-	D,S	Qd	1640	Hard, good
155-82-26bbb	Roy Nartin	25	24	Bo		17	-	D,S	Qd	1640	Hard, good
155-82-26bbb3	Roy Nartin	50	24	Bo		42	-	D,S	Qd	1640	30 grains hardness
155-82-26daa	Earl Martin	400	6	Dr		80	-	D,S	-	1633	Soft, no good
155-82-26da	Earl L. Martin	90	6	Dr		40	10-18-45	D,S	-	1631	*
								1211			

ŧ

.

4

.

TABLE 5--Logs of Test Holes

Formation	Material	Thickness (feet)	<u>s Dept</u> (fee	
			From	To
	155-81-7cad Test Hole 9 Elevation 1,578 feet			
Glacial Drift:	Clay,silty and sandy, dusky yellow to moderate plive brown, very poorly consolid	ated,		
	soft, calcareous Gravel, fine to medium, sandy	···· 5	0	5
	moderately sorted, subangul to subrounded, oxidized Clay, silty to sandy, pebbles moderate olive brown, tight consolidated, very cohesive	•••• 4	5	9
	plastic, oxidized (till) Clay, as above, but olive gra	•••• 3	9	12
	and unoxidized Sand, fine to coarse, moderat well-sorted, subrounded,	7	12	19
	saturated Clay, silty to sandy, olive g	···· 6	19	25
Teache Diver Fame	tightly consolidated (till)		25	45
Tongue River Form	Sand, fine to medium, light			
	greenish gray, moderately consolidated, noncalcareous Clay, dark yellowish brown,	9	45	54
	tightly consolidated, non- calcareous	9	54	63
	Electric Log			
	155-81-7cbb Test Hole 7 Elevation 1,595 feet	:		
Glacial Drift:	Gravel, fine to coarse with coarse and very coarse sand poorly sorted, subrounded, occasional clayey spots,	ه ا		
	Clay, silty, olive gray,tight consolidated, cohesive,plas	:ly	0	16
	calcareous	3	16	19
	rounded to rounded, saturate Clay, silty, olive gray, tigh	id 2 Intly	19	21
	consolidated,very cohesive, plastic, calcareous		21	35

Formation	Material	<u>Thickness</u> (feet)		epth (feet) To
	#55-81-7cbb Test Hole 7 Elevation 1,595 feet (continued)			
	Sand, fine to coarse, subangular to subrounded, unoxidized, saturated; contains thin			
	clayey layers	5	35	40
	Gravel, fine and medium,sandy Clay, silty,sandy and pebbly, olive gray, moderately soft and consolidated, cohesive,	4	40	44
	plastic (till); gravelly in	17	44	61
Tongue River Forma	spots	17		
Tongue Krvet Forma	Sand, fine and medium, greenish			
	gray, moderately consolidated,			
	noncalcareous	23	61	84
	Electric Log			
	155–81–7cdd Test Hole 6			
	Elevation 1,598 feet			
Glacial Drift:				
	Clay, sandy, yellowish gray,			
	soft, oxidized, leached	4	0	4
	Clay, sandy with pebbles, moderate	2		
	olive brown, soft to moderately soft, moderately consolidated,			
	cohesive, oxidized (till)	21	4	25
	Clay, silty, slightly sandy, olive			
	gray, tightly consolidated,			
	cohesive, plastic (till)	33	25	58
Tongue River Form				
	Sand, fine to medium, greenish			
	gray, well-sorted, subangular to subrounded, moderately			
	consolidated, noncalcareous	5	58	63
	analog Babbichant C. A. Ant A. An Disser			

40

Formation	Material	<u>Thickness</u> (feet)	[From	<u>)epth</u> (feet_) To
	155-81-7dda T e st Hole 14 Elevation 1,578 feet			
Glacial Drift:				
	Clay and silt, yellowish gray to dusky yellow to olive brown, soft, loosely consolidated, calcareous, oxidized		0	4
	Gravel, fine and medium with medium to very coarse sand, moderately sorted, generally			
	subrounded, saturated Gravel, medium, well-sorted, very permeable, clean. Used 100 lbs.		4	18
	of drilling mud Clay, silty with sand and gravel, olive gray, moderately soft, tight, cohesive, plastic,		18	25
	unoxidized (till?)	4	25	29
	Gravel, fine to medium, sandy		29	33
	Clay (till?) as above the gravel,	~	~~	20
Tongue River Forma	some cobbles	5	33	38
	Sand, fine to medium, greenish gray, moderately consolidated, noncalcareous	25	38	63
		40	20	05
	Electric Log			
	1 55- 81-8ddc Test Hole 13 Elevation 1,560 feet			
Glacial Drift:				
	Clay, silty, yellowish gray,soft, loosely consolidated; contains light gray marly clay and highl	у		
	oxidized sandy layers Clay,silty to sandy with pebbles, olive gray, moderately soft,	7	0	7
	tightly consolidated,cohesive, plastic (till)	32	7	39
Tongue River Forma				
	Sand, fine to medium, greenish gray, moderately consolidated, noncalcareous	24	39	63

Formation	<u>Material</u>	Thickness (feet)	<u>Dep</u> (f From	eet) To
	155-81-8ddd Test Hole II Elevation 1,563 feet			
Glacial Drift:				
	Clay, silty, dark brownish black, loosely consolidated, very			
	high organic content	5	0	5
	Gravel, fine to coarse with			
	coarse and very coarse sand,			
	moderately sorted, generally subrounded, clean,saturated	9	5	14
	Clay, silty to sandy, olive	•		
	gray, cohesive, plastic(till).	4	14	18
	Sand, fine to medium, well-		10	10
	sorted, subrounded to rounded. Clay (till) as above the sand,	11	18	19
	occasional cobbles	17	19	36
Tongue River Form		.,		
	Sand, fine to medium, dark greeni	sh		
	gray, well-sorted, generally	-		
	subrounded, moderately consolid	27	36	63
		- ,		
	155 01-17hbc			
	155–81–17bbc Test Hole 5			
	Elevation 1,615 feet			
Glacial Drift:				
	Clay, silty,yellowish gray to			
	dusky yellow, very soft, loosely consolidated, very			
	sandy, oxidized (till)	4	0	4
	Clay, sandy, moderate olive			
	brown, moderately soft and			
	consolidated, cohesive, plastic oxidized (till)	21	4	25
	Clay (till) as above, but olive	21		
	gray and unoxidized	29	25	54
	Clay, silty, olive gray, tight,			
	very cohesive; interbedded			
	with sandy layers which become more common with depth (till).	25	54	79
Tongue River Form			8	
anna an in in in in	Sand, fine to medium, greenish			
	gray, moderately consolidated,	5	79	84
	noncalcareous	2	17	U - P
	Electric Lon			

Electric Log

Formation	Material	<u>Thickness</u> (feet)	<u>Dep</u> (fe From	et) To
	155-81-17ddc Test Hole 4 Elevation 1,583 feet		1101	
Glacial Drift:	Clay, silty and sandy with pebbl yellowish gray to dusky yellow very soft to moderately soft,	3		
	moderately consolidated, cohesi plastic, oxidized (till) Till, as above, moderate olive brown, with thin sandy layers,	••• 10	0	10
	partially oxidized Sand, medium and coarse, well-so subrounded, clean, saturated,	8	10	18
	slightly calcareous; clayey horizon at 22 feet Clay,silty and sandy, olive gray	9	18	31
	tightly consolidated, cohesive unoxidized (till)	9	31	40
	Till, as above, interbedded with sand and gravel layers		40	59
Tongue Ri ver For m	ation: Sand, fine to medium, greenish g clayey (?), moderately consoli very slightly cohesive, nonpla noncalcareous	dated, astic,	59	74
	Electric Log			
	155-81-18ddd Test Hole 10 Elevation 1,615 feet			
Glacial Drift:	Clay, silty and sandy, very soft poorly consolidated, leached, oxidized Clay, silty to sandy with pebblo and cobbles, moderate olive bu moderately soft, tightly const	es rown,	0	4
	cohesive, plastic, partially oxidized (till) Till, as above, light olive gray		4	23
	cobbles common		23	30
	Till, as above, olive gray, unoxidized Sand, fine to med≹um, well-sort	ed,	30	38
	subrounded, slightly calcareous saturated Clay, silty to sandy with pebbl cobbles and boulders, olive g	•••• 9 es,	38	47
	moderately soft, tightly cons plastic, cohesive (till)	olidated,	47	76

TABLE 5--Logs of Test Holes --ContinuedFormationMaterialThicknessDepthMaterialThicknessDepth(feet)(feet)155-81-18dddToTo155-81-18dddTest Hole 10Elevation 1,615 feetElevation 1,615 feet(continued)Tongue River Formation:

 Sand, fine to medium, greenish			
gray, moderately consolidated, well-sorted, noncalcareous	8	76	84

Electric Log

155-81-19abb Test Hole 1 Elevation 1,625 feet

Glacial Drift:			
Clay, very sandy, yellowish gray,			
slightly cohesive and plastic, oxidized, highly calcareous	4	0	4
Clay, very sandy, yellowish gray to			
moderate olive brown, lossely			
to moderately consolidated,	16	4	20
oxidized (till) Clay, very sandy, moderate olive	10	-7	
brown to light olive gray, very			
tightly consolidated, partially	-		20
oxidized, slightly calcareous	9	20	29
Gravel, fine, and coarse sand, poorly sorted, angular to sub-			
rounded, oxidized, saturated	5	29	34
Clay with silt and fine sand, olive			
gray, tightly consolidated,			
slightly plastic, moderately calcareous (till)	26	34	60
Clay, silty with pebbles, olive			
gray, very tightly consolidated,			
cohesive, plastic (till)	14	60	74
Till, as above, but very sandy, and contains unconsolidated sand and			
gravel layers	29	74	103
Tangue River Formation:			
Clay, sandy, greenish gray, tight,			
organic material in spots, calcareous	21	103	124
Clay, silty to sandy, greenish gray		•	
to light olive gray, tightly			
consolidated, moderately soft,			
plastic, cohesive, smooth to slightly gritty, noncalcareous	86	124	210
Stightly gritty, noncarcareouse	-		

Formation	Material	<u>Thickness</u> (feet)	alared a	<u>epth</u> feet) To
	155-81-19abb Test Hole I Elevation 1,625 feet (continued)			
	Clay, silty, light olive gray, moderately soft, plastic Shale, olive black, indurated,	. 13	210	223
	contains stringers of calcite, highly calcareous Silt, clayey, olive gray, uniform texture, crumbles easily,	. 2	223	225
	Sandstone, bluish green, indurated Silt, clayey, olive gray, nonplast	1. Iź	225 232 호	232½ 234
Cannonball Format	noncalcareous		234	249
	Shale, sandy, greenish gray,slight indurated to highly indurated Clay, silty, olive gray with brown	7	249	256
	black organic areas, smooth, plastic Sandstone, fine-grained, light	5	256	261
	bluish green, indurated, calcareous Silt, clayey, light bluish gray to brownish black,moderately plast	0	261	280
	moderately cohesive, occasional thin sandstone strata Clay, silty to sandy, olive gray		280	300
	brownish black, thinly bedded Clay, silty, light olive gray, so smooth, cohesive, slightly stic	•• 27 ft,	300	327
	calcareous Lignite, black, fissile Clay, silty, light olive gray, so	••• 8 •• 1	327 335	335 336
	calcareous		336	340
	Clay, sandy, tan, gritty, tight Clay, silty, light olive gray, smooth, slippery, slightly stic		340	346
Hell Creek Format	interbedded lignite seams	••• 31	346	377
	Clay, silty to sandy, light bluis gray to brownish gray, occasio limestone strata, calcareous Clay, silty to sandy, medium blui	nai ••• 21	377	398
	gray, moderately to tightly consolidated	26	398	424

Formation Material Thickness Depth (feet) (feet) From To 155-81-19abb Test Hole | Elevation 1,625 feet (continued) Clay, silty to sandy, light olive gray to greenish gray to 424 435 11 brownish gray, lignitic..... Fox Hills Sandstone: Clay, sandy, brownish black, slightly cohesive, fairly plastic, tight, 5 435 440 noncal careous............... Sand, fine to medium clayey, light greenish gray, subangular to subrounded, well-sorted, noncalcareous, indurated sandstone strata very 18 440 458 458 Lignite, black, fissile..... 3 461 Clay, silty, brownish gray, soft, sticky, tight..... 17 461 478 Clay, silty to sandy, grayish red purple, hematitic, tightly consol i dated..... 14 478 492 Clay, silty to sandy, varigated, possibly bentonitic, noncalcar-31 492 523 Clay, silty and sandy, greenish gray, fairly tight, occasional 45 523 568 sandstone strata..... Clay, silty, greenish gray, soft, 568 588 tight....... 20 Electric and Gamma Ray Logs 155-81-19aca Test Hole 3 Elevation 1,614 feet Glacial Drift: Clay, sandy with pebbles, dusky yellow to moderate olive brown, soft, cohesive, plastic, 0 16 16 oxidized (till)..... Sand, coarse, with fine gravel, moderately sorted, subangular 16 20 to subrounded, oxidized..... 4 Clay, very sandy, olive gray, soft to moderately soft, tightly consolidated, cohesive, unoxidized

(till).....

12

20

32

46

P • • • •	Neterial	Thickness	De	oth .
Formation	Material	<u>Thickness</u> (feet)		<u>pth</u> feet)
		• •	From	То
	155-81-19aca Test Hole 3 Elevation 1,614 feet			
	(continued)	. d		
	Sand, fine to medium, unconsolidate well-sorted, subrounded, calcared saturated	ous,	32	40
	Clay, silty to sandy, olive gray, moderately soft, tightly consolid		24	-10
	cohesive (till) Sand, medium and coarse, moderately	··· 18	40	58
	well-sorted, subrounded to rounded slightly calcareous, saturated Clay, sandy, olive gray, moderately	8	58	6 6
	soft, tightly consolidated, cohesive (till)		66	70
Tongue River F				
	moderately consolidated, noncal- careous	14	70	84
	Electric Log			
	155-81-19666			
	Great Northern Test Hole #3			
	Elevation 1,628 feet			
Glacial Drift:				
	Clay, with sand and rock Clay, sand and gravel		0 35	35 60
	Gravel, sand and a little clay		60	67
	Sandy clay		67	80
	Clay		80	83
Tongue River F	Quicksand	32	83	115
Tongue Arver	Clay with streaks of sand and rock.	7	115	122
	Clay and rock, with a little sand, very hard	3	122	125
	Clay, with sand and rock	-	125	140
	Clay and sand		140	145
	Clay with some rock		145 155	155 180

~

Material

TABLE 5--Logs of Test Holes --Continued

For	mati	on	

Thickness	Depth
(feet)	(feet) From To

15

50

155-81-19bda Great Northern Test Hole #4 Elevation 1,625 feet

Glacial Drift:				
-	********	15	0	15
	******	5	15	20
Clay	with sand	5	20	25
Sand	with clay	10	25	35
Clay.		10	35	45
Clay,	rock and a little sand	5	45	50
Clay,	with sand and rock	10	50	60
	with very little water	4	60	64
	and rock	2	64	66
-	sand and rock	9	66	75
	sand and rock	5	75	80
	clay	7	80	87
	sand and rock	8	87	95
Tongue River Formation (
-	y rock with some clay, very			
	d	2	95	97
	and clay	8	97	105
	with some rock	5	105	110
-	with little rock	7	110	117
	and sand	8	117	125
	and clay, mostly coal	2	125	127
	*************************	8	127	135
-		6	135	141
	sand with a little water	ž	141	143
	with sand	7	143	150
	and clay	30	150	180
odila		50	150	100
	155-81-19cbc			
	Test Hole 15			
	Elevation 1,615 feet			
Glacial Drift:				
	silty to sandy, yellowish			
	y to dusky yellow, soft,			
	sely consolidated, weathered,			
	dized (till)	4	0	4
	silty, sand and pebbles,		×	
	erate olive brown, moderately			
	t, tight, cohesive, plastic,			
	dized (till)	11	4	15
C124				12

Clay, silty to sandy, olive gray, moderately soft, tightly consolidated, cohesive, unoxidized (till); occasional cobbles and boulders. 35

Formation	<u>Material</u>	<u>Thickness</u> (feet)	Coloring to	<u>epth</u> feet) To
	155-81-19cbc Test Hole 15 Elevation 1,615 feet (continued)			
Tongue River Form	Till, as above, with interbedded gravel stringersation:	11	50	61
	Sand, medium, greenish gray,loosely to moderately consolidated, well- sorted, subangular to subrounded,			
	lignitic, noncalcareous	23	61	84
	Electric Log			
	155-81-19dcb Test Hole 21 Elevation 1,610 feet			
Glacial Drift:				
	Clay, silty to sandy with pebbles, dusky yellow, poorly consolidated Clay, silty to sandy with pebbles, moderate olive brown, moderately compacted, cohesive, oxidized	7	0	7
	(till) Clay, sandy, olive gray, pebbly to rocky, fairly tight, cohesive,	4	7	П
	unoxidized, calcareous (till) Clay, very sandy with much unconsoli- dated loose sand, olive gray, some	8	11	19
	loose gravel Gravel, fine to medium, moderately	15	19	34
	sorted, subrounded Clay, sandy to gravelly with occasional cobbles, olive gray, moderately compacted, calcareous	4	34	38
	(till) Clay, silty to sandy with pebbles, olive gray, tight, cohesive,	7	38	45
Tongua Divar Form	calcareous (till)	12	45	57
Tongue River Forma	Sand, fine to medium, clayey,			
	light greenish gray, tightly consolidated, slightly calcareous	162	57	73불

Electric Log

Formation	Material	<u>Thickness</u> (feet)	Concernant of the local division of the loca	oth eet) To
	155-81-19ddb Test Hole 20 Elevation 1,608 feet			
Glacial Drift:				
	Clay, silty and sandy, yellowish gray, poorly consolidated Clay, sandy with pebbles, dusky yellow to moderate olive brown, tightly compacted, cohesive,	8	0	8
	fairly plastic, oxidized, calcareous (till)	7	8	15
	Clay, silty to sandy, olive gray,		•	
	moderately compacted, occasional rocks, unoxidized (till) Sand, medium to coarse and gravel, fine and medium, gray, subrounded,		15	19
я	sorted, mainly limestone and granitic particles Clay, silty, olive gray, occasional	10	19	29
	pebbles and cobbles, fairly tight, cohesive, calcareous (till) Sand, fine to coarse, gray, well-		29	46
	sorted, rounded, clean Clay, silty with sand, pebbles and cobbles, olive gray, tightly		46	52
	compacted, cohesive, moderately plastic (till)		52	62
Tongue River Forma	ation:			
	Sand, fine and medium, clayey, light greenish gray, fairly tight,		40	70
	slightly calcareous Sandstone, light greenish gray,	10	62	72
	indurated, CaCO3 cement	2	72	74
	Sand, fine and medium, clayey, greenish gray	10	74	84

Electric and Gamma Ray Logs

Formation	Material	<u>Thickness</u> (feet)		<u>Depth</u> (feet)
			From	То
	155-81-19ddd Test Hole 19-992 Elevation 1,605 feet			
Glacial Drift:				
	Silt, sandy, yellowish gray to moderate olive brown, soft, loosely to moderately consolidated, very sandy in spots Sand, fine to coarse, unconsolidated,	8	0	8
	moderately sorted, subangular to subrounded, partially oxidized Sand, very clayey in spots, moderate olive brown, loosely to moderately consolidated; clayey areas tight	3	8	11
	and cohesive, partially oxidized Clay, very sandy, olive gray, moderately consolidated, friable	5	11	16
	in places, unoxidized Sand, fine to medium, unconsolidated, well-sorted, subrounded, slightly	5	16	21
	calcareous, unoxidized Gravel, fine to medium, well-sorted,	14	21	35
	subrounded, fairly clean, saturated Clay, sandy with pebbles, olive gray, moderately soft, tight cohesive	6	35	41
	(till) Sand, medium, well-sorted, subrounded,	2	41	43
	saturated. Clay, sandy with pebbles and cobbles, olive gray, moderately soft, tight, cohesive, plastic, gravelly in	7	43	50
Tongua Divan Form	spots (till)	12	50	62
Tongue River Form	Sand, fine to medium, greenish gray to dark greenish gray to olive black, moderately consolidated, well-sorted, noncalcareous, highly organic; contains indurated sand- stone strata	22	62	84
				• •

Electric log

Formation	Haterial	<u>Thickness</u> (feet)	From	Depth (feet) To
	155-81-20bbb Test Hole 2 Elevation 1,615 feet			
Glacial Drift:	Clay, silty and sandy, yellowish gray, soft, poorly consolidated Clay, silty and sandy, dusky yellow t moderate olive brown, soft, moderat	o ely	0	4
	compacted, slightly plastic,moderat calcareous, oxidized (till) Sand, fine to medium, well-sorted, su	. 18	4	22
	rounded to rounded, slightly oxidiz slightly calcareous, clean, saturat Gravel, fine and medium, sandy,		22	24
	subrounded Sand, very fine to fine, clayey and	а	24	26
	silty, olive gray, cohesive, plasti moderately calcareous Gravel, fine to coarse, sandy, heavil	• 3	26	. 29
	iron-stained limestone particles, saturated Clay, silty and sandy with pebbles ar cobbles, olive gray, moderately sol	id t,	29	41
Tongue River Forma	tightly compacted, contains thin sa and gravelly layers (till)		41	73
Tongue Kriver i orma	Sandstone, light greenish gray, indur ated, CaCO ₃ cement Sand, fine to medium, clayey, dark greenish gray, moderately well-sort subangular to subrounded, slightly		73	74
	friable, moderately consolidated, noncalcareous	. 10	74	84
	155-81-29aaa Test Hole 12 Elevation 1,603 feet			
Glacial Drift:	Clay,sandy, yellowish gray, soft, loose and poorly consolidated, oxidized Clay, silty to sandy with pebbles an cobbles, dusky yellow, moderately	7 d	0	7
	soft, cohesive, slightly plastic, oxidized, calcareous (till)	•• 16	7	23

TARLE	5 000	of	Tos+	Holos	Continued
INDLL	2 2043	01	IESL	110163	

Formation	Material	<u>Thickness</u> (feet)		epth eet) To
	155-81-29aaa Test Hole 12 Elevation 1,603 feet (continued)			
	Till, as above, moderate olive brown to light olive gray, partially oxidized Clay, silty to sandy with pebbles, cobbles, and gravel stringers,		23	31
	olive gray, moderately soft, cohesive, unoxidized (till) Sand, fine to medium, olive gray, well-sorted, generarlly subrounded		31	53
	cobbles, olive gray, moderately		53	55
	soft, tight, calcareous (till) Sand, fine to coarse, olive gray, moderately sorted, generally	14	55	69
Tongue River Forma	subrounded, slightly calcareous	3	69	72
	greenish gray, indurated, highly calcareous Sand, fine to medium, greenish gray,		72	74 <u>-</u>
	moderately consolidated, non- calcareous	9불	74 <u>1</u>	84
	155-82-10dcd Test Hole 17 Elevation 1,590 feet			
Glacial Drift:	Clay, silt to sandy with pebbles,			
	dusky yellow to moderate olive brown, soft, loosely consolidated,			
	oxidized (till)	6	0	6
	oxidized Clay, silty to sandy with pebbles, moderate olive brown, soft,	3	6	9
	slightly sticky (till) Sand, fine to coarse, gray, moderate	3 I v	9	12
	sorted, subangular to subrounded Clay, silty with sand, pebbles and cobbles, olive gray, moderately so	2	12	14
	cohesive, unoxidized (till)	9	14	23

Formation	Haterial	<u>Thickness</u> (feet)	<u>Dep</u> (fe From	oth eet) To
	155-82-10dcd Test Hole 17 Elevation 1,590 feet (continued)			
Tongue River Forma	Clay, silty, olive gray, contains pebbles and sandy and gravelly layers, moderately soft, tight (till)	15	23	38
	Clay, silty, light gray to dusky brown, smooth to slightly gritty, moderately soft, cohesive, plastic			
	noncalcareous Lignite, black, fissile	2 4	38 40	40 44
	Sand, medium, clayey, grayish brown, moderately consolidated, well-sorted, noncalcareous	9	44	53
	Sand, as above, iight greenish gray	10	53	63
	Electric Log			
	155-82-12aaa Test Hole 8 Elevation 1,575 feet			
Glacial Drift:	Clay, silty and sandy, yellowish			
	gray to dusky yellow, soft,poorly consolidated, oxidized, contains thin gravelly layers Clay, silty, moderate olive brown	18	0	18
	to light olive gray, tightly compactory compactory contraction to the second state of	acted,		
	 calcareous (till) Clay, silty to sandy with pebbles, olive gray, moderately soft, 	5	8	23
Tongue River Forma	tight, .cohesive, plastic, unoxidized, calcareous (till)	14	23	37
tonget tiller i offic	Sand, fine to medium, clayey, greenish gray, moderately consoli	dated,		
	well-sorted, subangular to sub- rounded, noncalcareous	10	37	47

Formation	Haterial	<u>Thickness</u> (feet)	<u>Dep</u> (fe From	eth Zet) To
	I55-82-I3aa Wm. H. Hunt -Guy Almy #I Elevation I,620 feet			
	(MISSING)	350	0	350
Bedrock, undiffere	Sandstone, very light gray, fine to mediu™, subangular grains, calcareous; shale, light gray			
	and pale brown, silty, micaceous, bentonitic Shale, as above, with a little	50	350	400
	sandstone as above Sandstone, very light gray, fine to	50	400	450
	medium, subangular grains, calcar- eous; some shale as above Shale, light gray and pale brown,	20	450	470
	micaceous, silty and bentonitic Shale, as above; a little sandstone,	30	470	500
	light gray, fine to medium, sub- angular grains, calcareous	180	500	680
	Pierre Shale contact picked at 638 (Carlson, 1957)	3 1		
	Partial log - total depth 7,300 fo	eet		
	(found dry and plugged 8-17-54)			
	155-82-13cbc Test Hole 16 Elevation 1,603 feet			
Glacial Drift:	Silty loam,underlain by several inches of coarse sand Clay, sandy, moderate olive brown, moderately soft, tight, cohesive,	I₽	0	12
£	plastic, calcareous, oxidized (till) Clay, silty to sandy with pebbles, olive gray, tight, cohesive,unoxi-	7불	17	9
	dized (till); contains loose sandy and gravelly layers	29	9	38
	Sand, medium, greenish gray, well- sorted, subrounded, saturated Clay, silty to sandy with numerous pebbles and cobbles, olive gray, moderately soft, tight, cohesive,	2	38	40
	plastic (till); contains numerous sandy and gravelly layers	21	40	61

т	ABLE 5Logs of Test HolesContinued			
Formation	Material	Thickness (feet)	Contraction of the local diversion of the loc	epth (feet) To
	155-82-13cbc Test Hole 16 Elevation 1,603 feet (continued)			
Tongue River Form	ation: Sand, fine to medium, clayey, greenish gray, moderately consolidated, well-sorted, non- calcareous	23	61	84
	155-82-15bbb USGS Test #1394 Elevation 1,641 feet			
Glacial Drift:				
	Topsoil, black Clay, yellow, and fine gravel Clay, gray, contains fine gravel	3 19	0 3	3 22
T	and shale pebbles (till)	63	22	85
Tongue River Form	ation: Clay, sandy, gray	9늘	85	94불
	I55-82-22ccb USGS Test #I393 Elevation I,625 feet			
Glacial Drift:	Transfer to the te		_	
	Topsoil, black Clay, yellow, and fine gravel Clay, gray, with fine to medium	4 9	0 4	4 15
	gravel and shale pebbles (till)	49	15	64
	Sand, fine, dirty Clay, gray, with fine gravel, shale pebbles, cobble stones, and	9	64	73
Tongue River Form	lignite (till)	15	73	88
Tongae triver i Drill	Clay, sandy, gray	17	88	105

Table 5--Logs of Test Holes --Continued

Formation	Material	<u>Thickness</u> (feet)		oth feet) To
	155-82-22ddd Test Hole 18 Elevation 1,629 feet			
Glacial Drift:				
	Marl, sandy, light gray, soft, very highly calcareous Sand, fine, light tan, well-sorted,	3	0	3
	subrounded, slightly calcareous, mixed with clay Clay, sandy, moderate olive brown to		3	9
	medium gray, soft, cohesive, cal- careous Clay, silty to sandy with pebbles,	3	9	12
	olive gray, moderately soft, cohesive (till) Clay, sandy, olive gray, moderately soft, tight, cohesive, plastic; numerous pebbles and cobbles and	7	12	19
	several sandy and gravelly layers (till)Gravel, fine to coarse, with coarse	35	19	54
	sand, moderately sorted, subangula			81
	to subrounded, saturated		54	61
Tongua Divor Form	Till, as above the gravel	11	61	72
Tongue River Forma	Sand, medium, clayey, dusky brown, moderately consolidated, noncal- careous, highly organic	6	72	78
	Sand, fine to medium, clayey, greeni gray, well-sorted, moderately consolidated	sh	78	84
		~		U 7

Electric Log

TABLE 6--Logs of Test Holes Used In Report But Located Outside Report Area

Formation	Material	<u>Thickness</u> (feet)	Concernant of the local division of the loca	epth feet) To
	155-81-13aa USGS Test Hole (from LaRocque,et al.,1963b, p.241,t Elevation 1,574 feet	able 3)		
Glacial Drift: Fort Union Format	Soil Silt, fine, and sandy clay Clay, yellow, with some gravel Sand and gravel Clay, sandy, gray Sand, coarse, and gravel, coarse Boulder, granite Boulder, granite Ion: (Tongue River Formation of this re Clay, gray Water level 19.09 (8-12-47) Hole filled	 5 2 9 7 44 2 2 port) 17	0 1 27 36 43 87 89	1 6 27 36 43 87 89
	55-8 -23cd Wm. H. Hunt - Joe Wald # Elevation ,586.5 feet			
	(MISSING)	400	0	400
Bedrock, undiffer	Shale, light gray, tan siltstone, and a little light brown sandstone Shale, one piece of very light olive	50	400	450
	gray; and one piece of light gray, dense limestone Shale, light olive gray, silty	10 110	450 460	460 570
Pierre Shale contact picked at 550 feet (Anderson, S. B., 1963, personal communication)				
	Partial log - total depth 8,652	feet		
	Well shandoned			

Well abandoned

58

TABLE 6--Logs of Test Holes Used in Report But Located Outside of Report Area --Continued

Formation	Material	<u>[hickness</u> (feet)	Street, or	<u>pth</u> eet) To
	156-83-33dc Quintana Producation CoChris Linn Elevation 1,760 feet	nertz #I		
Glacial Drift:			-	
	Silt and gravel	4 2 354	0 42	42 396
Dodwoold undiffor	Poorly sorted sand and gravel	304	44	290
Bedrock, undiffer	Bentonitic shale; medium gray,			
	lumpy, slightly silty, traces of			
	sand and gravel	152	396	548
	Shale; medium gray, lumpy with much			
	poorly sorted sand and gravel	181	548	729
	Shale; medium gray, lumpy, silty; some poorly sorted sand	2 31	729	760
	Shale; medium gray, lumpy, silty and	21		
	sandy	55	760	815
	(MISSING)	5	815	820
	Sand; fine to medium, rounded; traces		000	0.70
	of limestone and pyrite	10	820	830
	Missing samples	420	830	1250
Pierre Shale contact picked at 1,002 feet (Smith, 1953) Partial log - total depth 8,938 feet Dry hole - plugged 10-27-52				
	157-85-16d Dewey Price CoJ. H. Kline #1 (taken from Lemke,1960, p.11-12)		
	Elevation 1,679 feet			
Glacial Drift:				
Fort Union Format	Sand, buff, coarse, some pebbles ion, Tongue River Member: Formation of this report)	95	0	95
(Tongue Miver	Lignite, black	5	95	100
	(Sand and gravel, caved from above?)	33	100	133
	Sandstone and siltstone, gray, fine-			
	grained, soft, clayey	10	133	143
	Lignite, black	6	143	149
	Siltstone and shale, gray, soft, clayey	16	149	165
	Sandstone, gray, fine-grained, soft,	1. 1 .		
	clayey	5	165	170

TABLE 6--Logs of Test Holes Used in Report But Located Outside of Report Area --Continued

Formation	Material	<u>Thickness</u> (feet)	<u>Der</u> (f From	<u>oth</u> eet) To
	57-85-16d Dewey Price Co J. H. Kline #1 (taken from Lemke, 1960, p. 11-12) Elevation 1,679 feet (continued)			
	Silt stone and shale, gray, soft, clayey; includes a little lignite. Sandstone, light gray, fine-grained. (Sand and gravel, caved from above?) Sandstone, siltstone, and shale, gra fine-grained, soft, clayey; appare considerably interbedded; includes	. 6 . 31 y, ntly	170 208 214	208 214 245
	little lignite and soft plant-bear clay	ing	245	300
	Sandstone, medium light gray, fine- grained, hard, calcareous ion, Ludlow and Cannonball Members: prmation of this report)	• 50	300	350
(0	Shale, medium gray, soft, silty; includes a little sandstone and			
	foraminifera identified by S.F. Fo as of Cannonball age		350	435
	Sandstone, medium gray, very fine- grained, calcareous Siltstone and shale, medium gray,sof		435	470
	sandy	• 40	470	510
	to medium grained		510	530
	Shale, medium gray, soft, silty Sandstone, siltstone, and shale,		530	587
	medium gray, soft, clayey Sandstone, light-medium gray, fine-	. 83	587	670
	grained, calcareous, hard Silstone and shale, medium gray, so contains some carbonaceous parting and a little light gray sandstone,	it; js	670	680
Hell Creek Fo r mat	and some gray silty bentonite at 7 705 feet		680	710
Herr of east for mare	Sandstone, light-medium gray, fine-			
	grained, fairly soft; contains abundant silt cement Sandstone, medium gray, fine-grained	1,	710	720
	soft, clayey; contains partings or medium gray siltstone		720	800
	Sandstone, siltstone, and mudstone, medium gray, soft	. 20	800	820

TABLE 6--Logs of Test Holes Used in Report But Located Outside of Report Area --Continued

Formation	Material	Thickness (feet)	-	<u>Depth</u> (feet) m To
	157-85-16d Dewey Price CoJ. H. Kline #1 (taken from Lemke, 1960, p. 11-1 Elevation 1,679 feet (continued)	2)		
Fox Hills Sandstor	Siltstone, medium gray, soft Bentonite, greenish gray, silty (Sample missing) Shale, medium gray, soft, silty	5 45	820 855 860 905	855 860 905 915
	Sandstone, light gray, fine-grained, calcareousShale, dark-medium gray, soft, silty	25	915	940
	contains carbonaceous specks Shale, dark-medium gray; includes sc	20	940	960
	gray siltstone and clayey sandstor Sandstone, whitish-to medium gray,fi	ne-	960	985
	grained, calcareous, hard Siltstone, light-medium gray, soft, shaley; contains fine white mica	35	985 995	995 1,030
	Siltstone and shale, light-medium gr soft Shale, light-medium gray, silty, sof	20 ft;	300, ا	1,050
	contains some partings of siltstor and a few shell fragments and ostracodes	100	1,050	1,150

Partial log - total depth 8,435 feet

Well abandoned

REFERENCES

- Anderson, S. B., 1953, Summary of the William H. Hunt Trust Estate, Joe J. and Anna Wald #1 well: N. Dak. Geol. Survey Circ. 12, 13 p.
- Carlson, Clarence, 1957, Summary of the William H. Hunt Guy Almy #1 well: N. Dak. Geol. Survey Circ. 181, 6 p.
- Clayton, Lee, 1962, Glacial geology of Logan and McIntosh Counties, North Dakota: N. Dak. Geol. Survey Bull. 37, 84 p.
- Holowaychuk, Nicholas, and Boatright, W. C., 1938, Erosion and related land use conditions on the Minot area, North Dakota: U. S. Dept. of Agric., Washington, D. C., 37 p.
- LaRocque, G. A., Jr., Swenson, H. A., and Greenman, D. W., 1962a, Ground water in the Crosby-Mohall area, North Dakota: N. Dak. Ground-water studies No. 54, 57 p.
- LaRocque, G. A., Jr., Swenson, H. A., and Greenman, D. W., 1963b, Tables of hydrologic data, Crosby-Nohall area, North Dakota: U. S. Geol. Survey open-file report, 508 p.
- Lemke, R. W., 1960, Geology of the Souris River area, North Dakota: U. S. Geol. Survey Prof. Paper 325, 133 p.
- Lohr, E. W., and Love, S. K., 1954, The industrial utility of public water supplies in the United States, 1952: Part 2. States west of the Mississippi River: U. S. Geol. Survey Water-Supply Paper 1300.
- Simpson, H. E., 1929, Geology and ground-water resources of North Dakota, with a discussion of the chemical character of the water by H. B. Riffenburg: U. S. Geol.Survey Water-Supply Paper 598, 312 p.
- Smith, Carole, 1953, Summary of the Quintana Production Company -Chris Linnertz #1 well: N. Dak. Geol. Survey Circ. 86, 15 p.