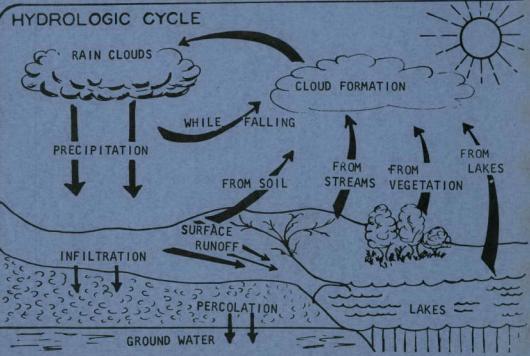


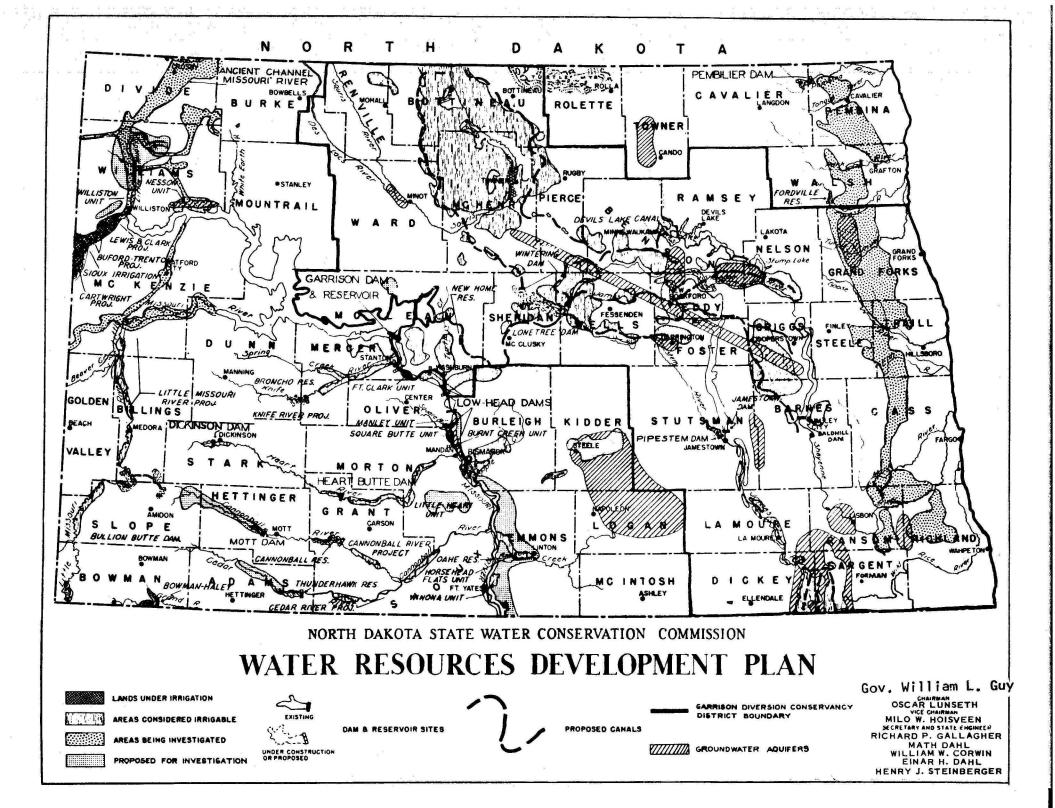
GROUND WATER NEAR HOOPLE WALSH AND PEMBINA COUNTIES

NORTH DAKOTA

By H. M. Jensen and Edward Bradley Geological Survey United States Department of the Interior


NORTH DAKOTA GROUND WATER STUDIES

NO. 49


Prepared by the United States Geological Survey in cooperation with the North Dakota State Water Conservation Commission

PUBLISHED BY NORTH DAKOTA STATE WATER CONSERVATION COMMISSION 1301 STATE CAPITOL, BISMARCK, NORTH DAKOTA

- 1962 -

"BUY NORTH DAKOTA PRODUCTS"

GROUND WATER NEAR HOOPLE, WALSH AND PEMBINA

COUNTIES, NORTH DAKOTA

By H. M. Jensen and Edward Bradley Geological Survey United States Department of the Interior

North Dakota Ground-Water Studies No. 49

Prepared by the United States Geological Survey in cooperation with the North Dakota State Water Conservation Commission, and the North Dakota Geological Survey

> Published by North Dakota State Water Conservation Commission 1301 State Capitol, Bismarck, N. Dak.

CONTENTS

page

Introduction	1
Geography	2
Geology and ground-water conditions	3
Recent alluvium	4
Pleistocene glacial drift	4
Deposits of glacial Lake Agassiz	4
Till and associated sand and gravel deposits	5
Bedrock formations	6
Quality of water	7
	8
Summary and conclusions	19
References	-/

ILLUSTRATIONS

-	_		page
Figure	1.	System of numbering springs, wells and test holes	2
	-		6
	2.	Map showing physiographic provinces of North Dakota and location of the Hoople area	2
	-		2
	3.	Map of the Hoople area showing location of wells, test holes, springs, beaches, and	
		geologic section	3
	4.	Geologic section in the Hoople area	5

TABLES

.

Table	1.	Records of wells, test holes, and springs	10
		Logs of test holes	

GROUND WATER NEAR HOOPLE, WALSH AND PEMBINA COUNTIES, NORTH DAKOTA

By H. M. Jensen and Edward Bradley

Introduction

As a part of the cooperative ground-water investigations program in North Dakota, the United States Geological Survey, North Dakota State Water Conservation Commission, and North Dakota Geological Survey make studies of ground-water resources available for municipal use in various parts of the State. Investigations are made of small areas surrounding towns that have requested aid from either the State Water Conservation Commission or the State Geologist. As adequate funds become available, more comprehensive investigations are made on larger areas, such as counties. Reports on the large investigations may include all or some of the results of the smaller municipal water-supply studies.

The present investigation, which began in 1959, was made at the request of the city council of Hoople. It included test drilling, inventory of selected wells (table 1), evaluation of available geologic and hydrologic data, and preparation of this report.

- 1 -

The well-numbering system, illustrated in figure 1, is based on the Federal system of rectangular surveys of public lands. The first numeral denotes the township north of the base line which extends laterally across the middle of Arkansas, and the second numeral denotes the range west of the fifth principal meridian; the third numeral denotes the section in which the well is located. The letters a, b, c, and d designate respectively the northeast, northwest, southwest and southeast quarter sections, quarter-quarter sections, and quarterquarter-quarter sections (10-acre tracts). Consecutive terminal numerals are added if more than one well, test hole or spring is shown in a given 10-acre tract or quarter-quarter section. Thus, a well numbered 158-55-15daa (fig. 1) would be in the northeast quarter of the northeast quarter of the southeast quarter, sec. 15, T. 158 N., R. 55 W.

Geography

The Hoople area is in the Red River Valley, which is a relatively flat-lying glacial-lake plain that slopes gently toward the Red River. (See fig. 2.) The report area includes 104 square miles surrounding and largely west of Hoople, which had a population of 334 in 1960. Beaches and other shoreline deposits, which mark successive stages of glacial Lake Agassiz, cross the Hoople area in a north-south direction. The most prominent of these features are those west of the McCauleyville Beach, about 6 miles west of Hoople. From the McCauleyville Beach eastward, the shoreline features are minor undulating swells that seldom are more than a few feet above the lake plain. The climate in the Hoople area is sub-humid. The average annual precipitation is about 20 inches.

- 2 -

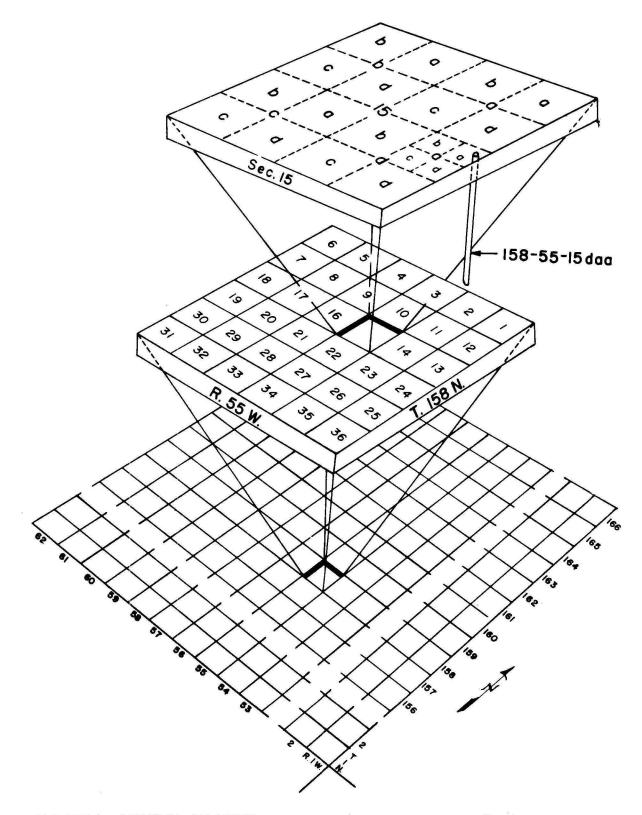


FIGURE I -- SYSTEM OF NUMBERING SPRINGS, WELLS, AND TEST HOLES.

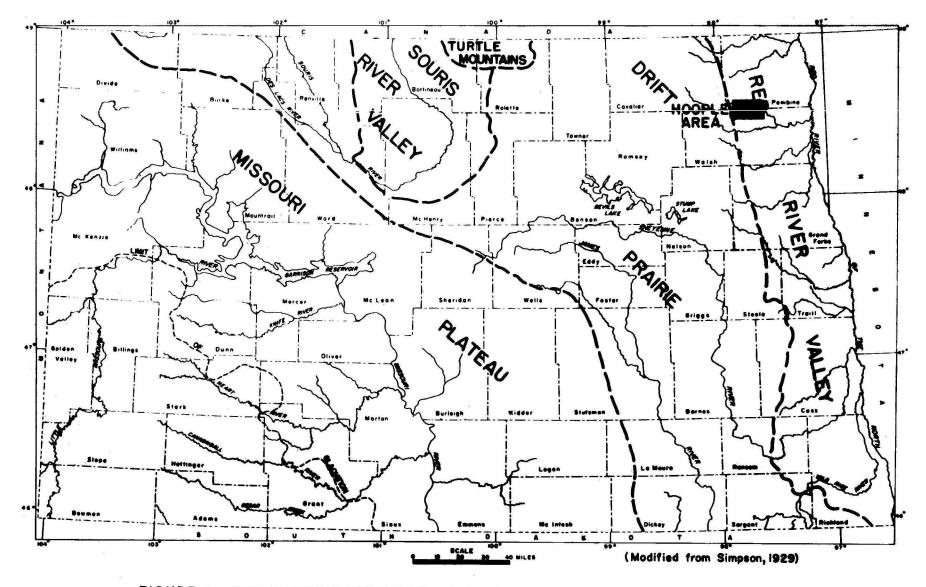


FIGURE 2--MAP SHOWING PHYSIOGRAPHIC PROVINCES OF NORTH DAKOTA AND LOCATION OF THE HOOPLE AREA

Surface drainage, which is intermittent, is through the Middle Branch and North Branch of the Park River and through Cart Creek. (See fig. 3.) The channel of the Middle Branch of the Park River west of the McCauleyville Beach is deeply incised in glacial drift and can carry a large amount of runoff from spring snowmelt and heavy rains; however, all the stream channels east of the McCauleyville Beach are narrow and shallow. Heavy runoff often overflows these channels and floods the surrounding lake plain. During most of the year, however, the channels are dry or contain only small ponds and marshes.

Geology and Ground-Water Conditions

In the Hoople area ground water occurs in Recent alluvium, Pleistocene glacial drift, and bedrock. The glacial drift is divided into deposits of glacial Lake Agassiz and till and associated sand and gravel. The Lake Agassiz deposits may be subdivided into beach deposits and silt and clay. The youngest bedrock in the area is composed of shale and sand of Cretaceous age. Study of available geologic, hydrologic, and quality-of-water information prior to test drilling showed that water of suitable quality for municipal use would most likely be found in aquifers in the beach or shore deposits; therefore, many of the test holes were located on or near the beach ridges. (See fig. 3.)

- 3 -

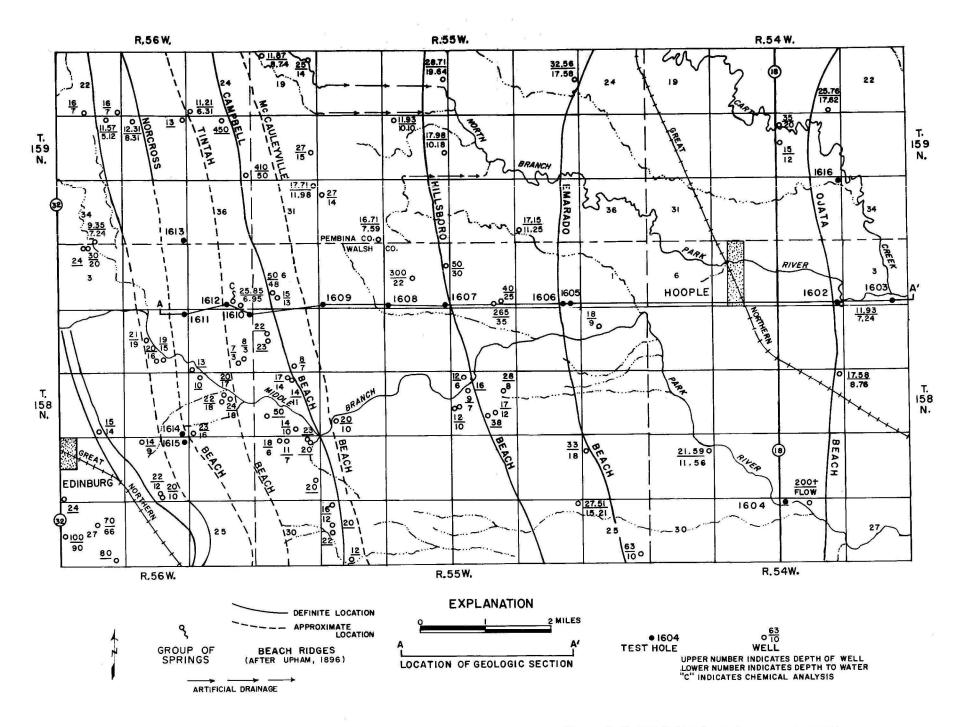


FIGURE 3--MAP OF THE HOOPLE AREA SHOWING LOCATION OF WELLS, TEST HOLES, SPRINGS, BEACHES, AND GEOLOGIC SECTION.

Recent alluvium

Recent alluvial deposits occupy the principal drainage channels in the area. The deposits range in thickness from 0 to about 5 feet and contain thin beds of silt, clay, and small amounts of fine sand. Because the deposits are small in areal extent and relatively impermeable, they yield little water to wells.

Pleistocene glacial drift

Deposits of glacial Lake Agassiz.--Beach or shore deposits overlie deposits of lacustrine silt and clay and till and associated sand and gravel. The deposits consist of variable concentrations of sand and gravel and (or) silt or clay. Test hole 1611 (158-56-11aaa) penetrated 30 feet of sand and gravel; lesser thicknesses were penetrated in other test holes west of the Campbell Beach (fig. 3 and table 2). Test drilling showed that east of the Campbell Beach the deposits are composed primarily of silt and clay.

The more permeable sand and (or) gravel sections of the beach or shore deposits generally yield sufficient water to wells for domestic and farm use. Springs located about 8 miles west of Hoople in sec. 1, T. 158 N., R. 56 W. discharge from permeable deposits of the Tintah Beach and perhaps other beach ridges west of the Tintah Beach. The discharge of several springs forms a run or small stream that flows eastward beyond the Campbell Beach. In 1959 at one location the discharge was 120 gpm (gallons per minute) on April 22, 27 gpm on August 19,

- 4 -

and 86 gpm on November 3. These measurements show the seasonal variation in the discharge and thus the probable fluctuation of the quantity of water available to wells from the beach deposits.

Probably a single well in the beach or shore deposits would not yield enough water for municipal needs; further investigation, however, might locate an area where a series of wells with a collection system could furnish enough water for a small town. The area of springs located in sec. 1, T. 158 N., R. 56 W. warrants further study as a possible source of supply for Hoople.

The silt and clay deposits of Lake Agassiz are generally laminated; some layers contain thin stringers of sand. Test hole 1602 (158-54-4dd2) penetrated 131 feet of the deposits (fig. 4). Thicker deposits probably occur eastward toward the axis of the Red River Valley. The material as a whole is relatively impermeable and does not ordinarily yield enough water for withdrawal by wells.

<u>Till and associated sand and gravel deposits</u>.--Till and associated sand and gravel deposits were penetrated in most of the test holes (table 2). Two test holes, 1608 and 1610, (158-55-hecc and 158-56-12aaa) penetrated 158 feet of the deposits. The till is an unstratified, heterogeneous mixture of clay, sand, gravel, and boulders. Because it is composed of unsorted material and because the spaces between the larger particles are filled with finer materials, till does not ordinarily yield water readily to wells.

- 5 -

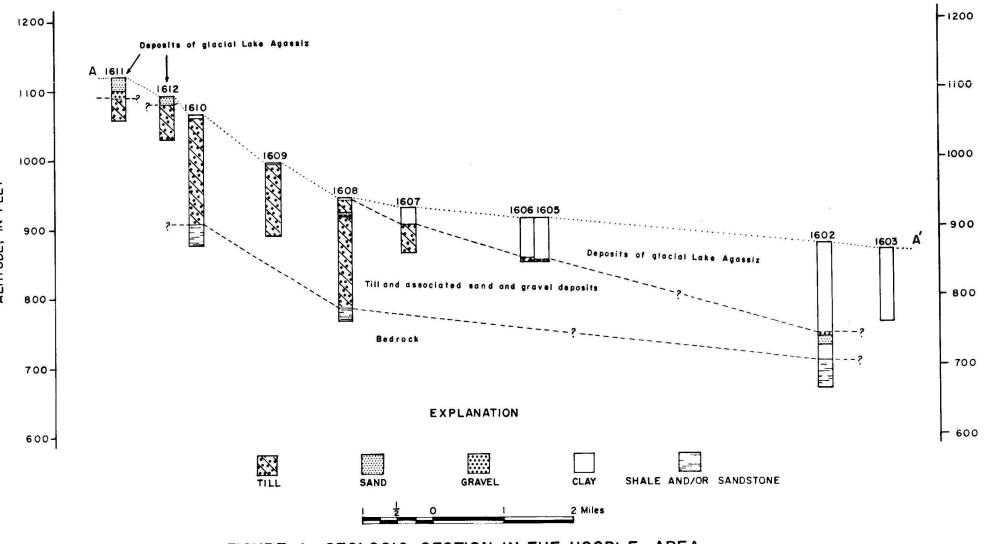


FIGURE 4--GEOLOGIC SECTION IN THE HOOPLE AREA

ALTITUDE, IN FEET

Stratified sand and gravel deposits associated with the till were formed as alluvial deposits by local melt water of glacial streams. The deposits are not exposed and can be found only by test drilling. Test **holes** 1608 and 1602 penetrated stratified sand and gravel deposits 10 and 17 feet thick respectively. Many of the stratified deposits contain ground water and are small isolated aquifers; but, because they are completely surrounded by till, they are replenished relatively slowly. The deposits yield only small quantities of water -- generally enough for domestic and farm use.

Bedrock formations

Rocks of Cretaceous and Paleozoic age underlie the glacial drift in the Hoople area. The Dakota(?) Sandstone of Early Cretaceous age contains one or more aquifers and lies between 200 and 500 feet below the land surface in the report area. The formation yields small quantities of water to wells, and, although it has a high dissolvedsolids content (ordinarily more than 3,000 parts per million), it is used for general domestic and farm uses at some places. Paleozoic rocks, which contain water with a high dissolved-solids content, are tapped by a well at Grafton, about 15 miles southeast of Hoople (Simpson, 1929, p. 246). These rocks probably underlie the Dakota(?) Sandstone in the Hoople area, but they are not known to be penetrated by wells.

- 6 -

Quality of Water

An analysis of water collected from a spring located in the $SW_{\frac{1}{4}}^{\frac{1}{4}}$ of sec. 1, T. 158 N., R. 56 W. is reported as follows by the State Laboratories Department, Bismarck, N. Dak.:

	entration (ppm)
Iron (Fe)	.22
Calcium (Ca)	56
Magnesium (Mg)	30
Sodium (Na)	20
Potassium (K)	3.5
Bicarbonate (HCO3)	254
Carbonate (CO3)	114
Sulfate (SO4)	74
Boron (B)	0.2
Chloride (Cl)	11
Fluoride (F)	0.3
Nitrate (NO3)	1.6
Dissolved Solids	
Residue at 100°C	1:03
	0.01

Residue after ignition----- 334

Drilled and dug wells at numerous farmsteads in the area obtain water of reported similar quality from the aquifers in the beach or shore deposits. Aquifers in the till and associated sand and gravel deposits and in the bedrock generally yield water that has a higher dissolved-solids content than the water of beach or shore deposits; therefore, it is less suitable for domestic or public supply use.

Summary and Conclusions

Deposits of Recent alluvium found in the drainage channels in the Hoople area consist primarily of silt and clay. The deposits are relatively impermeable and are not a good source of water for wells.

Glacial drift in the area consists of deposits of Lake Agassiz and till and associated sand and gravel. Lake Agassiz deposits include (1) beach or shore deposits and (2) silt and clay deposits. The lacustrine deposits are relatively impermeable and are not generally sources of ground water. Beach or shore deposits contain small quantities of ground water at shallow depths from which numerous farm wells obtain enough water for general domestic and farm use. Springs about 8 miles west of Hoople discharge water from the deposits, but the yield fluctuates seasonally. The feasibility of installing a series of shallow wells with a collection system in this spring area should be considered as a possible municipal supply for Hoople. The quality of water from beach or shore deposits is satisfactory for most uses.

- 8 -

Lenticular sand and gravel deposits associated with the glacial till generally are aquifers. The deposits yield sufficient water for domestic or farm supplies, but the water has a high dissolved-solids content (generally more than 2,000 ppm). Deposits capable of supplying enough water for Hoople were not located by the test drilling.

Small supplies of water may be obtained from the Dakota(?) Sandstone of Cretaceous age. The water from this formation, however, has a high dissolved-solids content and would be of very poor quality for municipal use. Paleozoic rocks, although not penetrated by test holes, probably are present in the area and would also yield water with a high dissolved-solids content. Depth of well and depth to water: Measured depths are given in feet, tenths, and (or) hundredths; reported depths are given in feet.

Type of well: Dr, drilled; Du, dug; Sp, spring or springs.

Location No.	Owner or name	Depth of well (feet)	Diameter cr size (inches)	Туре	Date completed
158-54 3ddc 4ddd1 4ddd2 16aaa 19aad 28baa 28bbb	Test hole 1603 E. T. Odegard Test hole 1602 Unknown H. R. Hart Otto Paulson Test hole 1604	105 11.93 210 17.58 21.59 200 + 52.5	5 38 5 48 48 3 5	Dr Du Dr Du Du Dr Dr	9-24-59 9-23-59 9-24-59
158-55 2dcd 2ddc 3dcd1 3dcd2 4ad 4caa 4ccc 4ddd 5ccc 6cdb1 6cdb2 7bdc1 7bdc2 7dc 12bdb 15adb 15bba	Test hole 1606 Test hole 1605 Fedje do Rose Moore Carleton Rinde Test hole 1608 Test hole 1607 Test hole 1609 K. B. Rollefstad do Tillie Holms do Erickson Bros. Thelmer Johnson G. Langrud H. Ostenrud	$ \begin{array}{c} 63\\ 63\\ 265\\ 10\\ 50\\ 300\\ 178_{2}\\ 63\\ 105\\ 50\\ 15\\ 22\\ 23\\ 8\\ 18\\ 28\\ 12\\ \end{array} $	552464555528448824 2345552242284448824	Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr D	9-24-59 9-24-59 1957 1955 1939 9-25-59 9-24-59 9-25-59 1939 1909
1500a 1500b 1500b1 150b2 15db1 15db2 1700d 18abb1 18abb1	H. Ostenrud Alma Olson F. H. Berg do P. H. Borge do Rustgard sisters Albert Anderson do	12 16 12 9 17 38 20 17 14	24 24 30 28 28 28 24 8 24	Du Dr Du Dr Dr Dr Dr Dr	1949 1923 1939

test holes, and springs

Use of water: D, domestic; S, stock; N, none; T, test hole.

Remarks: Adequate supply means quantity reported sufficient for use indicated.

Depth to water below land surface (feet)	Date of measure- ment	Use of water	Aquifer	Remarks
7.24 8.76 11.56 Flow	9-16-59 9-16-59 9-16-59 9-16-59	T S T S S S T	Sand do do	See log. Adequate supply. See log. Alkaline. Adequate supply. See log.
35 25 30 22 48 13 7 9 8 6 7 9 8 6 10 7 12 10 14 11		TTSSDSTTTDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS	do Clay Sand Clay do do do do do do do d	Do Adequate supply. Inadequate supply. Adequate supply. Do See log. Do Adequate supply. Do Adequate supply. Do

TABLE	1Records	റ്	ngelle
فستبليط استندعه بتله	TOTUD	OT.	وتعليلات

Location No.	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed
<u>158-55</u> (C 18cbd 18dc 19aab1 19aab2 19baal	ont.) Tilbert Peterson Henry Langrud Joseph Lindell do Floyd Greenwood	50 1年 20 23 18	36 36 36 36 120	Dr Dr Du Du Du	1924 1955 1927 1950
19baa2 19dad 24bbc 25dd 26aaa 29bba 29bcd1 29bcd2 29cdd	do Norman Monsebroten John Roholt Theodore Holt Unknown Emil Halgard B. A. Larson do Edwin Olson	11 20 33 63 27.51 16 20 22 12	36 24 48 38 36 36 36 36	Du Dr Du Du Du Du Du Du	1954 1957 1938 1958
158-56 Idc Idcc Iddc 3baal 3baa2 Ilaaa Ilbdc Ildcbl	Edward Moe Test hole 1612 Edward Moe Ralph Rustan do Test hole 1611 Alfred Moe John Sveen	63 25.85 24 30 63 21 19	5 24 24 24 5 8 12	Sp Dr Dr Dr Dr Dr Du Dr	9-28-59 1956 1929 9-26-59 1952
lldcb2 l2aaa l2ccc l2ddb1 l2ddb2 l3accl l3acc2	do Test hole 1610 Mrs. Charles Folson Charley Bernaas do G. W. Laithwaite do	20 189 13 7 8 22 20	12 5 24 6 48 36	Dr Dr Du Dr Du Du Du	9-26-59 1939 1917
13acc3 13bba 13ccc 14ddd	do Kenneth Folson John E. Evenson Test hole 1614	24 10 23 135	36 36 30 5	Dr Du Dr Dr	1909 1953 1957 9 - 28 - 59

Depth to water below land surface (feet)	Date of measure- ment	Use of water	Aquifer	Remarks
·····				<u> </u>
		S	Sand	Adequate supply.
10		D,S	do	Do
		Ď	Gravel	Do
		S	do	Do
6		PS, D,S	Sand	Adequate supply; sells water to people in the community.
7		D	do	Adequate supply.
*****		D,S	ob	Do
18		D,S	do	Inadequate supply.
10		D,S	Gravel	Adequate supply.
15.21		s	Sand	Alkaline.
12		D	Gravel	Adequate supply.
		D	Sand	Do
		S	do	Do
		D	do	Do
		Sa	nd, gravel	See chemical analysis.
		T		See log.
6.95	9-14-59	D,S	Gravel	Adequate supply.
		D	Sand	Do
20		S	do	Do
		т	*****	See log.
19		D	Gravel	Adequate supply.
15		D	do	Adequate supply; springs in the area.
16		S	do	Adequate supply.
		т		See log.
		D	do	Adequate supply.
3		D	Sand	Do
3		S	do	Do
3 3 18		D	do	Do
17		S	••dó••	Adequate supply; spring in the area.
18		D	do	Adequate supply.
		D,S	do	Do
16		D	do	Do
		т		See log.

test holes, and springs -- Continued

-				مرد میں مرد میں	
Location No.	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed
158 56 (0)					
<u>158-56</u> (Co 15dc	Burvett Branvold	15	12	Du	1958
22ccc	V. Brevik	24	48	Du	
23aaa	Test hole 1615	63	5	Dr	9-29-59
23bab	Adolph Folson	 լե	36	Du	
23dcc1	L. M. Byars	22	24	Dr	1954
23dcc2	do	20	24	Dr	
27aca	Aaron Isakson	70	16	Dr	1912
27cbb	Frank Skylud	100	6	Dr	1939
27aa	Jacob Peterson	80	6	Dr	
159-54					
21ddc	Unknown	25.76	24	Dr	
28bbc		35	48	Du	
28bcc	Allan Moulton	15	48	Du	
33aaa	Test hole 1616	63	5	Dr	9-29-59
<u>159-55</u>				_	
19aa	E. G. Russum	25	48	Du	
19bba	Unknown	11.87	48	Du	
21add	Allan Reilly	28.71	48	Du Dr	
23add	Unknown	32.56	30 36	Dr Du	
28bba	do	11.93	24	Du	
28daa	do	17.98 27	30	Du	
30daa	Leonard Estad Unknown	17.71	48	Du	
3laaa	L. Windingland	27	48	Du	
32bbc 32ddd	Unknown	16.71	48	Du	
35ccb	Burton Harvey	17.15	48	Du	
159-56					
22cdd	Johnson	16	60	Du	1956
22ddd	Myrdel	16	50	Du	
24ccc	John Gudmundson	11.21	48	Du	
25abb	Johnson	4,50	3 3 60	Dr	
25444	Oliver Olson	410	_3	Dr	
26aaa	John Gudmundson	13	60	Du	
26bba	John Myrdal	12.31	48	Du	
27aab	do	11.57	60 48	Du	
34dcc	Unknown	9.35	40 5	Du Dr	9-28-59
35ddd	Test hole 1613	63)	1/1.	9-20-79

Depth to water below land surface (feet)	Date of measure- ment	Use of water	Aquifer	Remarks
			Gonð	
14		D,S	Sand	Adequate supply.
		D,S T		See log.
•••••		D,S	Gravel	Adequate supply.
9 12	• • • • • • • • •	D,5 D	do	Do
10		S	do	Do
66	• • • • • • • •	D,S	Sand	Do
90	· · · · · · · ·	D,S	do	Do
		D,S	do	Do
*****		2,5		
17.62	9-15-59	N		
20		S	do	
12		S	do	Do
		T	• • • • • •	See log.
14		D,S	do	
8.74	9-14-59	S	do	
19.64	9-15-59	D,S	do	
17.58	9-15-59	D,S		
10.10	9-15-59	Ň	do	
10.18	9-15-59	D,S		Alkaline.
15		D,S	do	Adequate supply.
ii.98	9-14-59	Ś	do	
14		D,S	do	
7.59	9-15-59	D,S	do	
11.25	9-15-59	S	do	Do
~		D,S	do	Do
7 7 6.31		D,S	do	Inadequate supply.
6 21	9-14-59	S S	Gravel	Open well.
	7-14-77	N	Sand	
50		S	do	Adequate supply.
	•••••	D,S	do	
8.31	9-14-59	S	Gravel	Inadequate supply.
5.12	9-14-59	D,S	do	Adequate supply.
7.24	9-14-59	Ń	do	
		т		See log.

•

holes, and springs -- Continued

TABLE 2.--Logs of test holes

158-54-3ddc Test hole 1603

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Deposits of glacial Lake Agassiz: Topsoil, black	<u>l</u> ;	ŀĻ
Clay, silty, yellow to light-brown; oxidized Clay, silty, light-gray; calcareous Clay, smooth, dark-gray; calcareous Clay, smooth, gray; calcareous	21	15 31 52 105

158-54-4ddd2 Test hole 1602

Deposits of glacial Lake Agassiz: Topsoil, silty, black Clay, silty, gray to light-gray	2 3	2 5
Clay, silty, mottled, yellow-buff to gray; oxidized Clay, silty, olive-gray Clay, shaly, light-gray; brittle Till and associated sand and gravel deposits:	6 25 95	11 36 131
Gravel, fine to medium; sand, fine to coarse	4	135
Sand, fine to coarse with a gray-clay binder	13	148
Clay, somewhat sandy and shaly, light- gray Clay, sandy, light-gray	9 12	157 169
Bedrock (Dakota(?) Sandstone): Sand, silty, very fine, gray and white	41	210

158-54-28bbb Test hole 1604

Deposits of glacial Lake Agassiz:	1.	1.
Topsoil, silty, black	4	4
Clay, silty, yellow-gray; oxidized	7	11
	5	16
Clay, silty, yellow-brown	-11	
Clay, silty, light-gray	36늘	52늘

TABLE 2.--Logs of test holes -- Continued

158-55-2dcd Test hole 1606

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Deposits of glacial Lake Agassiz: Topsoil, silty, dark-brown	- 12	3 15 57
Clay, light-gray; fine gravel; shale pebbles (till)	- 6	63

158-55-2ddc Test hole 1605

Deposits of glacial Lake Agassiz:		
Topsoil, black	3	3
Clay, silty, yellow to buff; oxidized	13	16
Clay, silty, light-gray	45	61
Till and associated sand and gravel deposits:		
Clay, gray; gravel, fine to medium		
(till)	2	63

TABLE 2 .-- Logs of test holes -- Continued

158-55-4ccc Test hole 1608

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	transformation and the surgery
Till and associated sand and gravel deposits: Topsoil, silty, black	3 to	3
medium; sand, coarse; shale pebbles (till)		16
Clay, light-gray; sand, coarse; grave fine to medium; shale pebbles and lignite fragments (till) Sand, fine to coarse; shale pebbles Gravel, fine; shale pebbles	5 5	21 26 31
Clay, sandy and silty, light-gray to olive-drab (till)	11	42
Silt and clay, gravelly, light-gray; shale pebbles (till) Clay, silty, light-gray (till?) Silt and clay, gray; gravel, fine to	15 18	57 75
medium; shale pebbles; lignite fragments (till)	83	158
Bedrock: Shale, dark-gray to dark-bluish-gray-	20 <u>1</u>	178 <u>1</u>

158-55-4ddd Test hole 1607

Deposits of glacial Lake Agassiz: Topsoil, black	3	3
Clay, silty, yellow to buff; oxidized Clay, silty, gray	12 11	15 26
Till and associated sand and gravel deposits:		
Clay, silty, light-gray; gravel, fine to medium; shale pebbles (till)	37	63

TABLE 2.--Logs of test holes -- Continued

158-55-5ccc Test hole 1609

Formation	Material	Thickness (feet)	$\frac{\text{Depth}}{(\text{feet})}$
	iated sand and gravel deposits: Topsoil, black Clay, silty, mottled, oxidized; some	- 3	3
	fine gravel (till)	- 3	6
	Clay, silty, light-gray; some fine gravel (till)	- 25	31
	Cley, gray; gravel, fine to medium; shale pebbles (till)	- 7 ¹ ,	105

158-56-1dcc Test hole 1612

Deposits of glacial Lake Agassiz: Sand, silty, brown	5	5
Sand, fine to coarse; some fine gravel; shale pebbles; lignite fragments Till and associated sand and gravel deposits:	7	12
Clay, sandy, light-gray; fine to medium gravel; shale pebbles; lignite frag- ments (till)	51	63

158-56-llaaa Test hole 1611

Deposits of glacial Lake Agassiz:	2	0
Topsoil, sandy, black	6	2
Sand, fine to medium; shale pebbles	19	21
Gravel, fine to coarse	9	30
Till and associated sand and gravel deposits:		
Clay, gray; gravel, fine to medium;		
shale pebbles (till)	33	63

TABLE 2 .-- Logs of test holes -- Continued

158-56-12aaa Test hole 1610

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Till and asso	ciated sand and gravel deposits: Topsoil, black	- 1	1
	Clay, oxidized, mottled, yellow to buff; fine gravel (till)	- 11	12
	Clay, gray; gravel, fine to medium, shale pebbles and cobblestones (till		158
Bedrock:	Shale, dark-gray to black	- 31	189

158-56-14ddd Test hole 1614

Deposits of glacial Lake Agassiz: Topsoil, sandy, brown Sand, fine to medium	2 4	2 6
Gravel, fine to medium, rounded and elongated Till and associated sand and gravel deposits:	7	13
Silt and clay, olive-gray; gravel, fine to medium (till)	21	34
Silt and clay, light-gray; gravel, fine; shale pebbles (till)	8	42
Silt and clay, gray; gravel, fine to medium; shale pebbles (till)	93	135

158-56**-23**aaa Test hole 1615

Deposits of glacial Lake Agassiz: Topsoil, sandy and silty, dark-brown	3	3
Sand, fine to coarse; many limestone grains	7	10
Till and associated sand and gravel deposits: Silt and clay, oxidized, mottled,		
yellow-buff; gravel, fine to medium; shale pebbles (till)	24	14
Silt and clay, light-gray; gravel, fine to medium; shale pebbles (till)	49	63

TABLE 2.--Logs of test holes -- Continued

159-54-33aaa Test hole 1616

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Deposits of	glacial Lake Agassiz: Topsoil, black Clay, silty, yellow to buff Clay, silty, light-gray Clay, smooth, dark-gray	2 19 21 21	2 21 42 63

159-56-35ddd Test hole 1613

Till and associated sand and gravel deposits:		
Topsoil, black	4	4
Sand, fine to medium; shale pebbles	7	11
Clay, gray; gravel, fine to medium;		
shale pebbles (till)	52	63

References

- Abbott, G. A., and Voedisch, F. W., 1938, The municipal ground-water supplies of North Dakota: North Dakota Geol. Survey Bull. 11, 99 p.
- Brookhart, J. W., and Powell, J. E., 1961, Reconnaissance of geology and ground water of selected areas in North Dakota: North Dakota Ground-Water Studies No. 28, 91 p.
- Robinove, C. J., Langford, R. H., and Boookhart, J. W., Saline-water resources of North Dakota: U.S. Geol. Survey Water-Supply Paper 1428, 72 p.
- Simpson, H. E., 1929, Geology and ground-water resources of North Dakota, with a discussion of chemical character of the water, by
 H. B. Riffenburg: U.S. Geol. Survey Water-Supply Paper 598, 312 p.
- Upham, Warren, 1895, The glacial Lake Agassiz: U.S. Geol. Survey Man. 25, 678 p. (1896).