
HYDRAULIC ANALYSIS ENGLISH COULEE DIVERSION SWC # 1351

NORTH DAKOTA STATE WATER COMMISSION SEPTEMBER 1994

PRELIMINARY ENGINEERING REPORT

English Coulee Diversion

SWC Project #1351

September 1994

North Dakota State Water Commission 900 East Boulevard Bismarck, North Dakota 58505-0850

Prepared by:

Bradley T. Benson

Bradley T.Benson Water Resource Engineer

Submitted by:

Dale L. Frink, Director Water Development Division

Approved by:

David A. Sprynczy

State Engineer

TABLE OF CONTENTS

Page

I.	INTRODUCTION	×	۲	•	٠	٠	•	۲	÷	٠	•	9	٠	•	•	•		1
	Study Objectives.		7 9 1		•	•			•	•			•	•				1
	Location	•			•	•	•			•	•			•	303			1
	Site Description.			•	•		٠	٠	•	•	•	٠	٠	•	•	•	·	1 3
II.	PROCEDURES	÷	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	۲		÷	5
	Cross-Sections	•	•	•	•		۰.		٠	۲		•	٠	٠	•		÷	7
	Channel Roughness					•				•		•			•			7
	Design Flow																	9
	Starting Water Sur	fa	ace	€.	•	•	•	•	•	3.00 3.003	•	÷	•	•				12
III.	RESULTS	(.)	:•))	•		•••		÷	191	F	٠	×	٠	•	٠		•	13
IV.	PRELIMINARY DESIGN.	٠	٠	۲	٠	٠			٠	٠	÷	ě	۲	•	•		•	14
v.	SUMMARY	•				•										÷		17

TABLES

Table	1 -	Discharge Versus Cross-Section Design Discharges	
		Less SCS Adjustment	9
Table	2 -	Discharge Sensitivity Analysis Overland Flow	
		Versus Location 1	6
Table	3A -	Initial Design Flows	1

FIGURES

Figure	$I = Location Map. \dots \dots$	2
Figure	2 - Map Showing Channel Alignment and Reaches Used	
_	in HEC-2 Model	6
Figure	3 = Representative Photos of Channel Condition of	
	English Coulee Diversion	8

. .

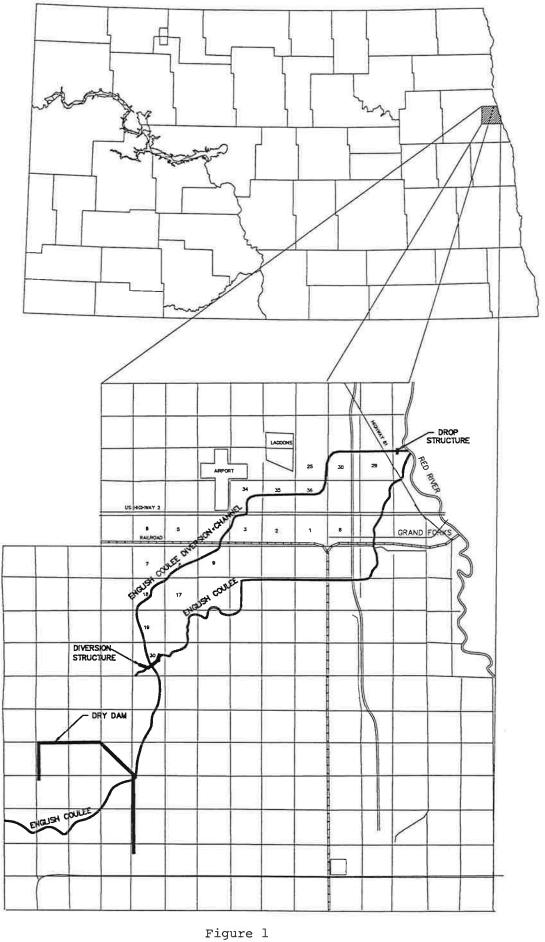
.

APPENDIX A - Cross Sections Used in HEC-2 Model

APPENDIX B - Plan View of Diversion Channel With Proposed Modifications

I. INTRODUCTION

Study Objectives:


A hydraulic analysis of the English Coulee Diversion Channel was completed in order to certify that the diversion channel would meet federal floodplain requirements. The channel certification was also required for a map revision of the Flood Insurance Rate Map (FIRM) of the floodplain along the English Coulee in Grand Forks.

In order to meet federal requirements, the 100-year profile must either be at, or below natural ground, or if the profile is above natural ground, the channel dikes must be certified to contain the profile with 2 feet of freeboard.

Location:

The project area is located in eastern North Dakota, near the city of Grand Forks, in Grand Forks County. The diversion channel is one part of a flood control project to reduce flooding along English Coulee in Grand Forks. The project was completed in 1990, and consists of a dam and diversion structure constructed by the Soil Conservation Service (SCS), and the diversion channel constructed by the ND State Water Commission (Commission) in 1984 (Figure 1).

-1-

Site Description:

The diversion channel is approximately 13 miles in length. The channel starts in the NW¼ of Section 28, Township 151 North, Range 50 West, and extends upstream to the diversion structure located in the NE¼ of Section 30, Township 151 North, Range 51 West. The construction of the diversion channel was done in two phases. Phase I extends from the Red River upstream approximately 6 miles to US Highway 2, and follows the alignment of Drain 18 approximately 4 miles upstream of the Red River, the remaining 2 miles is a constructed channel. Phase II extends from U.S. Highway 2, upstream approximately 7 miles to the diversion structure. The work consisted of channel construction, dike construction, construction of channel crossing, including placement of rock riprap at existing crossings for erosion control and installing culverts for local drainage.

The first 4 miles of the channel follows the alignment of what used to be Drain #18. The channel over this reach is an earthen channel with a 40-foot bottom width and 4:1 side slopes. The majority of the channel is below natural ground, but a dike was constructed along two sections. The first section extends 0.75 miles from I-29 in the NE¼ of Section 30, Township 152 North, Range 50 West, to the northwest corner of Section 30, Township 152 North, Range 50 West.

The dike along the south side of the drain is approximately 2 feet high, with 4:1 side slopes and an 8-foot top width. The second section of dike work was along a 1/2-mile section extending from the northeast corner of Section 36, Township 152

-3-

North, Range 51 West, to the southeast corner NE¼ of the same section. The dike work was only along the west side of the drain and consisted of a dike 2 feet high, 4:1 side slopes, and an 8-foot top width. The next 2 miles of the channel is a constructed channel, with a 16-foot bottom width and 4:1 side slopes. The majority of the channel is below natural ground.

The remaining 6 miles of channel involved the deepening of an existing drain. Work on this reach also included constructing road crossings, dike construction, and installing culverts for local drainage. The channel over this reach is an earthen channel with a 12-foot bottom width and 4:1 side slopes. The first 4 miles of this reach included construction of a dike approximately 3 feet high along both sides of the channel. The channel is below natural ground for the remaining 2 miles of this reach.

II. PROCEDURES

The HEC-2 computer model was used in the hydraulic analysis of the diversion channel. The HEC-2 model was developed by the US Army Corps of Engineers. The model calculates the water surface profiles based on the cross-sectional shape and distance between cross-sections, the channel slope, the channel roughness, and the flow.

The HEC-2 computer model was used to generate the 100-year water surface profile for the English Coulee Diversion Channel. The profile is calculated proceeding upstream, extending from the confluence of the diversion channel and the Red River upstream to the diversion structure.

The model consists of four reaches. Reach 1 extends approximately 3.5 miles from the confluence with the Red River upstream to the southeast corner NE¼ of Section 36, Township 152 North, Range 52 West. Reach 2 extends approximately 3 miles upstream from the end of Reach 1 to the northeast corner NE¼ of Section 3, Township 151 North, Range 51 West, immediately south of US Highway 2. The third reach starts at the termination of Reach 2, extending 5 miles upstream to the SW¼ of Section 18, Township 151 North, Range 51 West. The final reach, Reach 3b, extends from the end of Reach 3, upstream to the diversion structure located in the NE¼ of Section 30, Township 151 North, Range 51 West (Figure 2).

-5-

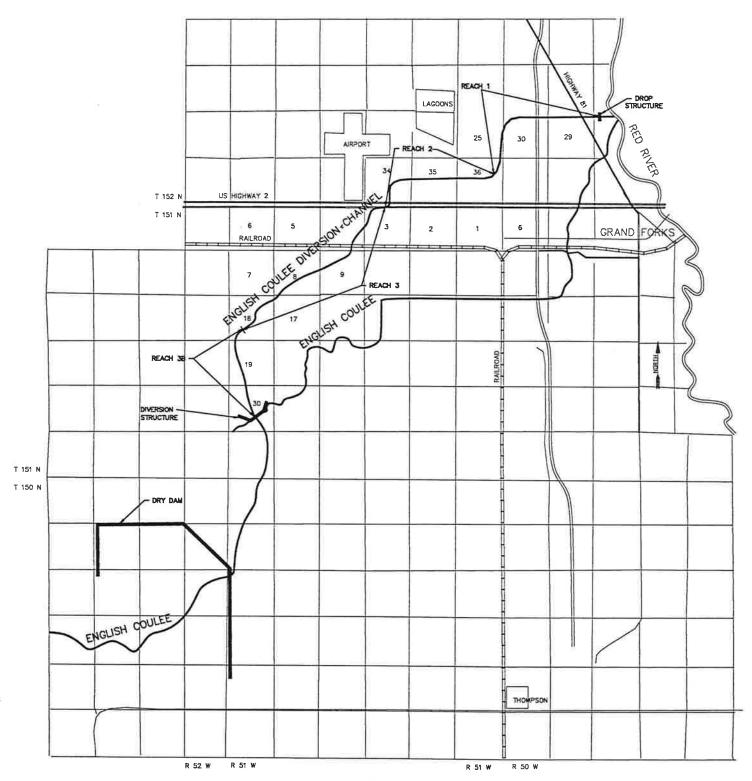


Figure 2 - Map Showing Channel Alignment and Reaches Used in HEC-2 Model

Cross-Sections:

The information for the cross-sections in the model was obtained from two sources. The SCS conducted a survey on Drain #18 in 1979. This information was used to define the cross-sections in Reach 1. The modifications to the existing channel in Reach 1 were obtained from Water Commission "as-built" plans for Phase I. The cross-sections for Reaches 2, 3, and 3b, were input from Water Commission as-built surveys of Phases I and II. The HEC-2 cross-sections are identified on the plan and profile sheets for Phases I and II. The reach lengths were obtained directly from the cross-section data. The cross-sections used in the model can be found in Appendix A.

Channel Roughness:

Manning's roughness coefficient was calculated using the following equation: N=(Nb + N1 + N2 + N3 + N4) * M: where Nb=base value; N1=correction for surface irregularities; N2=variations in shape and size of cross-section; N3=value for obstructions; N4=value for vegetation; and M=factor for meandering.

The base value for the channel was assumed as 0.025 (channel constructed in firm soil). The channel is uniform in cross-section, with unobstructed flow and very little vegetation growing in the channel; therefore, the values assigned for N1, N2, N3, and N4 were 0, 0, 0, and 0.005, respectively. The factor for meandering was assumed to be 1; therefore, the resultant manning's "n" used in the model is 0.030. The following photos are representative of channel conditions (Figure 3).

-7-

Photo 1 - Showing Typical Channel Condition of Upper Reach of English Coulee Diversion

Photo 2 - Showing Typical Channel Condition of Lower Reach of English Cooulee Diversion

Figure 3 - Representative Photos of Channel Condition of English Coulee Diversion

Design Flow:

The flows used in the model were developed by the SCS. The initial design flows were calculated assuming concurrent peaks. Table 3A gives the initial design flows. During the study, a question was raised on the validity of assuming concurrent peaks, when it is likely, based on timing, the peak flows from the uncontrolled drainage area downstream of the dam would be gone prior to the peak flow from the dam. The Water Commission and SCS discussed this issue and decided neglecting the timing was overly conservative and unrealistic. However, both agreed a detailed hydrologic study of the entire basin would require a great deal of time and was not justified. The SCS did develop a hydrologic model for the uncontrolled drainage area (approximately 8 square miles) between the dam and the diversion structure downstream. The results reduced the peak flow at the diversion structure by 144 cfs from 1104 cfs, the original design flow, to 960 cfs. Based on this, the original design flows downstream of the diversion structure were reduced by 144 cfs. The following table gives discharges used in the model.

Reach	HEC-2 Cross-Section	Station	Discharge
1	70	73+00	1382
¥	5467	86+13	1346
	6146	65+13	1306
	6831	50+13	1272
2	106.9	506+85	1272
	1854.4	454+81	1256
	4201.8	399+99	1234
	5948.5	346+70	1132
3	162	358+72	1132
5	3385.2	283+09	1043
	6166.9	164+17	960

Table 1	- Discharge	Versus	Cross-Section
Design	Discharges	Less SC	S Adjustment

					rangtan Robertan		e fi		•		ENGL			FLO	STRUCTUR ODWAY - TERSHED,			кота										
	ě -			- 14S	* _5	11	Water	:Hy	drauli	c:_	Existin	ng C	Channel	Dat	a 1/				1	Velo	citie	es:l	Excavatio	n:		:	:	
	•	:Dr	ainage	2/:	Design	:	Surface	e: (Gradi-	:	;	: W	letted	Cro	ss Sectio	on:"n"	'va	lue		ft./	sec.		Volume -	: T	уре	:Existing	: Pr	resent
	 :	•	Area	:0	apacity	<u>3</u> /:	Elev.	:	ent <u>4</u> /	:C	radient:	:Per	imeter	:	Area	:	:	As	:		: As	:	1,000	:	of	:Channel	: F1	low 7/
Kea	 	 _	q. mi.	:0	u.ft./se	ec.:1	ftmsl.	.: f	t./ft.	:	ft./ft.:	:	ft.	S	q. ft.	:Age	d :	Buil	t:A	ged	:Buil	lt:	cu, yds,	:Wo	rk 5	/:Type 6/	: Co	onditi
	: 700			:		:	821.4	۲		:	3	:				:	:		:		:	:		:		:	:	
	:		82.9	:	1526					:	0.0013	•	97	:	386	:0.0)40:	-	:	3.96	٠			:	V	:M(1968)	:	Е
	: 697			•			821.9			:		:		:		:	:		:		:	:				:	:	
	:		82.9	:	1526	-			0.0017	:	0.0005	:	128	:	775	:0.0	940:	-	:	1.97	(m)	:	-	:	VI	:M(1965)	:	Е
	: 667					:	827.1			:						:	:		:		:	:				:	:	
	:		82.9	:	1526	:			0.0004	:	0.0007 :	:	119		684	:0.0)40:	•	:	2.23	:	:		:	V I	:M(1965)	:	Е
	: 638			:			828.2			:	1	:		5		:	:		:		:	:		:		:	:	
	: .		82.9	:	1526	:		: 0	0.0008	Ŧ	0.0003	:	337	:	980	:0.0	40:		:	1.56	-	:		:	VI	:M(1965)		Е
	: 607			:		•	830.7	:		:	3	:		8		:	:		:		:	:		:			:	
	:		82.9	:	1526	:		: 0	0.0004	:	0.0006 :	:	116		739	:0.0	40:		:	2.07	÷.,	:			V I	:M(1965)	:	E
L	: 570			:			832.1	:		:	:	:	3			:	:				:	:				 ••• 		
	:		80.9	:	1490	:		: 0	0003	:	0.0006 :	:	129		718	:0.0	40:	<i></i>	:	2.02		:			VI I	:M(1965)		E
	: 537			:			833.1			:	:	:)			1	:		:		:	:		:		¥.	1	
×	: : 513		79,9	ï	1416		834.1		.0004	:	0.0003		121		677	:0.0	40:	-	1	2.09	-	i	-	1	11	M(1965)	:	Ε

TABLE 3A - STRUCTURAL DATA

.

Existing channel varies 40 to 50 foot bottom, 4:1 minimum side slopes, Vegetation established. 1/

Total drainage area, 57.1 square miles controlled by dam. 2/

10

ধানত স্বা হা বিষয়ক

3/ Peak discharge, uncontrolled drainage area plus peak outflow from dam.

Includes effects of bridge head losses at design discharge. 4/

V - Stabilization of localized area, present capacity adequate. <u>5</u>/ VI - Present floodway capacity adequate, no work planned.

M() - Manmade or previously modified, () is approximate date of original construction. 6/

7/ E · Ephemeral, flows only during periods of surface runoff, otherwise dry.

99 L L

.

.....

1.1.1

14.

FLOODWAY -

ENGLISH COULEE WATERSHED, NORTH DAKOTA

	: :	2.	:	- C.	. 1	Water :	Hydraulic	:Floo	dway D	imensi	ion		:		: V	eloci	ties:	Excavatio	n:			
				Doorgii	•	our lace:			DOLL	om		- C	•"n"	value	• f	+ /~~		Valuma -	. T			-
	350	111 0 0	- 191	capacity.	41:	LIEV.	ent 3/	:Gradient	:Width	:Elev	/ation	Sido-		· Ac			A	1 000	~	F1 (
	· · · · · · · · · · · · · · · · · · ·			CU.IC./50	ec.:I	L. msi.	TE./TE.	* TE./IE.	• ff	• ft	-mel -	Slone	c . 1000	d , D., 11	h . A	I - I						
11	: 513+00 :	5610			:	834.1 :		: • 0 0003	:	:			:	:				cu, yus,			/:	conditi
	: :		:	1416	:	:	0.0005	: 0.0003	: 16		8	4:1	:0.0	35:0.02	5: 2	. 59.	3 04.	151 300				
	: 454+32 :		:		:	836.8 :		:	:	: 82	27.0			:			5.04:				۲	-
	: :		:	1378	:	:	0.0004	: 0.0003	: 16	:		4:1	:0.0	- 35:0.02'	5: 2	. 41.	3 01.	70 600		1		
	: 400+00 :		•		:	838.7 :		:	:	: 82	28.6		:	:	3		3.01:				1	
		78.9	:	1378	:	:	0.0003	: 0.0003	: 16			4:1	:0.0	35:0.02	5:2	.40.	3 02.	141 400	:	1 2 2		
	: 346+27 :		:		:	840.4 :		:	:	: 83	0.2		:	:		:	5.04:	171,400				- - -
			:		:	:		:	:	1			а Т				() ()		•			
111	: 372+18 :				:	842.4 :		:	:	: 83	1.3 ;			÷	1	÷			•	1 -		
	t N t	76.9	:	1276	:	:	0.0002	: 0.0006	: 12	:	:	4:1	:0.0		5: 2.	.46:	2.70,	22.600	• •	* :M(1977	8	e
	: 324+72 :		:		:	844.0 :		: >	:	: 83	4.0 :		:			:		22,000				E
	:	76.9	:	1276				: 0.0006					-	35:0.025	12					: :M(1977		F
	: 292+96 :		:			845.4 :		:	:	: 83	5.9 :		:		:	:				262	:	E
	: :	72.6	:	1187	:	:	0.0004	: 0.0005	: 12		:	4:1	:0.03	35:0.025	5: 2.	64:	3.28:	17,100	-	:M(1977	100	_
	: 241+32 :				:	847.7 :		:	:	: 83	8.5 :		:	:		:		-		:		E
L -	1 172 - 00	72.6	:	1187		:	0.0005	: 0.0006	: 12	:	:	4:1	:0.03	35:0.025	5: 2.	88:	3.63:	29,700	-	:M(1977)		Ε
	: 173+88 :	1112	:	-1 e^{x}		851.3 :		:		: 84	2.5 :		:					•		:		C
	: :		•	27. 8. 16	:	:	0.0005	: 0.0005	12	3	:	4:1	:0.03	35:0.025	5: 2.	69:	3.45:	22,400		:M(1977)		ε
	: 120+00 :		:		:	854.0 :		:	:	: 84	5.2 :		:	8 B	:	:*:		•	3	:	÷	L
	: : : 99+63 ;	6 3 •1	1	1104	:	:		: 0.0005	12	:	:	4:1	:0.03	5:0.025	: 2.	70: 3	3.46:	9,100		:M(1977)		Ε
	:		1	2	:	855.0 :		: :			6.2 :		:	:		:	:	-		4		-
	:99+63d/s:				:	:		:		:	:			:	:	:					50 10	
	:Equals :	÷-		e.93	:	:		: :		:	:		:	:	:	:			1			
	:188+92u/s				:	:		: :		•			:	:	:	:	:		:			
	: :		•		:	:		: :			:		:	:	:	:	:			:		
	· · · ·				1	1		: 1		:	1		:	1 6	1	:	:			1	:	
	: :	69.1		1104		855.0 :					6.2 :		:	:	:	:	:		:			
	· · · · · · · · · · · · · · · · · · ·			1104	:	:	0.0006	0.0006 :	12	:	:	4:1	:0.03	5:0.025	: 2.	85: 3	3.40:	21,000	: 11	:M(1977)	:	Ε
					:	859.8 :	;	: :		: 851	1.3 :		:		:	:	:		:	1		2

æ

1/ Total drainage area, 57.1 square miles controlled by dam.

2/ Peak discharge, uncontrolled drainage area plus peak outflow from dam.

 $\underline{3}$ / Includes effects of bridge head losses at design discharge.

4/ I - Establishment of new floodway, none existing presently.
 II - Enlargement of existing floodway.

· · · ·

5/ M() - Manmade or previously modified, () is approximate date of original construction.

 $\underline{6}$ - E - Ephemeral, flows only during periods of surface runoff, otherwise dry.

Starting Water Surface:

4

The model started at the most downstream point, the drop structure at Sta. 73+00. The first step was to determine if the drop structure was affected by backwater from the Red River, i.e., free overfall versus submerged weir flow. The downstream starting water elevation assumed a 2-year event on the Red River (personal communications Terry Carlson, SCS, and Dean Weiland, CPS Engineering). The 2-year flow on the Red River is approximately 20,100 cfs, as stated in the "Techniques for Estimating Peak-Flow Frequency Relation for North Dakota Streams," USGS WRI 92-4020. The corresponding stage is approximately 811.5 msl, as taken from the rating curve for the Grand Forks gauge. The sill of the drop structure is at 815.5 msl; therefore, submergence is not a factor and the model was started at critical depth, water surface elevation 819.63 msl.

III. RESULTS

The results indicate the 100-year profile from the drop structure upstream to US Highway 2 (Reaches 1 and 2) is at or below natural ground, with the exception of the cross-section immediately upstream of the drop structure. However, if a breakout would occur in this location, the flow would be contained with no adverse impacts to Grand Forks.

The model indicates the profile is above natural ground and the dikes do not have the required 2 feet of freeboard, for approximately 4 miles upstream of US Highway 2 (Reach 3). The channel extends from the double 8' x 8' concrete box culverts at US Highway 2, northeast corner NW¼ of Section 3, Township 151 North, Range 51 West, upstream to the NE¼SW¼ of Section 8, Township 151 North, Range 51 West. Upstream from this section of channel to the diversion structure, the profile is contained within natural ground.

IV. PRELIMINARY DESIGN

Based on the results of the model, the channel certification could be accomplished by two primary means: 1) map the inundated area where the profile was above natural ground; or 2) certify the dikes by establishing the flow is contained with 2 feet of freeboard. The freeboard requirement can be met either by enlarging crossings to lower the profile to obtain 2 feet of freeboard, and/or adding fill to the dikes to obtain the freeboard.

A survey was conducted on the section of channel not meeting federal requirements. The purpose of the survey was to obtain topographical information for possible mapping of the area where the profile was above natural ground, and for use in calculating fill volumes. The survey was conducted in the summer of 1994, and included obtaining dike and ground elevations adjacent to the channel, elevations and type culverts at closure locations, elevations and type of culverts at road crossings, and road profiles. The plan view of the problem area can be seen in Plate 1.

The 100-year profile was plotted against natural ground elevations adjacent to the channel. The plot indicated the profile was above natural ground. Due to the flat topography, mapping the entire area of inundation would result in putting a large area in the 100-year floodplain. This option was not considered. Therefore, a combination of possible channel modifications to lower the profile and placement of fill to obtain the 2-foot freeboard were investigated. Many possible combinations of channel modifications and fill requirements were considered before finding the option which was the least costly while meeting federal requirements. The recommended alternative is enlarging two field crossings and placement of approximately 20,000 CY of fill.

The first crossing is located in the NW¼ of Section 3, Township 151 North, Range 51 West. The crossing provides field access and consists of two 7'3" x 11'5" arch pipes. The present head loss across this structure is approximately 1-foot. The proposed modification calls for removing the arch pipes and construction of a low-head crossing, with the top of road approximately 5 feet above the channel bottom. This modification reduces the head loss to less than 0.1 of a foot.

The second crossing is located in the SE¼ of Section 151 North, Range 51 West. This crossing provides access to a feedlot and pasture, and like the first consists of two 7'3" x 11'5" arch pipes. The present head loss is approximately 1-foot. The proposed modification calls for relaying and the culverts removed from crossing one, increasing the number of pipes at this crossing to four. The modification reduces the head loss at this crossing to approximately 0.3 feet.

Modification at the crossing located on the section line between Sections 8 and 9, Township 151 North, Range 51 West, should be conducted since the freeboard is approximately 1-foot. The crossing is located in a swale on the township road, with two 7'3" x 11'5" arch pipes approximately 60 feet in length. The area can easily be sandbagged to contain any possible breakouts; therefore, increasing the crossing was not considered necessary.

In addition to modifying crossings, fill is also required to increase the height of dikes in certain areas to obtain 2 feet of freeboard. The fill areas are identified on Plate 1, Appendix B.

A discharge sensitivity analysis was performed, assuming the modifications outlined above were performed. The analysis is to determine the approximate overland flow if there is a dike failure. The following table shows the results of the analysis.

Station	Flow
	(cfs)
360+00 to 320+00	0-50
293+50 to 291+00	150
278+00 to 255+00	200-300
235+00 to 212+00	300

Table 2 - Discharge Sensitivity AnalysisOverland Flow Versus Location

The results of the analysis indicate in the event of a complete failure of the dike system, overland flow would not present a major threat to increased flooding in Grand Forks, even though minor localized flooding would occur.

V. SUMMARY

A hydraulic analysis of the English Coulee Diversion Channel was conducted. The purpose was to certify the channel meets federal floodplain requirements. The certification is required to remove portions of the city of Grand Forks along the English Coulee from the 100-year floodplain.

The diversion channel is one phase of a three-phase project. The project includes a dry dam and diversion structure designed by the SCS, and the diversion channel designed by the Commission. The diversion channel functions as a bypass, diverting flood-flows away from the city of Grand Forks. The diversion channel is approximately 13 miles in length and extends from the Red River upstream to the diversion structure.

The first 4 miles of the diversion is an earthen channel with a 40-foot bottom width and 4:1 side slopes, with the majority of the channel below natural ground. The next 2 miles of the diversion is an earthen channel with a 16-foot bottom width and 4:1 side slopes, again the majority of the channel is below natural ground. The remaining 7 miles consisted of deepening an existing drain. The diversion over this reach has a 12-foot bottom with 4:1 side slopes. Dikes were constructed approximately 3 feet high along both sides of channel for the first 4 miles of this reach. The channel is below natural ground for the remaining 3 miles of this reach. The hydraulic analysis indicates approximately 4 miles of the diversion channel does not meet federal floodplain requirements. The area starts at US Highway 2, and extends 4 miles upstream. The modifications required to bring the diversion channel into compliance with federal standards, includes modifying two field crossings and placement of about 20,000 CY of fill.

A sensitivity analysis was performed to determine overland flow in the event of a dike failure. The analysis was run assuming the two crossings were modified and the dikes were raised. The results indicate that overland flow would result in low velocity, localized flooding in the rural areas, but would not aggravate flooding in Grand Forks.

APPENDIX A

Cross Sections Used in HEC-2 Model

	DEACH	000	HIGHWAY	
HEC-2 CROSS-SECTION	REACH LENGTH	SCS	SWC STATIONS	NOTES
70		700+00	73+00	DROP STRUCTURE @ RED RIVER
269		699+00	72+00	DHOP STRUCTURE & RED RIVER
397		697+00	70+00	
399		694+70	67+70	
493.7		693+70	66+70	
593.4	30	693+40	66+40	BRIDGE @ NE 1/4 29-152-50
693	40	693+00	66+00	
790		690+00	63+00	
887		687+00	60+00	
984		684+00	57+00	
1081		681+00	54+00	
1178 1275		678+00 675+00	51+00	
1373		673+94	48+00 46+94	
1373.1		673+11	46+11	BRIDGE HWY 81 NE 1/4 29-152-50
1470		672+51	45+51	BINDOL 1141 OF NE 1/4 29-132-30
1470.1		670+00	43+00	
1567		667+00	40+00	
1664	300	664+00	37+00	
1761		661+00	34+00	
1858		658+00	31+00	
1955		655+00	28+00	
2052		652+00	25+00	
2149 2246		649+00 646+00	22+00 19+00	
2343		643+00	16+00	
2441.4		641+65	14+65	BB BBIDGE @ NW 1/4 29-152-50
2541.3		641+33	14+33	
2638.1	33	641+00	14+00	
2738		638+00	11+00	
2763.5		635+00	8+00	
2832 2928.8		632+00 628+82	5+00 1+82	
2928.9		627+68	0+68	EQ. STA. 145+91 BK = 0+00 AHD
3126.1		626+00	144+91	DBL. 10X9 BOX CULVERTS I-29
3225.5		625+35	144+26	PHASE I STARTS IMMEDIATELY UPSTREAM OF
3324.9		624+71	143+62	I-29
3422	249	622+00	141+13	
3519		619+00	138+13	
3616		616+00	135+13	
3713		613+00	132+13	
3810 3907	300 300	610+00 607+00	129+13 126+13	
4004		604+00	123+13	
4101			120+13	
4298		598+00	117+13	
4395	300	595+00	114+13	
4492		592+00	111+13	
4589		589+00	108+13	
4687.3	175	587+25	106+38	BRIDGE NW 1/4 30-152-50
4786.9		586+95	106+08	
4885		586+10	105+23	
4886 4982		585+00 582+00	104+13 101+13	
5079		579+00	98+13	
5176		576+00	95+13	
5273		573+00	92+13	
5370		570+00	89+13	
5467		567+00	86+13	
5564		564+00	83+13	
5661		561+00	80+13	
5758	300	558+00	77+13	

			HIGHWAY	
HEC-2	REACH	SCS	SWC	
CROSS-SECTION	LENGTH	STATIONS	STATIONS	NOTES
5855	300	555+00	74+13	
5952	300	552+00	71+13	
6049	300	549+00	68+13	
6146	300	546+00	65+13	
6243	300	543+00	62+13	
6340	300	540+00	59+13	
6437	300	537+00	56+13	
6534.5	247	534+53	53+66	TIMBER BOX CULVERTS NE 1/4 36-152-51
6633.9	61	533+92	53+05	
6731.1	60	533+32	52+45	
6831	232	531+00	50+13	
6928	300	528+00	47+13	
7025	300	525+00	44+13	
7124	100	524+00	43+13	
7223.7	30	523+70	42+83	RR BRIDGE NE 1/4 36-152-51
7323.5	25	523+45	42+58	
7422	145	522+00	41+13	
7519	300	519+00	38+13	
7618.9	120	517+80	36+93	FIELD CROSSING NE 1/4 36-152-51
7718.8	30	517+50	36+63	
7816	30	517+00	36+33	
7817	100	516+00	35+33	
7913	300	513+00	32+33	
8010	300	510+00	29+33	
8107.5	189	508+11	27+44	END REACH 1; START REACH 2

•

11 BY 324

HEC-2	REACH SWO	
CROSS-SECTIONS		
106.9 203	0 506+8	
300	385 503+00 300 500+00	
397	300 497+00	
494	300 494+00	
591	300 491+00	
688	300 488+00	
785 882	300 485+00 300 482+00	
979	300 482+00	
1076	300 476+00	
1173	300 473+00	
1174	300 470+00	
1267 1364	300 467+00	
1461	300 464+00 300 461+00	
1558	300 458+00	
1559	107 456+93	
1754.6	100 455+93	
1854.4	112 454+81	
1954.3 2054.2	1 454+80 74 454+06	
2154.1	1 454+05	
2254	134 452+71	
2452	71 452+00	
2549	300 449+00	
2646 2743	300 446+00 300 443+00	
2840	300 440+00	
2937	300 437+00	
3034	300 434+00	
3132 3228	325 429+20	
3325	300 426+20 300 423+20	
3422	300 420+20	
3519	300 417+20	
3616	300 414+20	
3713 3810	300 411+20 300 408+20	
3907	300 405+20	
4004	291 402+29	
4103.1	200 400+29	
4201.8 4201.9	30 399+99 50 399+49	
4598	30 399+19	
4695	200 397+19	
4792	92 396+27	
4889 4986	300 393+27 300 390+27	
5083	300 390+27	
5180	300 384+27	
5277	300 381+27	
5370	300 378+27	
5465 5560	300 375+27 287 372+40	
5655	240 370+00	
5656	200 368+00	
5657	200 366+00	
5658	200 364+00	
5659 5660	200 362+00 200 360+00	
5661	200 358+00	
5662	200 356+00	
5663	200 354+00	
5664	200 352+00	
5665 5750.1	200 350+00 100 349+00	
5848.6	50 348+50	DOUBLE 8' X 8' BOX CULVERTS @ US HIGHWAY 2
5948.5	180 346+70	
6046.6	40 346+30	END REACH 2/PHASE I; START REACH3/PHASE II

		SWC	
HEC-2	REACH		
CROSS-SECTIONS		STATIONS	NOTES
162 258		358+72 356+72	START REACH 3/PHASE II ENGLISH COULEE DIVERSION
354		354+72	
450	200	352+72	
548.1		350+72	
647 648		348+72 346+72	
649	200	344+72	
650		343+59	MODIFIED FIELD CROSSING NW 1/4 3-151-51
746.2 845.9		342+99 342+61	
850.9		342+21	
945.5		341+26	
1044.8 1142.5		340+64 339+56	
1143		337+47	
1144		335+62	
1145 1331		333+62 331+62	
1332		329+62	
1333		327+39	
1425 1426		325+45 323+45	
1427	199	321+46	
1428	195	319+51	
1519 1618.3	185	317+66 315+66	
1717.2			SINGLE SPAN CONCRETE BRIDGE SW NW1/4 3-151-51
1816.5	34	314+42	
1916.3 2011		312+72 310+87	
2012		308+73	
2013	200	306+73	
2105 2106		304+75 302+76	
2200.2	200	302+76	
2201	200	298+76	
2202 2398.4		296+76 296+06	
2498.1	15	295+91	FIELD CROSSING SE1/4 4-151-51; LOCATED IN EARL'S PASTURE
2597.7	116	294+75	
2693 2792.8		292+99 291+01	
2793	128	289+73	
2891.2	70	289+03	MODIFIED EXISTING 2 - 7'X11' ARCH PIPES SE1/4 4-151-51
2990.5 3090.1		288+65 288+35	
3187	203	286+32	
3188 3285.4		284+58	
3385.2		283+27 283+09	RR BRIDGE SE1/4 4-151-51
3484.8	89	282+20	
3583.9 3683.6		281+86 281+57	WOODEN TIMBER BRIDGE COUNTY ROAD SECS 4/9 151-51
3783.1		281+07	
3784	295	278+12	
3876 3877		275+58 273+07	
3970		271+02	
3971		269+05	
3972 3973		267+17 265+29	
4064		263+58	
4065		261+57	
4066 4158		259+43 257+33	
4159		255+33	
4160		253+33	
4252 4253		251+33 249+33	
4255		247+33	
4346		245+33	
4347 4348		243+33 241+33	
4440		239+33	
4441	194	237+39	
4535.8 4536		235+39 233+39	
4537		232+14	

		SWC	
HEC-2	REACH	CENTERLINE	
CROSS-SECTIONS		STATIONS	NOTES
4634.2	64	231+50	2 - 7' X 11' ARCH PIPES SECS 8/9 151-51
4733.6		230+93	
4833.4		230+37	
4835		228+29	
4927 4928		226+29 224+36	
4929		222+95	
5021		220+61	
5022		218+65	
5023	199	216+66	
5115		214+66	
5116		212+66	
5117 5209		210+68 208+68	
5210		206+68	
5211		204+68	
5303	200	202+68	
5304		200+68	
5305		198+68	
5497		196+73	
5498 5499		194+78 192+82	
5591		192+82	
5592		188+64	
5593	201	186+63	
5685		184+60	
5686		182+62	
5687 5779		180+62	
5780	131 265	179+31 176+66	
5781		174+66	
5873	200	172+66	
5874		170+66	
5968.7 5969		168+64	
6067.1	281 106	165+83 164+77	2 - 7' X 11' ARCH PIPES SECS 18/17 151-51
6166.9		164+17	
6266.5	68	163+49	
6267		162+54	
6361 6362		161+24 158+90	
6363		156+63	
6455		154+75	
6456	200	152+75	
6457		150+74	
6549		148+74	
6550 6551		14 6+83 143+66	
6641		141+77	
6642		139+77	
6643	200	137+77	
6735		135+77	
6736		133+75	
6737 6829		131+75 129+46	
6830		127+15	
6831	198	125+17	
6923		123+17	
6924		121+17	
6925 7017		119+17 117+17	
7018		115+22	
7019		113+67	
7020	107	112+60	
7110		110+60	
7111	198	108+62	

		SWC	
HEC-2	REACH	CENTERLINE	
CROSS-SECTIONS		STATIONS	NOTES
7111		108+65	START REACH 3B; PHASE II ENGLISH COULEE DIVERSION
7112 7204		106+54 104+35	
7204		102+64	
7205		100+65	
7398	203		
7399		97+00	
7494	200	95+00	
7592.8	200	93+00	
7593	92		
7594	138	90+70	
7691.4	27		3 - 7' X 11' ARCH PIPES SECS 18/19 151-51
7790.8 7890.4	62 31	89+81 89+50	
7891	245		
7892	205		
7984	195		
7985		79+93	
8078	230	77+63	
8079		75+63	
8080		73+68	
8081		72+45	
8171	203	70+42	
8172 8173	189	68+53 66+55	
8265	198 200	64+55	
8266	200	62+54	
8267	197	60+57	
8359	200	58+57	
8360	200	56+57	
8361	199	54+58	
8453	204	52+54	
8454	200	50+54	
8455 8547	200 196	48+54 46+58	
8548	200	40+58	
8549	200	42+58	
8641	199	40+59	
8642	200	38+59	
8643	175	36+84	
8735	145	35+39	
8838.8	128	34+11	2 - 7' X 11' ARCH PIPES SW1/4 19-151-51
8933.3 9032.9	60 40	33+51 33+11	
9033		32+45	
9034		31+28	
9035		30+15	
9127		26+60	
9226.3		25+00	
9325.1		24+71	2 - 7' X 11' ARCH PIPES SECS NW 1/4 30-151-51
9424.7 9524.3		24+39 23+50	
9524.3		23+50 21+58	
9618		19+76	
9619		17+95	
9620		15+91	
9621		13+94	
9712		11+93	
9810		9+93	
9811 9818.5	93 55	9+00 8+45	
9908.2	55 49	8+45 7+96	2 - 7' X 11' ARCH PIPES NW1/4 30-151-51
9908.2	49 50	7+96 7+46	
9918	150	5+96	
9924.7	136		END PHASE II ENGLISH COULEE DIVERSION; REMAINING STATIONS FROM SCS
9925	162	2+98	START APPROACH TO DIVERSION STRUCTURE
9926	100	1+98	
9927	100	0+98	100 FEET DOWNSTREAM OF DIVERSION STRUCTURE

APPENDIX B

Plan View of Diversion Channel With Proposed Modifications