
Potential Geochemical Effects of Storing James River Water in the Spiritwood Aquifer: PHREEQC Simulations of pe-pH

By: Scott F. Korom PhD, PE, Barr Engineering

In Collaboration with: David B. Hisz, ND State Water Commission

2018

Water Resource Investigation No. 61 North Dakota State Water Commission

This report may be downloaded as a PDF file from the North Dakota State Water Commission website at: http://swc.nd.gov Click on Reports and Publications. Then, click on Water Resource Investigations, and scroll down to WRI No. 61

Potential Geochemical Effects of Storing James River Water in the Spiritwood Aquifer: PHREEQC Simulations of pe-pH.

By Scott F. Korom, PhD, PE Barr Engineering

David B. Hisz ND State Water Commission

Water Resource Investigation No. 61 North Dakota State Water Commission

2018

ACKNOWLEDGMENT

The work presented in this report was accomplished through the data collection efforts of many State Water Commission personal. Test hole and observation wells were installed by Terry Olson and Dan Bahm. Lithologic logs, borehole geophysical logging, sediment sample collection and organization, and well construction design were overseen by Michael Ginsbach. Water quality sampling was performed by Terry McCann.

EXECUTIVE SUMMARY

In 2017, the State Water Commission (SWC) entered into an agreement with Barr Engineering to conduct geochemical modeling, using PHREEQC, for a potential aquifer storage and recovery (ASR) pilot project in the Spiritwood Aquifer east of Jamestown, ND, using water from the James River. The purpose of this report is twofold: to summarize 1) the analytical results for twelve sediment samples collected by the SWC east of Jamestown in the Spiritwood Aquifer, and surrounding strata, and the PHREEQC chemical equilibrium results in the context of State analytical records for the James River and the Spiritwood Aquifer; and 2) to predict which parameters may exceed primary drinking water standards for James/Spiritwood ASR.

For the Spiritwood sediment samples, all of the following constituents were above reporting limits for all twelve samples: arsenic, barium, chromium, cobalt, copper, lead, nickel, radium 226, radium 228, strontium, vanadium, and zinc. The following constituents had at least one result less than its reporting limit: antimony, cadmium, gross alpha, gross beta, mercury, molybdenum, selenium, silver, thallium, and uranium. All the results for beryllium, germanium, and mercury were less than their reporting limits; however, all constituents, even those with all results below reporting limits, had at least one qualified result above zero. Therefore, all analyzed constituents were reportedly present in at least one of the Spiritwood sediment samples.

The following elements, based on PHREEQC equilibrium modeling in the context of State analytical records for the James River and Spiritwood Aquifer, were judged to have low risk of exceeding primary drinking water standards because of ASR: antimony, barium, beryllium, cadmium, chromium, copper, and fluoride. The following elements were judged to have medium risk of exceeding primary drinking water standards because of ASR: arsenic, lead, mercury, radium, selenium, and uranium. None of the elements were considered at high risk of exceeding primary drinking water standards because of ASR.

The best way to determine if ASR will cause water quality issues is to conduct a pilot fieldscale research project in the Spiritwood Aquifer east of Jamestown, ND. Should the pilot project proceed, the information presented herein can be used to guide further investigations and to design the field experiments and their sampling and analysis plans.

Contents

1	Introduction	1
2	Methods	2
	2.1 Spiritwood Aquifer Sediment Samples	2
	2.2 James River and Spiritwood Aquifer Water Samples	2
	2.3 PHREEQC Simulations	2
3	Results	8
	3.1 Spiritwood Sediment Samples	8
	3.2 Maximum Amended James River Solution	9
	3.3 Minimum Amended James River Solution	10
4	Discussion and Summary	11
	4.1 Summary of Results	12
5	Further Research	15
6	References	16
7	Appendices	17
	7.1 Appendix A	18
	7.2 Appendix B	21
	7.3 Appendix C \ldots	23
	7.4 Appendix D	67
	7.5 Appendix E	93
	7.6 Appendix F	99
		110

List of Figures

1	pe-pH Conditions Simulated in PHREEQC (adapted from Appelo and Postma,	
	2005)	7
2	Saturation Conditions from PHREEQC Simulations	9
3	Risk of Exceeding Primary Drinking Water Standards (Green = Low, Yellow	
	$= Medium). \dots \dots$	15

List of Tables

1	Major Water Quality Parameters for the James River	3
2	Amendment Concentrations to James River Solutions	4

1 Introduction

In 2017, State Water Commission (SWC) personnel installed four observation wells and one test hole in the Spiritwood Energy Park, east of Jamestown, ND. From three sites, each a mile apart in the north-south direction, grab samples of the drill cuttings were collected every five feet from the ground surface to the bottom of each hole. Four sample intervals from each site were selected for matrix analyses to determine the elements present in the till aquitard (clay), Spiritwood Aquifer sediments (sand and gravel), and bedrock shales. Observation wells were then installed and water samples collected and analyzed for each site.

Also in 2017, the SWC entered into an agreement with Barr Engineering to conduct geochemical modeling for a potential aquifer storage and recovery (ASR) pilot project in the Spiritwood aquifer east of Jamestown using water from the James River. This report includes the results of the twelve sets of matrix analyses mentioned above, summary results of State analytical records for the James River and the Spiritwood Aquifer, and results of the geochemical modeling using PHREEQC (Parkhurst and Appelo, 1999).

PHREEQC is a USGS computer program that performs low-temperature aqueous geochemical calculations based on equilibrium chemistry. It was used to perform water quality simulations to provide insights into the water quality parameters that may exceed primary drinking water standards if James River water was stored into the Spiritwood Aquifer. The purpose of this report is twofold: 1) to summarize the sediment analytical results and the PHREEQC simulation results in the context of State analytical records for the James River and the Spiritwood Aquifer; and 2) to predict which parameters may exceed primary drinking water standards for James/Spiritwood ASR. The uncertainty of predictions made by equilibrium chemistry, because of unknown reaction rates, and because of limitations in State analytical records, make it necessary for results to be verified through field-scale pilot studies.

2 Methods

The majority of this report focuses on the PHREEQC simulations; however for context, they are compared to other analytical results as described below.

2.1 Spiritwood Aquifer Sediment Samples

Sediment samples were analyzed by Inter-Mountain Labs (IML) in Wyoming. A map and cross section showing the locations of the 12 samples are provided in Appendix A. Samples were analyzed for a suite of parameters including radionuclides, general parameters, metals (including trace elements), sulfur constituents, and carbon constituents.

2.2 James River and Spiritwood Aquifer Water Samples

State records for major water quality parameters, with the exception of orthophosphate, were compiled by Mr. David Hisz for the James River (location 13906306AB) and Spiritwood Aquifer wells in townships 136 - 142. With these data, Mr. Hisz also calculated summary statistics for minimum values, mean values, maximum values, numbers of samples, and above-detection percentages. Dissolved orthophosphate-P data for the James River at Jamestown were found in Galloway et al. (2012).

2.3 PHREEQC Simulations

Table 1 shows the maximum and minimum concentrations for major water quality parameters measured in the James River. They are the basis for the "maximum" and "minimum" James River solutions simulated by PHREEQC.

In Appendix B is a list of inorganic drinking water standards and candidate contaminants, and notes about which constituents were not able to be modeled by PHREEQC (alpha radiation, germanium, and tellurium). Table 2 shows the values for the constituents that were added to the maximum and minimum James River solutions for computer simulations. Generally, constituents with drinking water standards < 0.1 mg/L were amended at concentrations of 0.1 mg/L and other constituents were amended at their drinking water standards. Radium 226 and 228 were measured in pCi/g and the combined radium 226 and 228 primary

Parameter	Maximum Value (mg/L)	Minimum Value (mg/L)
Na	119	15
к	18	5.3
Mg	86.7	12
Ca	126	28.5
Mn	1.5	0
Fe	0.48	0
Nitrate	14	0.1
F	0.5	0.062
Cl	41	6
Silica	21	2.79
Bicarbonate	462	127
Sulfate	482	42
Orthophosphate-P	0.55	0

Table 1: Major Water Quality Parameters for the James River.

drinking water standard is in pCi/L; however, PHREEQC works with mass concentrations, so a concentration of 0.1 mg/L was also used for radium.

All simulations were done using the Lawrence Livermore National Laboratory dataset (llnl.dat). Of the eight dataset provided by the PHREEQC code, llnl.dat provides the greatest coverage of the parameters on Table 2.

Parameter	Maximum Solution (mg/L)	Minimum Solution (mg/L)
Ag, silver	0.1	0.1
Al, aluminum	0.2	0.2
As, arsenic	0.1	0.1
Ba, barium	2	2
Be, beryllium	0.1	0.1
Cd, cadmium	0.1	0.1
Co, cobalt	0.1	0.1
Cr, chromium	0.1	0.1
Cu, copper	1.3	1.3
F, fluorine	No more added	No more added
Fe, iron	No more added	0.1
Hg, mercury	0.1	0.1
Mn, manganese	No more added	0.1
Mo, molybdenum	0.1	0.1
Ni, nickel	0.1	0.1
NO₃, nitrate	No more added	No more added
Pb, lead	0.1	0.1
Ra, radium	0.1	0.1
Sb, antimony	0.1	0.1
Se, selenium	0.1	0.1
SO ₄ , sulfate	No more added	No more added
Sr, strontium	0.1	0.1
Tl, thallium	0.1	0.1
U, uranium	0.1	0.1
V, vanadium	0.1	0.1
Zn, zinc	5.0	5.0

Table 2: Amendment Concentrations to James River Solutions.

The maximum amended solution was simulated using five oxidation-reduction (redox) couples and five pH values (6, 7, 8, 9, 10). The redox couples were as follows:

- 1. $O_2[O(0)] / H_2O [O(-2)]$
- 2. $NO_3 [N(5)]/N_2 [N(0)]$
- 3. Cr(6)/Cr(3)
- 4. Fe(3)/Fe(2)
- 5. $SO_4[S(6)]/HS[S(-2)]$

The approximate location of each simulation is shown on the pe-pH diagram for pure water at 25° C. (Figure 1). The five simulations for the oxygen redox couple appear above the O_2/H_2O boundary in Figure 1 because the simulations were done with water having dissolved solids and a temperature of 10° C.

The minimum amended solution was simulated using the same five redox couples and two pH values (7 and 9).

In PHREEQC, the simulation for each solution, which was assumed to fully displace the native groundwater, was allowed to come to chemical equilibrium and the distribution of aqueous species and saturation indices (SIs) were checked to determine either the major soluble species for each parameter or the major non-silicate minerals that were supersaturated. PHREEQC calculates SIs as the logarithm of the activities of the mineral components in solution divided by the activities of the minerals components that would be in solution at equilibrium. Therefore, if SI = 0, the solution is at equilibrium. If SI < 0, the mineral is undersaturated and will tend to dissolve into solution. If SI > 0, the mineral is supersaturated and will tend to precipitate from solution.

Solution and precipitation rates vary from mineral to mineral. For example, quartz (SiO_2) , is a silicate mineral that may take several years to come into equilibrium with a solution (Appelo and Postma, 2005). Therefore, I only considered non-silicate minerals that usually had only two or three components. Generally the list of minerals considered included oxides, hydroxides, carbonates, sulfates, and sulfides; some of these minerals may also take a long time to achieve chemical equilibrium.

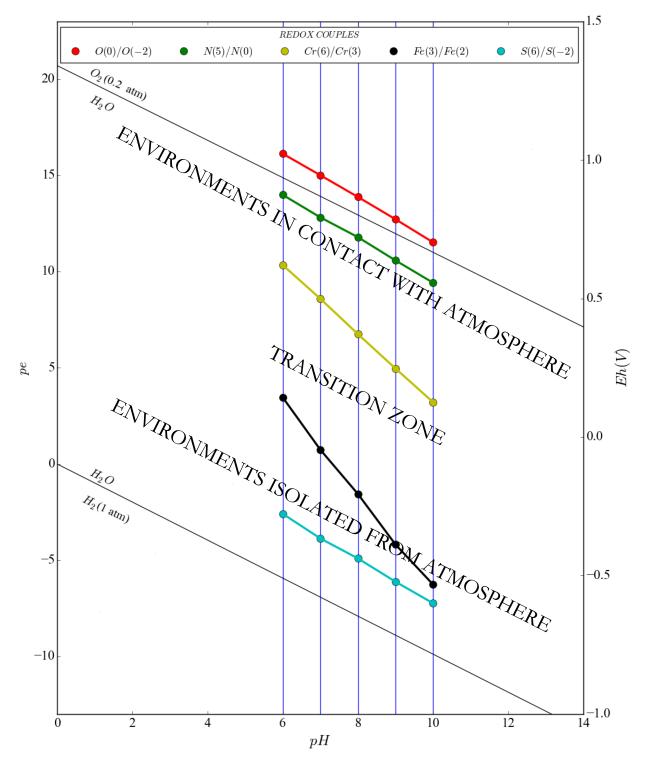


Figure 1: pe-pH Conditions Simulated in PHREEQC (adapted from Appelo and Postma, 2005).

3 Results

Below are summary results for the Spiritwood Aquifer sediment analyses, the PHREEQC simulations with the maximum amended James River solution in the context of State analytical water quality results for the James River and Spiritwood Aquifer, and the PHREEQC simulations with the minimum amended James River solutions.

3.1 Spiritwood Sediment Samples

The IML analytical results are in Appendix C. Each sample had a unique set of results; however in summary, the approximate order of concentrations from largest to smallest was calcium > total inorganic carbon > iron > magnesium > total organic carbon > aluminum> manganese > potassium > pyritic sulfur > sodium > silica. Oxides of iron, aluminum, and manganese act as sorbents for many trace elements. Total organic carbon and pyritic sulfur are reactive with oxygen and nitrate, with pyrite generally being the more reactive (Tesoriero and Puckett, 2011). Pyritic sulfur concentrations ranged from 0.03-0.23%. For reference, the in situ mesocosm site in the Elk Valley Aquifer had a concentration of 0.40%(Korom et al., 2005) and has one of the highest denitrification rates in the literature (Green et al., 2008; Korom et al., 2010). Oxidation of sulfide by oxygen and nitrate generates acid. which would be buffered by inorganic carbon (carbonate minerals) in the Spiritwood Aquifer. The approximate order of concentrations of trace elements for which all 12 results were above reporting limits was barium > strontium > zinc > vanadium > nickel > chromium > copper > cobalt > lead > arsenic. All 12 results for radium 226 and radium 228 were above the reporting limit, but results were measured in pCi/g, not in mg/Kg, so radium cannot be placed in the sequence above.

The other elements, thallium, selenium, molybdenum, antimony, cadmium, silver, mercury, uranium, gross alpha (in pCi/g), and gross beta (in pCi/g), had at least one result < its reporting limit and all the results for germanium, beryllium, and mercury were < their reporting limits. However, all constituents, even those with all results below reporting limits, had at least one qualified result above zero. Therefore, all analyzed constituents were present in at least one of the Spiritwood sediment samples.

3.2 Maximum Amended James River Solution

Results for each of the 25 conditions shown in Figure 1 are provided in Appendix D with discussion in Appendix E. PHREEQC results are compared, where possible, with State water quality records for the James River and Spiritwood wells. TI had minimal coverage by PHREEQC and is not discussed further. Results for elements with primary drinking water standards are summarized in Figure 2. Ba, Be, Cu, F, Hg, and Ra were all supersaturated for all simulations. Examples of supersaturated minerals are given in brackets. Arsenic (As) was undersaturated for all simulations. The remaining elements were supersaturated for only a portion of the simulations.

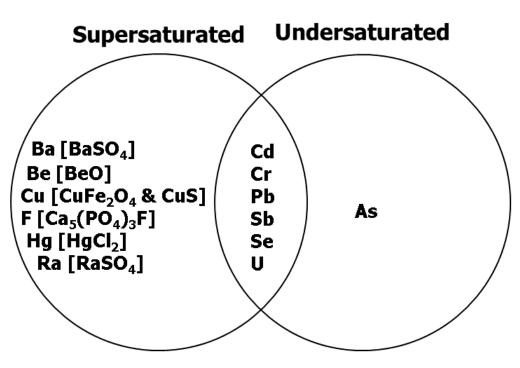


Figure 2: Saturation Conditions from PHREEQC Simulations

3.3 Minimum Amended James River Solution

The results for the simulations for pH = 7 and pH = 9 for the five redox couples are provided in Appendix F. The results were generally similar to those for the maximum amended James River solution with the following exceptions for elements having primary drinking water standards:

- Cd as Cd^{+2} was also soluble at pH = 7 for the oxygen and nitrogen couples.
- $CdCr_2O_4$ was supersaturated at pH = 7 for the chromium couple, but this result assumes that Cr is available in solution for precipitation.
- Cadmoselite [CdSe] and CdCr₂O₄ were supersaturated at pH = 7 for the iron couple, but this result assumes that Se and Cr, respectively, are available in solution for precipitation. Also for the iron couple, carnotite [K₂(UO₂)₂(VO₄)₂] was supersaturated at pH = 7, but this result assumes that U and V are available in solution for precipitation.
- F was soluble for all simulations. The reason is that the minimum amended James River solution was modeled with orthophosphate = 0; therefore fluorapatite $[Ca_5(PO_4)_3F]$ was not supersaturated, as it was for the maximum amended James River solutions.
- Stibnite $[Sb_2S_3]$ was supersaturated at pH = 7 and pH = 9 for the sulfur couple.

In summary for similar pe and pH conditions for the minimum and maximum amended James River solutions, Cd was more soluble over a slightly wider pH range and Sb was less soluble over a slightly wider pH range in the minimum amended James River simulations. F was soluble throughout the range simulated in the minimum amended James River simulations. The total dissolved solids in the Spiritwood aquifer are higher than the James River; therefore, the maximum James River simulations are more likely to represent the conditions of a James/Spiritwood ASR project.

4 Discussion and Summary

The results indicated that some elements are soluble under oxidizing conditions, both for oxygen and nitrate. Many North Dakota outwash aquifers have sediments with detrital shale fragments. The pyritic S contents in the Spiritwood (Appendix C) are likely from shale. Upon oxidation by oxygen or nitrate, pyrite S is converted to sulfate and other trace elements may be released into solution. In the Netherlands, which also has aquifers having sediments with detrital shale fragments, the oxidation of pyrite during ASR caused increases in As, Co, Ni, and Zn. However only As concentrations reached the recovery well. Co, Ni, and Zn were believed to have coprecipitated with, or strongly absorbed to, iron oxides (Pyne, 2005, and references therein). Closer to home, the table in Appendix G shows statistically significant ($\alpha = 0.05$) increases or decreases for several constituents during denitrification experiments (described by Korom et al, 2005) in several outwash aquifers in Minnesota and North Dakota. The Mann-Kendall method was used to determine significant trends. Some sites had both a control (C) test and a nitrate (N) test; the difference being that the control was amended with a solution having a similar ionic strength, but no nitrate. The results are summarized below:

- As only increased in the Larimore 2 test, but the increases were significant in both the control and nitrate tests. Therefore, the increase cannot be attributed to oxidation of pyrite by nitrate (or oxygen).
- Ba had several tests where it increased in the C and N tests, or only the C tests. The cause of the increases is unknown, but it was not caused by denitrification. However, all of the Ba concentrations remained about an order-of-magnitude less than the primary drinking water standard of 2.0 mg/L (Appendix A). In some of the N tests Ba decreased, likely because the increased sulfate caused by oxidation of pyrite led to increased precipitation of BaSO₄.
- Ni did not increase as a result of denitrification. Furthermore, Ni does not have a primary drinking water standard.
- Zn did not increase as a result of denitrification. Furthermore, Zn does not have a

primary drinking water standard.

• Se at the Larimore site (tests 3, 4, and 5) showed significant increases as a result of oxidation of pyrite by nitrate; however, only a single measurement was greater than the drinking water standard of 0.050 mg/L.

4.1 Summary of Results

Figure 3 summarizes the results for this investigation. Elements with green fonts are unlikely to exceed primary drinking water standards during James/Spiritwood ASR. Elements with yellow fonts probably will not exceed primary drinking water standards during James/Spiritwood ASR, but more uncertainty remains compared to the elements with green fonts. The basis for the classification for each element is given below:

- As was undersaturated for all PHREEQC simulations. Furthermore, As concentrations have exceeded the primary drinking water standard in both the James River and Spiritwood Aquifer. Oxidation of pyrite did not consistently increase As concentrations in denitrification tests. James/Spiritwood ASR is not expected to exacerbate As concentrations that are already in the James River and Spiritwood Aquifer. Therefore As is noted in yellow font in Figure 3.
- Ba was supersaturated for all PHREEQC simulations and concentrations in the James River and Spiritwood Aquifer are generally more than an order-of-magnitude less than the drinking water standard of 2.0 mg/L. Furthermore, aquifer denitrification tests showed increases of Ba were also generally more than an order-of-magnitude less than the primary drinking water standard. Therefore Ba is noted in green font in Figure 3.
- Be was supersaturated for all PHREEQC simulations. Furthermore, concentrations in the James River and Spiritwood Aquifer were consistently below reporting limits. While the primary drinking water standard of 0.004 mg/L and the reporting limits are close (<0.001 mg/L and <0.005 mg/L), it is not believed that Be will be an issue in James/Spiritwood ASR, so it is noted in green font in Figure 3.

- Cd was only soluble at pH = 6 in the PHREEQC simulations for the oxygen and nitrogen couples. Furthermore, concentrations in the James River and Spiritwood Aquifer were consistently below reporting limits. While the primary drinking water standard of 0.005 mg/L and the reporting limits are close (<0.001 mg/L and <0.005 mg/L), it is not believed that Cd will be an issue in James/Spiritwood ASR, so it is noted in green font in Figure 3.
- Cr was soluble in the PHREEQC simulations for the oxygen and nitrogen couples, which is presumably why about a fifth of the James River samples were above detection. Aquifers generally are less oxidized than rivers and the Spiritwood had no samples above detections. During James/Spiritwood ASR there may initially be Cr detections with the injection of oxidized river water; however, it is expected that concentrations will remain an order-of-magnitude below the drinking water standard of 0.1 mg/L, so Cr is noted in green font in Figure 3.
- Cu was saturated as CuFe₂O₄ above the sulfur couple or as covellite [CuS] at sulfate-reducing conditions (Figure 1). Over half of the James River samples were above detection and about a fifth of the Spiritwood samples; however, all samples were more than an order-of-magnitude less than the primary drinking water standard of 1.3 mg/L. Therefore, Cu is noted in green font in Figure 3.
- F was saturated as fluorapatite in the PHREEQC simulations as long as orthophosphate was in the water. James River and Spiritwood Aquifer samples usually have F concentrations; however, they are more than an order-of-magnitude less than the drinking water standard of 4.0 mg/L. Therefore, F is noted in green font in Figure 3.
- Hg was supersaturated in all PHREEQC simulations; however, concentrations were detected in most of the James River and Spiritwood Aquifer samples. James/Spiritwood ASR is not expected to exacerbate Hg concentrations that are already in the James River and Spiritwood Aquifer. Therefore Hg is noted in yellow font in Figure 3.
- Pb was supersaturated for some of the PHREEQC simulations. Pb concentrations were usually above detection for the James River and Spiritwood, but they were always less

than the primary drinking water standard of 0.015 mg/L. However, maximum concentrations were within an order-of-magnitude of the drinking water standard, so Pb is noted in yellow font in Figure 3.

- Ra was supersaturated for all of the PHREEQC simulations. However, there are no State measurements for Ra for either the James River or Spiritwood Aquifer. Therefore to be conservative, Ra is noted in yellow font in Figure 3.
- Sb was generally supersaturated for all of the PHREEQC simulations. Furthermore, concentrations in the James River and Spiritwood Aquifer were consistently below reporting limits. While the primary drinking water standard of 0.006 mg/L and the reporting limits are close (<0.001 mg/L and <0.005 mg/L), it is not believed that Sb will be an issue in James/Spiritwood ASR, so it is noted in green font in Figure 3.
- Se is soluble for the oxygen and nitrogen couples in the PHREEQC simulations. A majority of the James River and Spiritwood Aquifer samples were above detection and some samples were within an order-of-magnitude of the primary drinking water standard of 0.05 mg/L. Furthermore, Se concentrations increased for three of the Larimore denitrification tests (Appendix F). Therefore, Se is noted in yellow font in Figure 3.
- U is soluble for the oxygen, nitrogen, and chromium couples in the PHREEQC simulations. Furthermore, there are no State measurements for U for either the James River or Spiritwood Aquifer. Therefore, U is noted in yellow font in Figure 3.

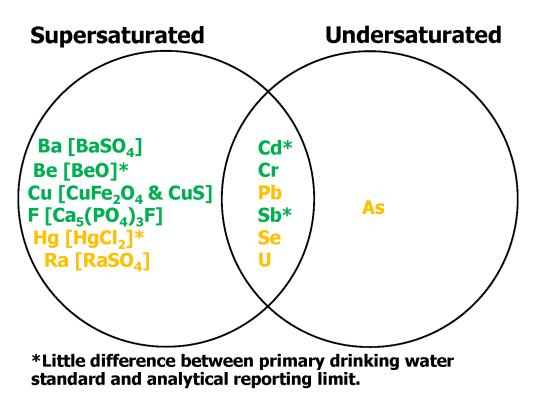


Figure 3: Risk of Exceeding Primary Drinking Water Standards (Green = Low, Yellow = Medium).

5 Further Research

This investigation into how ASR may lead to water quality problems, like all chemical equilibrium studies, has limitations. Chemical equilibrium can only reveal the saturation condition of an element in a solution. If an element is supersaturated, it will precipitate from solution; however, equilibrium chemistry indicates nothing about the rate of precipitation. Insights into kinetic issues for each element were gained by also considering State analytical data from the water sources being considered for ASR and from denitrification experiments in outwash aquifers in Minnesota and North Dakota. Based on these data, it is believed that James/Spiritwood ASR will not cause exceedances of primary drinking water standards. However, the best way to determine if ASR will cause water quality issues is to conduct a pilot field-scale research program in the Spiritwood Aquifer.

6 References

Appelo, C.A.J., and D. Postma. 2005. Geochemistry, Groundwater and Pollution, 2nd ed., A.A. Balkema Publishers, New York.

Galloway, J.M., A.V. Vecchia, K.C. Vining, B.K. Densmore, and R.F. Lundgren. 2012. Evaluation of Water- Quality Characteristics and Sampling Design for Streams in North Dakota, 1970-2008, USGS Scientific Investigations Report 2012-5216.

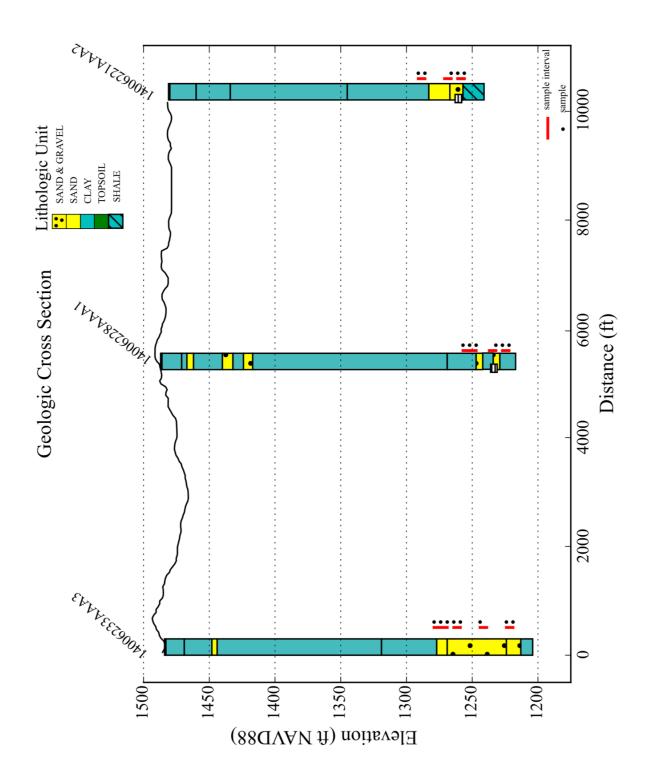
Green, C.T., L.J. Puckett, J.K. Bohlke, B.A. Bekins, S.P. Phillips, L.J. Kauffman, J.M. Denver, and H.M. Johnson. 2008. Limited Occurrence of Denitrification in Four Shallow Aquifers in Agricultural Areas of the United States, Journal of Environmental Quality, vol. 37, 994-1009.

Korom, S.F., A.J. Schlag, W.M. Schuh, and A.K. Schlag. 2005. In Situ Mesocosms: Denitrification in the Elk Valley Aquifer, Ground Water Monitoring and Remediation, vol. 30, no, 4, 142.

Korom, S.F., A.J. Schlag, W.M. Schuh, and A.K. Schlag. 2010. Erratum for In Situ Mesocosms: Denitrification in the Elk Valley Aquifer, Ground Water Monitoring and Remediation, vol. 25, no. 1, 79-89.

Parkhurst, D.L., and C.A.J. Appelo. 1999. Users Guide to PHREEQC (Version 2)A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, USGS Water-Resources Investigations Report 99-4259.

Pyne, R.D.G. 2005. Aquifer Storage and Recovery: A Guide to Groundwater Recharge Through Wells, 2nd ed., ASR Systems, LLC, Gainesville, Florida.


Tesoriero, A.J., and L.J. Puckett. 2011. O₂ Reduction and Denitrification Rates in Shallow Aquifers, Water Resources Research, vol. 47, W12522, doi:10.1029/2011WR010471.

7 Appendices

7.1 Appendix A

Location map and Geologic Cross Section of Sample Sites

7.2 Appendix B

Inorganic Drinking Water Standards

Inorganic Drinking Water Standards

Primary Standards (mg/L)

- Antimony, Sb (0.006).
- Arsenic, As (0.010).
- Barium, Ba (2).
- Beryllium Be (0.004).
- Cadmium, Cd (0.005).
- Chromium, Cr (0.1).
- Copper, Cu (1.3). Also has a Secondary Standard
- Fluoride, F (4.0). Also has a Secondary Standard
- Lead, Pb (0.015 mg/L).
- Mercury, Hg (0.002).
- Nitrate-N, NO₃-N (10). Nitrate in denitrifying conditions will be reduced to nitrogen gas.
- Nitrite-N, NO₂-N (1). Nitrite in denitrifying conditions will be reduced to nitrogen gas.
- Selenium, Se (0.05).
- Thallium, Tl (0.002).

Radionuclides

- Alpha (15 pCi/L) Not modeled by PHREEQC.
- Radium, Ra 226 and 228 combined (5 pCi/L), PHREEQC does not differentiate between these two isotopes, so Ra was considered as a single element.
- Uranium, U (0.03).

Secondary Standards (mg/L)

- Aluminum, Al (0.05 to 0.2).
- Chloride, Cl (250). Not considered directly by PHREEQC simulations.
- Copper, Cu (1).
- Fluoride, F (2).
- Iron, Fe (0.3).
- Manganese, Mn (0.05).
- Silver, Ag (0.1).
- Sulfate, SO₄ (250). Sulfate is stable above sulfate-reducing conditions.
- TDS (500). Not considered directly by PHREEQC simulations.
- Zinc (5)

Contaminant Candidate List (CCL)

- Cobalt, Co (in EPA CCL 3 and CCL 4).
- Germanium, Ge (in EPA CCL 3 and CCL 4). Not in PHREEQC databases.
- Molybdenum, Mo (in EPA CCL 3 and CCL 4).
- Strontium, Sr (in EPA CCL 3).
- Tellurium, Te (in EPA CCL 3 and CCL 4). Analysis not available at IML. Furthermore, not in PHREEQC databases.
- Vanadium, V (in CCL 3 and CCL 4).

Other Constituent

• Nickel, Ni. (Listed in the Aquatic Life Criteria Table for National Recommended Water Quality Criteria. It was listed with an MCL of 0.1 mg/L on 7/17/1992, but it was remanded on 2/9/1995.)

7.3 Appendix C

Spiritwood Aquifer Sediment Analyses

Inter-Mountain Labs

	Inter-Mountain Labs	1 Labs	- CHAIN OF		STOD	CUSTODY RECORD	CORD -			Page 1	of 1
INTER-MOUNTAIN LABS	Sheridan, WY and Gillette, WY	ette, WY All shaded fields must be completed. This is a legal document; any misrepresentation may be construed as fraud.	ust be completed	leted.	construed	as fraud.				#WEB	
Client Name		Project Identification	S	ampler (Sig	nature/Att	estation o	Sampler (Signature/Attestation of Authenticity)	()		Telephone #	
North Dakota State Water Commission	Commission	ASR Spiritwood Soil Maxtrix 2017	4	Micheal Ginsbach	insbach					701-328-2754	
Report Address		Contact Name		-	A	ANALYSES		/ PARAMETERS	s		
900 East Boulevard Ave		d Hisz	and a local second								
Bismarck, ND 58505-0850			A MARINE ALCON								
Invoice Address		Phone 701-328-3378	Start Start				44				
900 East Boulevard Ave			Quote #			1	21				
Bismarck, ND 58505-0850		NDSWC SOILS 17	1744				ala			REMARKS	RKS
E LAB ID H (Lab Use Only)	DATE TIME SAMPLED	SAMPLE	Matrix	# of Containers	teM '	ios '	gong				
0,	09/11	14006233AAA3_1	-	-	×	×	×			See QuoteID: 1744	1744
2 002	09/11/17	14006233AAA3_2	SL	-	×	××	×			See QuoteID: 1744	1744
3 () 3	09/11/17	14006233AAA3 3	SL	-	×	×	×			See QuoteID: 1744	1744
4 004	09/11/17	14006233AAA3_4	SL	-	×	××	×			See QuoteID: 1744	1744
5 005	09/12/17	14006221AAA2_1	SL	-	×	××	×			See QuoteID: 1744	1744
6 006	09/12/17	14006221AAA2_2	SL	-	×	×	×			See QuoteID: 1744	1744
7 00.7	09/12/17	14006221AAA2_3	SL	-	×	×	×			See QuoteID: 1744	1744
8	09/12/17	14006221AAA2_4	SL	-	×	x x	×			See QuoteID: 1744	1744
900	09/13/17	14006228AAA1_1	SL	1	××	×	×			See QuoteID: 1744	1744
10 010	09/13/17	14006228AAA1_2	SL	٢	x x	×	×			See QuoteID: 1744	1744
11 011	09/13/17	14006228AAA1_3	SL	1	x x	×	×			See QuoteID: 1744	1744
12 012	09/13/17	14006228AAA1_4	SL	-	×	×	×			See QuoteID: 1744	1744
13											
LAB COMMENTS	Reli	Relinquished By (Signature/Printed)	DATE	TIME		Receive	Received By (Signature/Printed)	ure/Printed)		DATE	TIME
	David Hisz		~	10:00am	Z	-this	North I	5		H.F.Z. 01	11:49
					1						4
10.11	CO	TURN AROUND TIMES	COM	COMPLIANCE INFORMATION	INFOR	MATION			ADDITIC	ADDITIONAL REMARKS	日本の「「「」」
X FedEx		Check desired service Standard turnaround RUSH - 5 Working Days URGENT - < 2 Working Days	Compliance Monitoring ? Program (SDWA, NPDES PWSID / Permit # Chlorinated?	Monitorir DVVA, NPI ermit #	g ? DES,)		Z Z Z	please her au	e use	e antetil	ut f
L Other	Other OT	Rush & Urgent Surcharges will be applied	Sample Disposal:		Lab 🗙	Client	>		7		

www.intermountainlabs.com

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

Date: 1/5/2018

CLIENT:	North Dakota State Water Commission	CASE NARRATIVE
Project:	ASR_Spiritwood Soil Matrix 2017	Report ID: S1710437002
Lab Order:	S1710437	(Replaces S1710437001)

Samples 14006221AAA2_1, 14006221AAA2_2, 14006221AAA2_3, 14006221AAA2_4, 14006228AAA1_1, 14006228AAA1_2, 14006228AAA1_3, 14006228AAA1_4, 14006233AAA3_1, 14006233AAA3_2, 14006233AAA3_3 and 14006233AAA3_4 were received on October 27, 2017.

All samples were received and analyzed within the EPA recommended holding times, except those noted below in this case narrative. Samples were analyzed using the methods outlined in the following references:

"Standard Methods For The Examination of Water and Wastewater", approved method versions Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Edition 40 CFR Parts 136 and 141 40 CFR Part 50, Appendices B, J, L, and O Methods indicated in the Methods Update Rule published in the Federal Register Friday, May 18, 2012 ASTM approved and recognized standards

All Quality Control parameters met the acceptance criteria defined by EPA and Inter-Mountain Laboratories except as indicated in this case narrative.

Report S1710437002 replaces report S1710437001. Client requested results below the reporting limit and additional analysis.

Reviewed by:

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

Sample Analysis Report

. ,	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-001	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Total							
Gross Alpha	8.8	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Alpha Precision (±)	1.2	pCi/g	U		SM 7110	12/29/2017 2219	MB
Gross Beta	9.9	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Beta Precision (±)	1.6	pCi/g	U		SM 7110	12/29/2017 2219	MB
Radium 226	0.78	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 1910	WN
Radium 226 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/13/2017 1910	WN
Radium 228	0.76	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 1910	WN
Radium 228 Precision (±)	0.3	pCi/g			EPA 901.1 Mod.	12/13/2017 1910	WN
General Parameters - Soil							
Percent Solids	71.6	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	126	ppm		1.00	EPA 300.0	01/12/2018 1520	AB
Fluoride	0.473	ppm		0.100	EPA 300.0	01/12/2018 1520	AB
Total Inorganic Carbon	1.50	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.355	%		0.0100	EPA600/2-78-054	11/27/2017 1147	KS
Neutralization Potential	125	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

В

RL - Reporting Limit

- Qualifiers:
- Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- Х Matrix Effect л Reviewed by

Wade Nieuwsma, Assistant Laboratory Manager

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-001	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	7250	mg/Kg		1.50	EPA 6010C	11/20/2017 1239	DG
Antimony	2.61	mg/Kg		1.70	EPA 6010C	11/20/2017 1239	DG
Arsenic	8.35	mg/Kg		0.600	EPA 6010C	11/20/2017 1239	DG
Barium	2200	mg/Kg		1.00	EPA 6010C	11/20/2017 1239	DG
Beryllium	0.510	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1239	DG
Cadmium	0.474	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Calcium	30100	mg/Kg		5.00	EPA 6010C	11/20/2017 1239	DG
Chromium	13.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Cobalt	7.81	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Copper	12.2	mg/Kg		0.500	EPA 6010C	11/20/2017 1239	DG
Germanium	2.38	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1239	DG
Iron	16000	mg/Kg		2.00	EPA 6010C	11/20/2017 1241	DG
Lead	9.39	mg/Kg		2.40	EPA 6010C	11/20/2017 1239	DG
Magnesium	8930	mg/Kg		10.0	EPA 6010C	11/20/2017 1239	DG
Manganese	538	mg/Kg		0.100	EPA 6010C	11/20/2017 1239	DG
Mercury	0.0178	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.18	mg/Kg		0.600	EPA 6010C	11/20/2017 1239	DG
Nickel	22.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Potassium	2120	mg/Kg		10.0	EPA 6010C	11/20/2017 1239	DG
Selenium	0.643	mg/Kg	U	1.30	EPA 6010C	11/20/2017 1239	DG
Silicon	396	mg/Kg		4.00	EPA 6010C	11/20/2017 1239	DG
Silver	0.162	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1239	DG
Sodium	2340	mg/Kg		73.0	EPA 6010C	11/20/2017 1239	DG
Strontium	82.8	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Thallium	0.49	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1239	DG
Uranium	0.49	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1239	DG
Vanadium	27.5	mg/Kg		0.200	EPA 6010C	11/20/2017 1239	DG
Zinc	53.5	mg/Kg		0.600	EPA 6010C	11/20/2017 1239	DG

These results apply only to the samples tested.

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- S X Matrix Effect Reviewed by: _____

Qualifiers:

-

Wade Nieuwsma, Assistant Laboratory Manager

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-001	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

eominionito							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.152	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.175	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	0.0282	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	4.41	%		0.100	ASA9 29-2.2	11/27/2017 1147	KS
Total Organic Carbon	2.91	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
 - Matrix Effect ~

Qualifiers:

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-002	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Total							
Gross Alpha	4.1	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Alpha Precision (±)	0.9	pCi/g	U		SM 7110	12/29/2017 2219	MB
Gross Beta	5.1	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Beta Precision (±)	1.5	pCi/g	U		SM 7110	12/29/2017 2219	MB
Radium 226	0.43	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2027	WN
Radium 226 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/13/2017 2027	WN
Radium 228	0.48	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2027	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/13/2017 2027	WN
General Parameters - Soil							
Percent Solids	77.4	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	62.9	ppm		1.00	EPA 300.0	01/12/2018 1534	AB
Fluoride	0.441	ppm		0.100	EPA 300.0	01/12/2018 1534	AB
Total Inorganic Carbon	2.30	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.165	%		0.0100	EPA600/2-78-054	11/27/2017 1152	KS
Neutralization Potential	186	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits
- ~

Reviewed by: _____

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

. ,	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-002	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units Qual		RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	4120	mg/Kg		1.50	EPA 6010C	11/20/2017 1243	DG
Antimony	1.57	mg/Kg	U	1.70	EPA 6010C	11/20/2017 1243	DG
Arsenic	9.71	mg/Kg		0.600	EPA 6010C	11/20/2017 1243	DG
Barium	799	mg/Kg		1.00	EPA 6010C	11/20/2017 1243	DG
Beryllium	0.315	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1243	DG
Cadmium	0.620	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Calcium	50900	mg/Kg		5.00	EPA 6010C	11/20/2017 1243	DG
Chromium	29.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Cobalt	9.01	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Copper	8.20	mg/Kg		0.500	EPA 6010C	11/20/2017 1243	DG
Germanium	1.85	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1243	DG
Iron	21600	mg/Kg		2.00	EPA 6010C	11/20/2017 1245	DG
Lead	7.23	mg/Kg		2.40	EPA 6010C	11/20/2017 1243	DG
Magnesium	7140	mg/Kg		10.0	EPA 6010C	11/20/2017 1243	DG
Manganese	2900	mg/Kg		0.100	EPA 6010C	11/20/2017 1243	DG
Mercury	0.0144	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.61	mg/Kg		0.600	EPA 6010C	11/20/2017 1243	DG
Nickel	26.0	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Potassium	1390	mg/Kg		10.0	EPA 6010C	11/20/2017 1243	DG
Selenium	3.17	mg/Kg		1.30	EPA 6010C	11/20/2017 1243	DG
Silicon	336	mg/Kg		4.00	EPA 6010C	11/20/2017 1243	DG
Silver	0.280	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1243	DG
Sodium	1120	mg/Kg		73.0	EPA 6010C	11/20/2017 1243	DG
Strontium	74.3	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Thallium	3.71	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1243	DG
Uranium	1.92	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1243	DG
Vanadium	25.3	mg/Kg		0.200	EPA 6010C	11/20/2017 1243	DG
Zinc	43.4	mg/Kg		0.600	EPA 6010C	11/20/2017 1243	DG

These results apply only to the samples tested.

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits

Matrix Effect Reviewed by: _____ -

С

- Calculated Value Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Qualifiers:

Wade Nieuwsma, Assistant Laboratory Manager

Page 5 of 36

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-002	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

•••••••••••••••••••••••••••••••••••••••							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.149	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	0.0198	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	5.65	%		0.100	ASA9 29-2.2	11/27/2017 1152	KS
Total Organic Carbon	3.43	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- S Spike Recover X Matrix Effect ~

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-003	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Radionuclides - Total							
Gross Alpha	3.6	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Alpha Precision (±)	0.9	pCi/g	U		SM 7110	12/29/2017 2219	MB
Gross Beta	3.9	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Beta Precision (±)	1.5	pCi/g	U		SM 7110	12/29/2017 2219	MB
Radium 226	0.31	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2145	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/13/2017 2145	WN
Radium 228	0.30	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2145	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/13/2017 2145	WN
General Parameters - Soil							
Percent Solids	87.3	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	37.3	ppm		1.00	EPA 300.0	01/12/2018 1548	AB
Fluoride	0.480	ppm		0.100	EPA 300.0	01/12/2018 1548	AB
Total Inorganic Carbon	3.00	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.0601	%		0.0100	EPA600/2-78-054	11/27/2017 1155	KS
Neutralization Potential	253	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

Qualifiers:

- B Analyte detected in the associated Method BlankE Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect
 - Matrix Effect

Reviewed by:

- RL Reporting Limit C Calculated Value
 - G Analyzed at IML Gillette laboratory
 - J Analyte detected below quantitation limits
 - M Value exceeds Monthly Ave or MCL or is less than LCL
 - O Outside the Range of Dilutions
 - U Analysis reported under the reporting limit

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-003	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	2390	mg/Kg		1.50	EPA 6010C	11/20/2017 1247	DG
Antimony	2.88	mg/Kg		1.70	EPA 6010C	11/20/2017 1247	DG
Arsenic	3.94	mg/Kg		0.600	EPA 6010C	11/20/2017 1247	DG
Barium	316	mg/Kg		1.00	EPA 6010C	11/20/2017 1247	DG
Beryllium	0.166	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1247	DG
Cadmium	0.336	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Calcium	69500	mg/Kg		5.00	EPA 6010C	11/20/2017 1247	DG
Chromium	11.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Cobalt	6.27	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Copper	6.14	mg/Kg		0.500	EPA 6010C	11/20/2017 1247	DG
Germanium	1.57	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1247	DG
Iron	13900	mg/Kg		2.00	EPA 6010C	11/20/2017 1252	DG
Lead	4.81	mg/Kg		2.40	EPA 6010C	11/20/2017 1247	DG
Magnesium	8180	mg/Kg		10.0	EPA 6010C	11/20/2017 1247	DG
Manganese	3080	mg/Kg		0.100	EPA 6010C	11/20/2017 1247	DG
Mercury	0.00900	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	1.94	mg/Kg		0.600	EPA 6010C	11/20/2017 1247	DG
Nickel	18.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Potassium	926	mg/Kg		10.0	EPA 6010C	11/20/2017 1247	DG
Selenium	2.59	mg/Kg		1.30	EPA 6010C	11/20/2017 1247	DG
Silicon	271	mg/Kg		4.00	EPA 6010C	11/20/2017 1247	DG
Silver	0.345	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1247	DG
Sodium	534	mg/Kg		73.0	EPA 6010C	11/20/2017 1247	DG
Strontium	67.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Thallium	4.24	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1247	DG
Uranium	1.60	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1247	DG
Vanadium	15.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1247	DG
Zinc	29.2	mg/Kg		0.600	EPA 6010C	11/20/2017 1247	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
- Matrix Effect

Reviewed by: _____ -

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-003	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

eennite							
Analyses	Result	Units	Qual	ual RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.0610	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	4.18	%		0.100	ASA9 29-2.2	11/27/2017 1155	KS
Total Organic Carbon	1.15	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits

Qualifiers:

~ Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-004	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result U		Units Qual	RL	Method	Date Analyzed/I	alyzed/Init	
Radionuclides - Total								
Gross Alpha	4.7	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB	
Gross Alpha Precision (±)	1.0	pCi/g	U		SM 7110	12/29/2017 2219	MB	
Gross Beta	6.5	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB	
Gross Beta Precision (±)	1.5	pCi/g	U		SM 7110	12/29/2017 2219	MB	
Radium 226	0.53	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2303	WN	
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/13/2017 2303	WN	
Radium 228	0.20	pCi/g		0.200	EPA 901.1 Mod.	12/13/2017 2303	WN	
Radium 228 Precision (±)	0.3	pCi/g			EPA 901.1 Mod.	12/13/2017 2303	WN	
General Parameters - Soil								
Percent Solids	82.3	%		0.100	SM 2540G	10/27/2017 000	KS	
Chloride	30.7	ppm		1.00	EPA 300.0	01/12/2018 1602	AB	
Fluoride	0.575	ppm		0.100	EPA 300.0	01/12/2018 1602	AB	
Total Inorganic Carbon	2.40	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS	
Acid Potential								
Total Sulfur	0.175	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS	
Neutralization Potential	196	t/1000t			EPA600/2-78-054	11/16/2017 000	СН	

These results apply only to the samples tested.

RL - Reporting Limit

- Qualifiers:
- B Analyte detected in the associated Method BlankE Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- S Spike Recovery ou X Matrix Effect

Reviewed by: _____ ~

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-004	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	4350	mg/Kg		1.50	EPA 6010C	11/20/2017 1256	DG
Antimony	2.04	mg/Kg		1.70	EPA 6010C	11/20/2017 1256	DG
Arsenic	6.28	mg/Kg		0.600	EPA 6010C	11/20/2017 1256	DG
Barium	167	mg/Kg		1.00	EPA 6010C	11/20/2017 1256	DG
Beryllium	0.259	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1256	DG
Cadmium	0.349	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Calcium	45200	mg/Kg		5.00	EPA 6010C	11/20/2017 1256	DG
Chromium	12.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Cobalt	6.43	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Copper	7.90	mg/Kg		0.500	EPA 6010C	11/20/2017 1256	DG
Germanium	0.649	mg/Kg	U	7.00	EPA 6010C	11/21/2017 1403	DG
Iron	21500	mg/Kg		2.00	EPA 6010C	11/20/2017 1312	DG
Lead	5.58	mg/Kg		2.40	EPA 6010C	11/20/2017 1256	DG
Magnesium	8480	mg/Kg		10.0	EPA 6010C	11/20/2017 1256	DG
Manganese	2740	mg/Kg		0.100	EPA 6010C	11/20/2017 1256	DG
Mercury	0.0107	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.57	mg/Kg		0.600	EPA 6010C	11/20/2017 1256	DG
Nickel	16.1	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Potassium	1610	mg/Kg		10.0	EPA 6010C	11/20/2017 1256	DG
Selenium	3.06	mg/Kg		1.30	EPA 6010C	11/20/2017 1256	DG
Silicon	297	mg/Kg		4.00	EPA 6010C	11/20/2017 1256	DG
Silver	0.360	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1256	DG
Sodium	558	mg/Kg		73.0	EPA 6010C	11/20/2017 1256	DG
Strontium	61.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Thallium	3.69	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1256	DG
Uranium	0.55	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1256	DG
Vanadium	23.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1256	DG
Zinc	38.9	mg/Kg		0.600	EPA 6010C	11/20/2017 1256	DG

These results apply only to the samples tested.

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- S Spike Recovery X Matrix Effect

Qualifiers:

~ Reviewed by: <u>A</u>

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-004	CollectionDate:	9/11/2017
ClientSample ID:	14006233AAA3_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Commente							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0433	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.132	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	3.19	%		0.100	ASA9 29-2.2	11/27/2017 1159	KS
Total Organic Carbon	0.835	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits
- ~

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-005	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Radionuclides - Total							
Gross Alpha	4.3	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Alpha Precision (±)	0.9	pCi/g	U		SM 7110	12/29/2017 2219	MB
Gross Beta	9.0	pCi/g	U	10.0	SM 7110	12/29/2017 2219	MB
Gross Beta Precision (±)	1.6	pCi/g	U		SM 7110	12/29/2017 2219	MB
Radium 226	0.56	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 020	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/14/2017 020	WN
Radium 228	0.62	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 020	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 020	WN
General Parameters - Soil							
Percent Solids	76.7	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	29.7	ppm		1.00	EPA 300.0	01/12/2018 1616	AB
Fluoride	0.732	ppm		0.100	EPA 300.0	01/12/2018 1616	AB
Total Inorganic Carbon	1.00	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.154	%		0.0100	EPA600/2-78-054	11/27/2017 1203	KS
Neutralization Potential	80.8	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits ~
- С Calculated Value Analyzed at IML Gillette laboratory G
 - Analyte detected below quantitation limits J
 - Value exceeds Monthly Ave or MCL or is less than LCL Μ
 - 0 Outside the Range of Dilutions
 - Analysis reported under the reporting limit U

Reviewed by: _____

Wade Nieuwsma, Assistant Laboratory Manager

Page 13 of 36

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-005	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	8360	mg/Kg		1.50	EPA 6010C	11/20/2017 1323	DG
Antimony	2.20	mg/Kg		1.70	EPA 6010C	11/20/2017 1323	DG
Arsenic	3.87	mg/Kg		0.600	EPA 6010C	11/20/2017 1323	DG
Barium	185	mg/Kg		1.00	EPA 6010C	11/20/2017 1323	DG
Beryllium	0.485	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1323	DG
Cadmium	0.303	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Calcium	19000	mg/Kg		5.00	EPA 6010C	11/20/2017 1323	DG
Chromium	15.3	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Cobalt	6.90	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Copper	11.0	mg/Kg		0.500	EPA 6010C	11/20/2017 1323	DG
Germanium	1.17	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1323	DG
Iron	17200	mg/Kg		2.00	EPA 6010C	11/20/2017 1325	DG
Lead	8.35	mg/Kg		2.40	EPA 6010C	11/20/2017 1323	DG
Magnesium	6190	mg/Kg		10.0	EPA 6010C	11/20/2017 1323	DG
Manganese	465	mg/Kg		0.100	EPA 6010C	11/20/2017 1323	DG
Mercury	0.0167	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.32	mg/Kg		0.600	EPA 6010C	11/20/2017 1323	DG
Nickel	16.3	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Potassium	2190	mg/Kg		10.0	EPA 6010C	11/20/2017 1323	DG
Selenium	0.745	mg/Kg	U	1.30	EPA 6010C	11/20/2017 1323	DG
Silicon	343	mg/Kg		4.00	EPA 6010C	11/20/2017 1323	DG
Silver	ND	mg/Kg		0.400	EPA 6010C	11/20/2017 1323	DG
Sodium	869	mg/Kg		73.0	EPA 6010C	11/20/2017 1323	DG
Strontium	48.1	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Thallium	0.30	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1323	DG
Uranium	-0.59	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1323	DG
Vanadium	26.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1323	DG
Zinc	50.9	mg/Kg		0.600	EPA 6010C	11/20/2017 1323	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
- Matrix Effect

Reviewed by: _____

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- U Analysis reported under the reporting limit

-

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-005	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

•••••••••••••••••••••••••••••••••••••••							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0541	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.0996	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	1.37	%		0.100	ASA9 29-2.2	11/27/2017 1203	KS
Total Organic Carbon	0.403	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- S Spike Recover X Matrix Effect ~

Qualifiers:

Reviewed by: <u>A</u>

- **RL Reporting Limit** С Calculated Value
 - Analyzed at IML Gillette laboratory G
 - Analyte detected below quantitation limits J
 - Value exceeds Monthly Ave or MCL or is less than LCL Μ
 - 0 Outside the Range of Dilutions
 - Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-006	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	al RL	Method	Date Analyzed/Init	
Radionuclides - Total							
Gross Alpha	15.3	pCi/g		10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	1.5	pCi/g			SM 7110	12/30/2017 1210	MB
Gross Beta	10.5	pCi/g		10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	1.6	pCi/g			SM 7110	12/30/2017 1210	MB
Radium 226	0.30	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 137	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/14/2017 137	WN
Radium 228	0.42	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 137	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 137	WN
General Parameters - Soil							
Percent Solids	83.5	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	43.2	ppm		1.00	EPA 300.0	01/12/2018 1630	AB
Fluoride	0.692	ppm		0.100	EPA 300.0	01/12/2018 1630	AB
Total Inorganic Carbon	2.70	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.0413	%		0.0100	EPA600/2-78-054	11/27/2017 1206	KS
Neutralization Potential	224	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit С

G

- В Analyte detected in the associated Method Blank Qualifiers:
 - Е Value above quantitation range
 - Holding times for preparation or analysis exceeded Н
 - Analyzed by another laboratory L
 - ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits
- Х Matrix Effect Reviewed by

Wade Nieuwsma, Assistant Laboratory Manager

Analyzed at IML Gillette laboratory

Calculated Value

- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions U
 - Analysis reported under the reporting limit

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-006	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Units Qual		Method	Date Analyzed/Init	
Metals - Total							
Aluminum	3690	mg/Kg		1.50	EPA 6010C	11/20/2017 1327	DG
Antimony	1.91	mg/Kg		1.70	EPA 6010C	11/20/2017 1327	DG
Arsenic	3.68	mg/Kg		0.600	EPA 6010C	11/20/2017 1327	DG
Barium	122	mg/Kg		1.00	EPA 6010C	11/20/2017 1327	DG
Beryllium	0.195	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1327	DG
Cadmium	0.315	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Calcium	60700	mg/Kg		5.00	EPA 6010C	11/20/2017 1327	DG
Chromium	10.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Cobalt	5.74	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Copper	7.00	mg/Kg		0.500	EPA 6010C	11/20/2017 1327	DG
Germanium	3.00	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1327	DG
Iron	15300	mg/Kg		2.00	EPA 6010C	11/20/2017 1329	DG
Lead	4.13	mg/Kg		2.40	EPA 6010C	11/20/2017 1327	DG
Magnesium	8170	mg/Kg		10.0	EPA 6010C	11/20/2017 1327	DG
Manganese	1670	mg/Kg		0.100	EPA 6010C	11/20/2017 1327	DG
Mercury	0.0011	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.32	mg/Kg		0.600	EPA 6010C	11/20/2017 1327	DG
Nickel	13.1	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Potassium	1180	mg/Kg		10.0	EPA 6010C	11/20/2017 1327	DG
Selenium	2.43	mg/Kg		1.30	EPA 6010C	11/20/2017 1327	DG
Silicon	352	mg/Kg		4.00	EPA 6010C	11/20/2017 1327	DG
Silver	0.199	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1327	DG
Sodium	495	mg/Kg		73.0	EPA 6010C	11/20/2017 1327	DG
Strontium	59.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Thallium	2.08	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1327	DG
Uranium	-1.6	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1327	DG
Vanadium	15.7	mg/Kg		0.200	EPA 6010C	11/20/2017 1327	DG
Zinc	29.5	mg/Kg		0.600	EPA 6010C	11/20/2017 1327	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect

Reviewed by: _____ -

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-006	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

•••••••••••••••••••••••••••••••••••••••							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0116	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.0296	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	2.92	%		0.100	ASA9 29-2.2	11/27/2017 1206	KS
Total Organic Carbon	0.237	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
 - Matrix Effect ~

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-007	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Radionuclides - Total							
Gross Alpha	8.5	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	1.2	pCi/g	U		SM 7110	12/30/2017 1210	MB
Gross Beta	12.8	pCi/g		10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	1.6	pCi/g			SM 7110	12/30/2017 1210	MB
Radium 226	0.58	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 255	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/14/2017 255	WN
Radium 228	0.47	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 255	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 255	WN
General Parameters - Soil							
Percent Solids	84.8	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	34.8	ppm		1.00	EPA 300.0	01/12/2018 1643	AB
Fluoride	0.869	ppm		0.100	EPA 300.0	01/12/2018 1643	AB
Total Inorganic Carbon	2.70	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.0418	%		0.0100	EPA600/2-78-054	11/27/2017 1210	KS
Neutralization Potential	228	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit С

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
- Analyzed at IML Gillette laboratory G

Calculated Value

- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Reviewed by: _____

Wade Nieuwsma, Assistant Laboratory Manager

Page 19 of 36

Matrix Effect ~

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-007	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	3960	mg/Kg		1.50	EPA 6010C	11/20/2017 1332	DG
Antimony	2.07	mg/Kg		1.70	EPA 6010C	11/20/2017 1332	DG
Arsenic	3.00	mg/Kg		0.600	EPA 6010C	11/20/2017 1332	DG
Barium	170	mg/Kg		1.00	EPA 6010C	11/20/2017 1332	DG
Beryllium	0.201	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1332	DG
Cadmium	0.343	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Calcium	60500	mg/Kg		5.00	EPA 6010C	11/20/2017 1332	DG
Chromium	14.4	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Cobalt	7.08	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Copper	7.00	mg/Kg		0.500	EPA 6010C	11/20/2017 1332	DG
Germanium	1.94	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1332	DG
Iron	18500	mg/Kg		2.00	EPA 6010C	11/20/2017 1334	DG
Lead	5.42	mg/Kg		2.40	EPA 6010C	11/20/2017 1332	DG
Magnesium	8580	mg/Kg		10.0	EPA 6010C	11/20/2017 1332	DG
Manganese	3070	mg/Kg		0.100	EPA 6010C	11/20/2017 1332	DG
Mercury	0.0024	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.40	mg/Kg		0.600	EPA 6010C	11/20/2017 1332	DG
Nickel	15.7	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Potassium	1350	mg/Kg		10.0	EPA 6010C	11/20/2017 1332	DG
Selenium	3.23	mg/Kg		1.30	EPA 6010C	11/20/2017 1332	DG
Silicon	388	mg/Kg		4.00	EPA 6010C	11/20/2017 1332	DG
Silver	0.289	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1332	DG
Sodium	607	mg/Kg		73.0	EPA 6010C	11/20/2017 1332	DG
Strontium	67.0	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Thallium	4.07	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1332	DG
Uranium	-0.52	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1332	DG
Vanadium	19.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1332	DG
Zinc	35.1	mg/Kg		0.600	EPA 6010C	11/20/2017 1332	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect

Reviewed by: <u>A</u> -

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-007	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

eominionito							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0112	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.0306	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	3.01	%		0.100	ASA9 29-2.2	11/27/2017 1210	KS
Total Organic Carbon	0.279	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
 - Matrix Effect ~

Qualifiers:

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-008	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual RL	Method	Date Analyzed/I	nit	
Radionuclides - Total							
Gross Alpha	4.7	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	0.9	pCi/g	U		SM 7110	12/30/2017 1210	MB
Gross Beta	6.2	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	1.4	pCi/g	U		SM 7110	12/30/2017 1210	MB
Radium 226	0.31	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 413	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/14/2017 413	WN
Radium 228	0.43	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 413	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 413	WN
General Parameters - Soil							
Percent Solids	82.5	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	33.1	ppm		1.00	EPA 300.0	01/12/2018 1657	AB
Fluoride	0.666	ppm		0.100	EPA 300.0	01/12/2018 1657	AB
Total Inorganic Carbon	2.70	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.143	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Neutralization Potential	215	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits

Reviewed by: _____ ~

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-008	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	3570	mg/Kg		1.50	EPA 6010C	11/20/2017 1345	DG
Antimony	1.60	mg/Kg	U	1.70	EPA 6010C	11/20/2017 1345	DG
Arsenic	2.87	mg/Kg		0.600	EPA 6010C	11/20/2017 1345	DG
Barium	94.9	mg/Kg		1.00	EPA 6010C	11/20/2017 1345	DG
Beryllium	0.147	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1345	DG
Cadmium	0.238	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Calcium	54900	mg/Kg		5.00	EPA 6010C	11/20/2017 1345	DG
Chromium	13.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Cobalt	5.67	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Copper	5.95	mg/Kg		0.500	EPA 6010C	11/20/2017 1345	DG
Germanium	1.72	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1345	DG
ron	14000	mg/Kg		2.00	EPA 6010C	11/20/2017 1347	DG
_ead	4.07	mg/Kg		2.40	EPA 6010C	11/20/2017 1345	DG
Magnesium	8520	mg/Kg		10.0	EPA 6010C	11/20/2017 1345	DG
Manganese	1550	mg/Kg		0.100	EPA 6010C	11/20/2017 1345	DG
Mercury	-0.0016	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	1.79	mg/Kg		0.600	EPA 6010C	11/20/2017 1345	DG
Nickel	13.0	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Potassium	959	mg/Kg		10.0	EPA 6010C	11/20/2017 1345	DG
Selenium	1.69	mg/Kg		1.30	EPA 6010C	11/20/2017 1345	DG
Silicon	351	mg/Kg		4.00	EPA 6010C	11/20/2017 1345	DG
Silver	0.251	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1345	DG
Sodium	410	mg/Kg		73.0	EPA 6010C	11/20/2017 1345	DG
Strontium	50.1	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Thallium	1.85	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1345	DG
Jranium	-1.4	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1345	DG
√anadium	15.0	mg/Kg		0.200	EPA 6010C	11/20/2017 1345	DG
Zinc	26.1	mg/Kg		0.600	EPA 6010C	11/20/2017 1345	DG

These results apply only to the samples tested.

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- S Spike Recovery X Matrix Effect

Qualifiers:

Reviewed by: _____ ~

Wade Nieuwsma, Assistant Laboratory Manager

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-008	CollectionDate:	9/12/2017
ClientSample ID:	14006221AAA2_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

oonninonto							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0775	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.0652	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	2.67	%		0.100	ASA9 29-2.2	11/27/2017 1214	KS
Total Organic Carbon	ND	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits

~ Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-009	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	its Qual	ial RL	Method	Date Analyzed/Init	
Radionuclides - Total							
Gross Alpha	6.3	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	1.0	pCi/g	U		SM 7110	12/30/2017 1210	MB
Gross Beta	7.6	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	1.5	pCi/g	U		SM 7110	12/30/2017 1210	MB
Radium 226	0.49	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 530	WN
Radium 226 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 530	WN
Radium 228	0.52	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 530	WN
Radium 228 Precision (±)	0.3	pCi/g			EPA 901.1 Mod.	12/14/2017 530	WN
General Parameters - Soil							
Percent Solids	70.2	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	19.3	ppm		1.00	EPA 300.0	01/12/2018 1753	AB
Fluoride	0.508	ppm		0.100	EPA 300.0	01/12/2018 1753	AB
Total Inorganic Carbon	2.10	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.258	%		0.0100	EPA600/2-78-054	11/27/2017 1218	KS
Neutralization Potential	173	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit С

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits ~
- Analyzed at IML Gillette laboratory G J
 - Analyte detected below quantitation limits Value exceeds Monthly Ave or MCL or is less than LCL Μ
 - 0 Outside the Range of Dilutions

Calculated Value

Analysis reported under the reporting limit U

Wade Nieuwsma, Assistant Laboratory Manager

Page 25 of 36

Reviewed by: _____

Sample Analysis Report

. ,	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-009	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	5510	mg/Kg		1.50	EPA 6010C	11/20/2017 1349	DG
Antimony	1.45	mg/Kg	U	1.70	EPA 6010C	11/20/2017 1349	DG
Arsenic	6.02	mg/Kg		0.600	EPA 6010C	11/20/2017 1349	DG
Barium	150	mg/Kg		1.00	EPA 6010C	11/20/2017 1349	DG
Beryllium	0.284	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1349	DG
Cadmium	0.336	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Calcium	39600	mg/Kg		5.00	EPA 6010C	11/20/2017 1349	DG
Chromium	15.8	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Cobalt	6.97	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Copper	10.6	mg/Kg		0.500	EPA 6010C	11/20/2017 1349	DG
Germanium	1.29	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1349	DG
Iron	16100	mg/Kg		2.00	EPA 6010C	11/20/2017 1351	DG
Lead	6.05	mg/Kg		2.40	EPA 6010C	11/20/2017 1349	DG
Magnesium	11800	mg/Kg		10.0	EPA 6010C	11/20/2017 1349	DG
Manganese	2060	mg/Kg		0.100	EPA 6010C	11/20/2017 1349	DG
Mercury	0.0153	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	3.41	mg/Kg		0.600	EPA 6010C	11/20/2017 1349	DG
Nickel	19.8	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Potassium	1780	mg/Kg		10.0	EPA 6010C	11/20/2017 1349	DG
Selenium	2.33	mg/Kg		1.30	EPA 6010C	11/20/2017 1349	DG
Silicon	363	mg/Kg		4.00	EPA 6010C	11/20/2017 1349	DG
Silver	0.231	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1349	DG
Sodium	554	mg/Kg		73.0	EPA 6010C	11/20/2017 1349	DG
Strontium	56.1	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Thallium	2.36	mg/Kg	U	4.30	EPA 6010C	11/20/2017 1349	DG
Uranium	-1.6	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1349	DG
Vanadium	30.5	mg/Kg		0.200	EPA 6010C	11/20/2017 1349	DG
Zinc	50.7	mg/Kg		0.600	EPA 6010C	11/20/2017 1349	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect

Reviewed by: _____ -

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-009	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_1	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

eennite							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	0.0284	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.229	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	2.37	%		0.100	ASA9 29-2.2	11/27/2017 1218	KS
Total Organic Carbon	0.299	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits
- ~

Reviewed by: _____

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-010	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Total							
Gross Alpha	8.6	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	1.8	pCi/g	U		SM 7110	12/30/2017 1210	MB
Gross Beta	12.0	pCi/g		10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	2.8	pCi/g			SM 7110	12/30/2017 1210	MB
Radium 226	0.86	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 648	WN
Radium 226 Precision (±)	0.3	pCi/g			EPA 901.1 Mod.	12/14/2017 648	WN
Radium 228	0.42	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 648	WN
Radium 228 Precision (±)	0.4	pCi/g			EPA 901.1 Mod.	12/14/2017 648	WN
General Parameters - Soil							
Percent Solids	85.4	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	26.1	ppm		1.00	EPA 300.0	01/12/2018 1806	AB
Fluoride	1.83	ppm		0.100	EPA 300.0	01/12/2018 1806	AB
Total Inorganic Carbon	3.90	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.123	%		0.0100	EPA600/2-78-054	11/27/2017 1222	KS
Neutralization Potential	327	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

В

- Qualifiers:
- Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recover X Matrix Effect Spike Recovery outside accepted recovery limits
- Reviewed by: _____

~

Wade Nieuwsma, Assistant Laboratory Manager

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-010	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	2240	mg/Kg		1.50	EPA 6010C	11/20/2017 1354	DG
Antimony	2.05	mg/Kg		1.70	EPA 6010C	11/20/2017 1354	DG
Arsenic	2.98	mg/Kg		0.600	EPA 6010C	11/20/2017 1354	DG
Barium	132	mg/Kg		1.00	EPA 6010C	11/20/2017 1354	DG
Beryllium	0.103	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1354	DG
Cadmium	0.325	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Calcium	48800	mg/Kg		5.00	EPA 6010C	11/20/2017 1354	DG
Chromium	10.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Cobalt	5.64	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Copper	7.48	mg/Kg		0.500	EPA 6010C	11/20/2017 1354	DG
Germanium	1.56	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1354	DG
Iron	17500	mg/Kg		2.00	EPA 6010C	11/20/2017 1356	DG
Lead	8.03	mg/Kg		2.40	EPA 6010C	11/20/2017 1354	DG
Magnesium	14000	mg/Kg		10.0	EPA 6010C	11/20/2017 1354	DG
Manganese	21700	mg/Kg		0.100	EPA 6010C	11/20/2017 1356	DG
Mercury	-0.0003	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	2.61	mg/Kg		0.600	EPA 6010C	11/20/2017 1354	DG
Nickel	13.9	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Potassium	2040	mg/Kg		10.0	EPA 6010C	11/20/2017 1354	DG
Selenium	15.8	mg/Kg		1.30	EPA 6010C	11/20/2017 1354	DG
Silicon	370	mg/Kg		4.00	EPA 6010C	11/20/2017 1354	DG
Silver	1.13	mg/Kg		0.400	EPA 6010C	11/20/2017 1354	DG
Sodium	673	mg/Kg		73.0	EPA 6010C	11/20/2017 1354	DG
Strontium	85.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Thallium	18.5	mg/Kg		4.30	EPA 6010C	11/20/2017 1354	DG
Uranium	7.96	mg/Kg		2.80	EPA 6010C	11/20/2017 1354	DG
Vanadium	22.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1354	DG
Zinc	45.8	mg/Kg		0.600	EPA 6010C	11/20/2017 1354	DG

These results apply only to the samples tested.

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Holding times for preparation or analysis exceeded Н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits
- S X Matrix Effect Reviewed by: _____

Qualifiers:

-

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-010	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_2	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

•••••••••••••••••••••••••••••••••••••••							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Sulfur							
Sulfur, Sulfate	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.115	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%		0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon							
Total Carbon	4.14	%		0.100	ASA9 29-2.2	11/27/2017 1222	KS
Total Organic Carbon	0.208	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
- Matrix Effect ~

Reviewed by: <u>A</u>

Wade Nieuwsma, Assistant Laboratory Manager

С Calculated Value

- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

. ,	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-011	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Total							
Gross Alpha	4.6	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Alpha Precision (±)	0.9	pCi/g	U		SM 7110	12/30/2017 1210	MB
Gross Beta	6.2	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
Gross Beta Precision (±)	1.4	pCi/g	U		SM 7110	12/30/2017 1210	MB
Radium 226	0.39	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 806	WN
Radium 226 Precision (±)	0.1	pCi/g			EPA 901.1 Mod.	12/14/2017 806	WN
Radium 228	0.37	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 806	WN
Radium 228 Precision (±)	0.2	pCi/g			EPA 901.1 Mod.	12/14/2017 806	WN
General Parameters - Soil							
Percent Solids	81.3	%		0.100	SM 2540G	10/27/2017 000	KS
Chloride	18.4	ppm		1.00	EPA 300.0	01/12/2018 1820	AB
Fluoride	0.913	ppm		0.100	EPA 300.0	01/12/2018 1820	AB
Total Inorganic Carbon	2.00	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
Acid Potential							
Total Sulfur	0.176	%		0.0100	EPA600/2-78-054	11/27/2017 1225	KS
Neutralization Potential	166	t/1000t			EPA600/2-78-054	11/16/2017 000	СН

These results apply only to the samples tested.

RL - Reporting Limit

- Qualifiers:
- В Analyte detected in the associated Method Blank Е Value above quantitation range
- Holding times for preparation or analysis exceeded н
- Analyzed by another laboratory L
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- Х Matrix Effect Л Reviewed by

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- Analysis reported under the reporting limit U

Sample Analysis Report

Company:	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-011	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Total							
Aluminum	4320	mg/Kg		1.50	EPA 6010C	11/20/2017 1358	DG
Antimony	2.59	mg/Kg		1.70	EPA 6010C	11/20/2017 1358	DG
Arsenic	4.23	mg/Kg		0.600	EPA 6010C	11/20/2017 1358	DG
Barium	126	mg/Kg		1.00	EPA 6010C	11/20/2017 1358	DG
Beryllium	0.224	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1358	DG
Cadmium	0.350	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Calcium	36900	mg/Kg		5.00	EPA 6010C	11/20/2017 1358	DG
Chromium	11.7	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Cobalt	6.31	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Copper	9.63	mg/Kg		0.500	EPA 6010C	11/20/2017 1358	DG
Germanium	2.59	mg/Kg	U	7.00	EPA 6010C	11/20/2017 1358	DG
Iron	13000	mg/Kg		2.00	EPA 6010C	11/20/2017 1409	DG
Lead	7.70	mg/Kg		2.40	EPA 6010C	11/20/2017 1358	DG
Magnesium	11000	mg/Kg		10.0	EPA 6010C	11/20/2017 1358	DG
Manganese	3880	mg/Kg		0.100	EPA 6010C	11/20/2017 1358	DG
Mercury	0.0139	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	1.59	mg/Kg		0.600	EPA 6010C	11/20/2017 1358	DG
Nickel	17.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Potassium	1690	mg/Kg		10.0	EPA 6010C	11/20/2017 1358	DG
Selenium	4.29	mg/Kg		1.30	EPA 6010C	11/20/2017 1358	DG
Silicon	304	mg/Kg		4.00	EPA 6010C	11/20/2017 1358	DG
Silver	0.338	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1358	DG
Sodium	727	mg/Kg		73.0	EPA 6010C	11/20/2017 1358	DG
Strontium	58.3	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Thallium	5.44	mg/Kg		4.30	EPA 6010C	11/20/2017 1358	DG
Uranium	-0.89	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1358	DG
Vanadium	23.2	mg/Kg		0.200	EPA 6010C	11/20/2017 1358	DG
Zinc	46.9	mg/Kg		0.600	EPA 6010C	11/20/2017 1358	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- Analyzed by another laboratory L ND
- Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits Matrix Effect

Reviewed by: _____ ~

Wade Nieuwsma, Assistant Laboratory Manager

- С Calculated Value
- Analyzed at IML Gillette laboratory G
- Analyte detected below quantitation limits J
- Value exceeds Monthly Ave or MCL or is less than LCL Μ
- 0 Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Page 32 of 36

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-011	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_3	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

•••••••••••••••••••••••••••••••••••••••						
Analyses	Result Units Qual RL		Method	Date Analyzed/Init		
Sulfur						
Sulfur, Sulfate	ND	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.167	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon						
Total Carbon	2.60	%	0.100	ASA9 29-2.2	11/27/2017 1225	KS
Total Organic Carbon	0.600	%	0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

Qualifiers:

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect
- X Matrix Effect

Reviewed by:

- RL Reporting Limit C Calculated Value
 - G Analyzed at IML Gillette laboratory
 - J Analyte detected below quantitation limits
 - M Value exceeds Monthly Ave or MCL or is less than LCL
 - O Outside the Range of Dilutions
 - U Analysis reported under the reporting limit

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-012	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

lyses Result Units Qual RL		Method	Date Analyzed/Init			
4.8	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
1.0	pCi/g	U		SM 7110	12/30/2017 1210	MB
5.8	pCi/g	U	10.0	SM 7110	12/30/2017 1210	MB
1.6	pCi/g	U		SM 7110	12/30/2017 1210	MB
0.34	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 924	WN
0.3	pCi/g			EPA 901.1 Mod.	12/14/2017 924	WN
0.44	pCi/g		0.200	EPA 901.1 Mod.	12/14/2017 924	WN
0.6	pCi/g			EPA 901.1 Mod.	12/14/2017 924	WN
69.6	%		0.100	SM 2540G	10/27/2017 000	KS
28.3	ppm		1.00	EPA 300.0	01/12/2018 1834	AB
0.694	ppm		0.100	EPA 300.0	01/12/2018 1834	AB
3.50	%		0.100	ASA9 29-3.2	01/03/2018 1632	KS
0.179	%		0.0100	EPA600/2-78-054	11/27/2017 1229	KS
287	t/1000t			EPA600/2-78-054	11/16/2017 000	СН
	4.8 1.0 5.8 1.6 0.34 0.3 0.44 0.6 69.6 28.3 0.694 3.50 0.179	4.8 pCi/g 1.0 pCi/g 5.8 pCi/g 1.6 pCi/g 0.34 pCi/g 0.3 pCi/g 0.44 pCi/g 0.6 pCi/g 69.6 % 28.3 ppm 0.694 ppm 3.50 %	4.8 pCi/g U 1.0 pCi/g U 5.8 pCi/g U 1.6 pCi/g U 0.34 pCi/g U 0.33 pCi/g U 0.44 pCi/g 0.6 pCi/g 69.6 % 28.3 ppm 0.694 ppm 3.50 %	4.8 pCi/g U 10.0 1.0 pCi/g U 10.0 5.8 pCi/g U 10.0 1.6 pCi/g U 10.0 0.34 pCi/g 0.200 0.33 0.34 pCi/g 0.200 0.200 0.3 pCi/g 0.200 0.200 0.6 pCi/g 0.200 0.6 69.6 % 0.100 28.3 ppm 1.00 0.694 ppm 0.100 3.50 % 0.100 0.179 % 0.0100 0.100 0.100	4.8 pCi/g U 10.0 SM 7110 1.0 pCi/g U SM 7110 5.8 pCi/g U 10.0 SM 7110 5.8 pCi/g U 10.0 SM 7110 1.6 pCi/g U 10.0 SM 7110 0.34 pCi/g U SM 7110 0.33 pCi/g 0.200 EPA 901.1 Mod. 0.44 pCi/g 0.200 EPA 901.1 Mod. 0.6 pCi/g 0.200 EPA 901.1 Mod. 0.6 pCi/g 0.100 SM 2540G 28.3 ppm 1.00 EPA 300.0 0.694 ppm 0.100 EPA 300.0 3.50 % 0.100 ASA9 29-3.2 0.179 % 0.0100 EPA600/2-78-054	4.8 pCi/g U 10.0 SM 7110 12/30/2017 1210 1.0 pCi/g U SM 7110 12/30/2017 1210 5.8 pCi/g U 10.0 SM 7110 12/30/2017 1210 1.6 pCi/g U 10.0 SM 7110 12/30/2017 1210 0.34 pCi/g U SM 7110 12/30/2017 1210 0.34 pCi/g 0.200 EPA 901.1 Mod. 12/14/2017 924 0.3 pCi/g 0.200 EPA 901.1 Mod. 12/14/2017 924 0.6 pCi/g 0.200 EPA 901.1 Mod. 12/14/2017 924 0.6 pCi/g 0.200 EPA 901.1 Mod. 12/14/2017 924 69.6 % 0.100 SM 2540G 10/27/2017 000 28.3 ppm 1.00 EPA 300.0 01/12/2018 1834 0.694 ppm 0.100 ASA9 29-3.2 01/03/2018 1632 0.179 % 0.0100 EPA600/2-78-054 11/27/2017 1229

These results apply only to the samples tested.

RL - Reporting Limit C Calcula

- Qualifiers:
- B Analyte detected in the associated Method BlankE Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect
- G Analyzed at IML Gillette laboratory
 - J Analyte detected below quantitation limits
 - M Value exceeds Monthly Ave or MCL or is less than LCL
 - O Outside the Range of Dilutions

Calculated Value

U Analysis reported under the reporting limit

Reviewed by: _____

Wade Nieuwsma, Assistant Laboratory Manager

Page 34 of 36

Sample Analysis Report

. ,	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-012	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	rses Result Units Qual RL Method		Date Analyzed/Init				
Metals - Total							
Aluminum	4200	mg/Kg		1.50	EPA 6010C	11/20/2017 1422	DG
Antimony	1.75	mg/Kg		1.70	EPA 6010C	11/20/2017 1422	DG
Arsenic	3.17	mg/Kg		0.600	EPA 6010C	11/20/2017 1422	DG
Barium	115	mg/Kg		1.00	EPA 6010C	11/20/2017 1422	DG
Beryllium	0.212	mg/Kg	U	0.700	EPA 6010C	11/20/2017 1422	DG
Cadmium	0.304	mg/Kg		0.200	EPA 6010C	11/20/2017 1422	DG
Calcium	58500	mg/Kg		5.00	EPA 6010C	11/20/2017 1422	DG
Chromium	10.8	mg/Kg		0.200	EPA 6010C	11/20/2017 1422	DG
Cobalt	5.40	mg/Kg		0.200 EPA 6010C		11/20/2017 1422	DG
Copper	9.66	mg/Kg		0.500	EPA 6010C	11/20/2017 1422	DG
Germanium	0.492	mg/Kg	U	7.00	EPA 6010C	11/21/2017 1411	DG
ron	18400	mg/Kg		2.00	EPA 6010C	11/20/2017 1429	DG
_ead	7.14	mg/Kg		2.40	EPA 6010C	11/20/2017 1422	DG
Magnesium	16700	mg/Kg		10.0	EPA 6010C	11/20/2017 1422	DG
Vanganese	3110	mg/Kg		0.100	EPA 6010C	11/20/2017 1422	DG
Mercury	0.0133	mg/Kg	U	0.200	7471B	11/21/2017 000	AW
Molybdenum	1.72	mg/Kg		0.600	EPA 6010C	11/20/2017 1422	DG
Nickel	15.6	mg/Kg		0.200	EPA 6010C	11/20/2017 1422	DG
Potassium	1760	mg/Kg		10.0	EPA 6010C	11/20/2017 1422	DG
Selenium	3.37	mg/Kg		1.30	EPA 6010C	11/20/2017 1422	DG
Silicon	318	mg/Kg		4.00	EPA 6010C	11/20/2017 1422	DG
Silver	0.383	mg/Kg	U	0.400	EPA 6010C	11/20/2017 1422	DG
Sodium	731	mg/Kg		73.0	EPA 6010C	11/20/2017 1422	DG
Strontium	57.5	mg/Kg		0.200	EPA 6010C	11/20/2017 1422	DG
Thallium	4.38	mg/Kg		4.30	EPA 6010C	11/20/2017 1422	DG
Jranium	-0.41	mg/Kg	U	2.80	EPA 6010C	11/20/2017 1422	DG
Vanadium	23.8	mg/Kg		0.200	EPA 6010C	11/20/2017 1422	DG
Zinc	44.6	mg/Kg		0.600	EPA 6010C	11/20/2017 1422	DG

These results apply only to the samples tested.

Qualifiers:

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits X Matrix Effect

Reviewed by: _____ -

Wade Nieuwsma, Assistant Laboratory Manager

- C Calculated Value
- G Analyzed at IML Gillette laboratory
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL or is less than LCL
- O Outside the Range of Dilutions
- U Analysis reported under the reporting limit

Page 35 of 36

Sample Analysis Report

	North Dakota State Water Commission 900 East Boulevard Ave Bismark, ND 58505-0850	Date Reported Report ID	1/18/2018 S1710437002 (Replaces S1710437001)
ProjectName:	ASR_Spiritwood Soil Matrix 2017	WorkOrder:	S1710437
Lab ID:	S1710437-012	CollectionDate:	9/13/2017
ClientSample ID:	14006228AAA1_4	DateReceived:	10/27/2017 11:49:00 AM
COC:		FieldSampler:	MG
		Matrix:	Soil

Comments

Analyses	Result Units Qual RL		Method	Date Analyzed/I	nit	
Sulfur						
Sulfur, Sulfate	ND	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Pyritic	0.178	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Sulfur, Organic	ND	%	0.0100	EPA600/2-78-054	01/02/2018 000	KS
Total Organic Carbon						
Total Carbon	3.89	%	0.100	ASA9 29-2.2	11/27/2017 1229	KS
Total Organic Carbon	0.446	%	0.100	ASA9 29-3.2	01/03/2018 1632	KS

These results apply only to the samples tested.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Н Holding times for preparation or analysis exceeded
- L Analyzed by another laboratory
- ND Not Detected at the Reporting Limit
- S X Spike Recovery outside accepted recovery limits
 - Matrix Effect

Qualifiers:

~ Reviewed by: <u>A</u>

- **RL Reporting Limit** С Calculated Value
 - Analyzed at IML Gillette laboratory G
 - Analyte detected below quantitation limits J
 - Value exceeds Monthly Ave or MCL or is less than LCL Μ
 - 0 Outside the Range of Dilutions
 - Analysis reported under the reporting limit U

ANALYTICAL QC SUMMARY REPORT

CLIENT: North Dakota State Water Commission Date: 1/18/2018 Work Order: S1710437 Report ID: S1710437002 **Project:** ASR Spiritwood Soil Matrix 2017 (Replaces S1710437001) Gross Alpha in Soil Sample Type MBLK Units: pCi/g MB-474 (12/29/17 22:19) PrepDate: 12/16/17 0:00 RunNo: 153425 BatchID R153425 Spike Ref Samp %REC % Rec Limits Analyte Result RL Qual Gross Alpha ND 10 Gross Beta ND 10 Gross Alpha in Soil Sample Type LCS Units: pCi/g LCS-474 (12/29/17 22:19) RunNo: 153425 PrepDate: 12/16/17 0:00 BatchID R153425 Analyte Result Spike Ref Samp %REC % Rec Limits Qual RL Gross Alpha 80 10 78.6 77.4 - 130 102 Gross Beta 150 10 122 80 - 131 121 **Gross Alpha in Soil** Sample Type MS Units: pCi/g S1710437-001B MS (12/29/17 22:19) RunNo: 153425 PrepDate: 12/16/17 0:00 BatchID R153425 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual Gross Alpha 90 10 78.6 ND 97.9 52.4 - 124 Gross Beta 160 122 10 ND 122 80 - 145 **Gross Alpha in Soil** Sample Type DUP Units: pCi/g S1710437-002B DUP (12/29/17 22:19) RunNo: 153425 PrepDate: 12/16/17 0:00 BatchID R153425 Ref Samp %RPD %REC % RPD Limits Analyte Result RL Qual Gross Alpha ND 10 ND 20 Gross Beta ND 10 ND 0 **Total Mercury in Soils** Sample Type MBLK Units: mg/Kg MB-R152198 (11/21/17 00:00) RunNo: 152198 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual ND 02 Mercury **Total Mercury in Soils** Sample Type LCS Units: mg/Kg LCS-R152198 (11/21/17 00:00) RunNo: 152198 Result RL Spike Ref Samp %REC % Rec Limits Qual Analyte 2.0 2 100 80 - 120 Mercury 0.2 **Total Mercury in Soils** Sample Type DUP Units: mg/Kg S1710437-001A (11/21/17 00:00) RunNo: 152198 Analyte Result RL Ref Samp %RPD %REC % RPD Limits Qual ND 0.2 ND Mercury S1710437-009A (11/21/17 00:00) RunNo: 152198 Analyte Result RL Ref Samp %RPD %REC % RPD Limits Qual ND 0.2 ND Mercury

Analyte detected in the associated Method Blank Е Qualifiers: В Analyzed at IML Gillette laboratory G Н J Analyte detected below quantitation limits L

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

х Matrix Effect Value above quantitation range

Holding times for preparation or analysis exceeded

Analyzed by another laboratory

0 Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

ANALYTICAL QC SUMMARY REPORT

LIENT: /ork Order: roject:	North Dakota State Water Commission S1710437 ASR_Spiritwood Soil Matrix 2017			Re	Date: 1 port ID: S (6171043		1)
Radium	By Gamma Spectroscopy in Soil	Sample Type MBLK		Units:	pCi/g			
	/IB-14008 (12/13/17 16:34)	RunNo: 152967	Prep	Date: 11/15	5/17 0:00	Bato	hID 14008	
	Analyte	Result	RL .			%REC	% Rec Limits	Qual
	Radium 226	ND	0.2					
	Radium 228	ND	0.2					
Radium	By Gamma Spectroscopy in Soil	Sample Type LCS		Units:	pCi/g			
L	CS-14008 (12/13/17 17:52)	RunNo: 152967	Prep	Date: 11/15	5/17 0:00	Bato	hID 14008	
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Radium 226	33.9	0.2	37.9		89.4	70 - 130	
	Radium 228	8.7	0.2	8.36		104	70 - 130	
Radium	By Gamma Spectroscopy in Soil	Sample Type LCSD		Units:	pCi/g			
L	.CSD-14008 (12/14/17 23:44)	RunNo: 152967	Prep	Date: 11/15	5/17 0:00	Bato	hID 14008	
	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
	Radium 226	34.2	0.2	33.9	0.861	90.2	20	
	Radium 228	7.6	0.2	8.7	12.9	91.2	20	
Sulfur F	orms	Sample Type LCS		Units:	%			1
L	.CS (11/27/17 11:43)	RunNo: 152302						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
_	Total Sulfur	0.32	0.01	0.3		107	80 - 120	
L	CS-R153348 (01/02/18 00:00)	RunNo: 153348						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Sulfur, Organic	0.03	0.01	0.03		103	80 - 120	
	Sulfur, Pyritic	0.15	0.01	0.14		109	80 - 120	
	Sulfur, Sulfate	0.14	0.01	0.13		104	80 - 120	
	Total Sulfur	0.32	0.01	0.3		106	80 - 120	
Sulfur F	orms	Sample Type DUP		Units:	%			
S	61710437-012BD (11/27/17 12:33)	RunNo: 152302						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	Total Sulfur	0.21	0.01	0.18	14.8		20	
Total Or	ganic Carbon - LECO Furnace	Sample Type LCS		Units:	%			
L	.CS (11/27/17 11:43)	RunNo: 152302						
	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	Total Carbon	3.2	0.1	3.25		99.3	80 - 120	_
Total Or	ganic Carbon - LECO Furnace	Sample Type DUP		Units:	%			
S	S1710437-012BD (11/27/17 12:33)	RunNo: 152302						
	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
<u> </u>	Total Carbon	3.9	0.1	3.9	0.438		20	

Qualifiers: B Analyte detected in the associated Method Blank

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

X Matrix Effect

E Value above quantitation range

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

ANALYTICAL QC SUMMARY REPORT

CLIENT: North Dakota State Water Commission Date: 1/18/2018 S1710437 Work Order: Report ID: S1710437002 ASR Spiritwood Soil Matrix 2017 **Project:** (Replaces S1710437001) (3050) Metals by ICP - 6010C Sample Type MBLK Units: mg/Kg **Total** MB-13895 (11/20/17 12:19) PrepDate: 11/19/17 10:05 RunNo: 152172 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual Aluminum ND 1.5 Antimony ND 1.7 Arsenic ND 0.6 Barium ND 0.08 Beryllium ND 0.7 Cadmium ND 0.2 Chromium ND 0.2 Cobalt ND 0.2 ND 0.5 Copper Iron ND 2 Lead ND 24 Manganese ND 0.1 ND Selenium 1.3 Silver ND 0.4 Thallium ND 4.3 Uranium ND 2.8 Vanadium ND 0.2 Zinc ND 0.6 MB-13895 (11/20/17 12:19) RunNo: 152264 PrepDate: 11/19/17 10:05 BatchID 13895 Result Spike Ref Samp %REC % Rec Limits Analyte RL Qual Germanium ND 7.00 MB-13895 (11/20/17 12:19) RunNo: 153575 PrepDate: 11/19/17 10:05 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual Calcium ND 5 Magnesium ND 10 Potassium ND 10 Silicon ND 4 Sodium ND 73 MB-13895 (11/20/17 12:19) RunNo: 153605 PrepDate: 11/19/17 10:05 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual ND 0.6 Molybdenum Nickel ND 0.2 Strontium ND 02 Total (3050) Metals by ICP - 6010C Sample Type LCS Units: mg/Kg LCS-13895 (11/20/17 12:21) RunNo: 152172 PrepDate: 11/19/17 10:05 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual Aluminum 129 1.5 125 103 80 - 120 49.8 50 Antimony 1.7 99.5 80 - 120 45.4 90.9 Arsenic 0.6 50 80 - 120 Analyte detected in the associated Method Blank Е Value above quantitation range Qualifiers: В Analyzed at IML Gillette laboratory Holding times for preparation or analysis exceeded G Н J Analyte detected below quantitation limits Analyzed by another laboratory

L 0

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Х Matrix Effect

Outside the Range of Dilutions S

Spike Recovery outside accepted recovery limits

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

ANALYTICAL QC SUMMARY REPORT

CLIENT: North Dakota State Water Commission Date: 1/18/2018 S1710437 Work Order: Report ID: S1710437002 ASR Spiritwood Soil Matrix 2017 **Project:** (Replaces S1710437001) (3050) Metals by ICP - 6010C Sample Type LCS Units: mg/Kg **Total** PrepDate: 11/19/17 10:05 LCS-13895 (11/20/17 12:21) RunNo: 152172 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual Barium 47.5 0.08 50 94.9 80 - 120 Beryllium 52.7 0.7 50 105 80 - 120 Cadmium 45.8 0.2 50 91.7 80 - 120 Chromium 80 - 120 47.8 0.2 50 95.6 Cobalt 47.6 0.2 50 95.2 80 - 120 45.9 0.5 91.8 Copper 50 80 - 120 Iron 122 2 125 98.0 80 - 120 Lead 46.0 2.4 50 92.1 80 - 120 44.8 0.1 50 89.6 80 - 120 Manganese Selenium 90.8 1.3 100 90.8 80 - 120 Silver 23.7 04 25 94.7 80 - 120 Thallium 44.5 4.3 50 89.1 80 - 120 Uranium 48.1 2.8 50 96.1 80 - 120 Vanadium 47.6 50 0.2 95.1 80 - 120 Zinc 48.3 0.6 50 96.5 80 - 120 LCS-13895 (11/20/17 12:21) RunNo: 153605 PrepDate: 11/19/17 10:05 BatchID 13895 Analyte Result RL Spike Ref Samp %REC % Rec Limits Qual 52.9 0.6 Molybdenum 50 106 80 - 120 125 Nickel 114 0.2 91.4 80 - 120 Strontium 48.4 0.2 50 96.9 80 - 120 Total (3050) Metals by ICP - 6010C Sample Type DUP Units: mg/Kg S1710437-011AD (11/20/17 14:06) RunNo: 152172 PrepDate: 11/19/17 10:05 BatchID 13895 % RPD Limits Analyte Result RL Ref Samp %RPD %REC Qual Aluminum 4260 1.5 20 4320 1.18 Antimony ND 1.7 2.6 20 0.6 Arsenic 4.0 42 6.19 20 Barium 126 126 0.516 20 1 Beryllium ND 0.7 ND 20 Cadmium 0.2 20 0.4 0.4 1.35 0.2 Chromium 11.8 11.7 0.332 20 Cobalt 0.2 6.3 1.05 20 64 9.4 0.5 9.6 1.92 20 Copper 20 Lead 7.4 24 7.7 4.55 Manganese 3880 0.1 3880 0.0849 20 Selenium 4.7 1.3 4.3 9.77 20 Silver ND 0.4 ND 20 Thallium 5.7 4.3 5.4 4.64 20 2.8 20 Uranium ND ND Vanadium 23.0 0.2 23.2 0.691 20 Zinc 46.1 0.6 46.9 1.85 20 Analyte detected in the associated Method Blank Е Value above quantitation range Qualifiers: В

G Analyzed at IML Gillette laboratory

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

X Matrix Effect

H Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

ANALYTICAL QC SUMMARY REPORT

CLIENT: North Dakota State Water Commission Date: 1/18/2018 Work Order: S1710437 Report ID: S1710437002 **Project:** ASR Spiritwood Soil Matrix 2017 (Replaces S1710437001) (3050) Metals by ICP - 6010C Sample Type DUP Units: mg/Kg **Total** S1710437-011AD (11/20/17 14:11) PrepDate: 11/19/17 10:05 RunNo: 152172 BatchID 13895 Ref Samp %RPD %REC % RPD Limits Analyte Result RL Qual Iron 13000 2 13000 0.440 20 S1710437-011AD (11/20/17 14:06) PrepDate: 11/19/17 10:05 BatchID 13895 RunNo: 152264 % RPD Limits Analyte Result RL Ref Samp %RPD %REC Qual Germanium ND 7.00 ND 0 S1710437-003AD (11/20/17 12:50) RunNo: 153575 PrepDate: 11/19/17 10:05 BatchID 13895 Analyte Result RL Ref Samp %RPD %REC % RPD Limits Qual Calcium 70000 5 69500 0.734 20 Magnesium 8170 10 8180 0.0786 20 Potassium 950 10 930 2.02 20 271 20 Silicon 289 4 6.50 Sodium 536 73 534 0.319 20 S1710437-011AD (11/20/17 14:06) RunNo: 153575 PrepDate: 11/19/17 10:05 BatchID 13895 RL Ref Samp %RPD %REC % RPD Limits Analyte Result Qual Calcium 36800 5 36900 0.230 20 Magnesium 10800 10 11000 1.99 20 Potassium 1690 10 1690 0.0622 20 Silicon 302 4 304 0.573 20 Sodium 710 73 727 20 2.31 S1710437-003AD (11/20/17 12:50) PrepDate: 11/19/17 10:05 RunNo: 153605 BatchID 13895 RL Ref Samp %RPD %REC % RPD Limits Analyte Result Qual 15.9 4.72 Molybdenum 15.3 20 3.92 Nickel 163 143 12.9 20 1.57 Strontium 20 539 1.57 532 1.30

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 E

 G
 Analyzed at IML Gillette laboratory
 H

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

X Matrix Effect

E Value above quantitation range

Holding times for preparation or analysis exceeded

L Analyzed by another laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

7.4 Appendix D

PHREEQC Results for Amended Maximum James River Solution

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (1.40); Diaspore AlO(OH) (1.83);
		Gibbsite Al(OH) ₃ (1.31)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.51); Witherite BaCO ₃ (1.34)
Be beryllium		Bromellite BeO (5.50)
Cd cadmium	Cd ⁺²	
Co cobalt ¹		CoFe ₂ O ₄ (16.44)
Cr chromium	HCrO ₄ -	
Cu copper		Delafossite CuFeO ₂ (0.26); Ferrite-Cu CuFe ₂ O ₄ (7.36)
F fluoride		Fluorapatite Ca₅(PO₄)₃F (4.77)
Fe iron		Goethite FeOOH (5.29); Hematite Fe ₂ O ₃ (11.51)
Hg mercury		Calomel Hg ₂ Cl ₂ (0.27); Montroydite HgO (2.77)
Mn manganese		Birnessite Mn ₈ O ₁₄ :5H ₂ O (29.95); Bixbyite Mn ₂ O ₃
		(4.65); Manganite MnO(OH) (2.90); Pyrolusite MnO ₂
		(6.80)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (6.94)
Pb lead	Pb ⁺²	
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (27.60); Sb ₂ O ₅ (33.67)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI⁺	
U uranium ²		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
V vanadium ²		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (6.54)

Condition: Maximum James River constituents, pe = oxygen couple, pe = 15.7, pH = 6

¹Minimal coverage in LLNL database.

²All other non-silicate U and V minerals were undersaturated.

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver	Species	Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.05); Corundum Al ₂ O ₃ (0.64);
		Diaspore AlO(OH) (2.48); Gibbsite Al(OH) ₃ (1.96)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Witherite BaCO ₃ (2.77)
Be beryllium		Bromellite BeO (7.49)
Cd cadmium		Otovite CdCO ₃ (0.02)
Co cobalt		CoFe ₂ O ₄ (19.19); Spinel-Co Co ₃ O ₄ (3.89)
Cr chromium	CrO ₄ -2	
Cu copper		Delafossite CuFeO ₂ (1.81); Ferrite-Cu CuFe ₂ O ₄ (9.35)
F fluoride		Fluorapatite Ca₅(PO₄)₃F (9.83)
Fe iron		Goethite FeOOH (5.73); Hematite Fe ₂ O ₃ (12.40)
Hg mercury		Calomel Hg ₂ Cl ₂ (2.25); Montroydite HgO (4.77)
Mn manganese		Birnessite Mn ₈ O ₁₄ :5H ₂ O (45.75); Bixbyite Mn ₂ O ₃
		(8.60); Manganite MnO(OH) (4.87); Pyrolusite MnO ₂
		(8.77)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (9.82)
Pb lead		Cerussite PbCO ₃ (0.71)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (27.60); Sb ₂ O ₅ (33.67)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
TI thallium ¹	TI ⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (9.40); ZnCO ₃ :H ₂ O (0.10)

Condition: Maximum James River constituents,	pe = oxygen couple, pe = 14.7, pH = 7
--	---------------------------------------

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.55); Corundum Al_2O_3 (1.65);
		Diaspore AlO(OH) (2.98); Gibbsite Al(OH) $_3$ (2.46)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (0.89);
		Witherite BaCO ₃ (3.85)
Be beryllium		Bromellite BeO (9.48)
Cd cadmium		Otavite CdCO ₃ (1.08)
Co cobalt		CoFe ₂ O ₄ (18.89); Spinel-Co Co ₃ O ₄ (2.57)
Cr chromium	CrO ₄ ⁻²	
Cu copper		Delafossite CuFeO ₂ (2.81); Ferrite-Cu CuFe ₂ O ₄ (10.43);
		Malachite Cu ₂ CO ₃ (OH) ₂ (0.88); Tenorite CuO (0.61)
F fluoride		Fluorapatite $Ca_5(PO_4)_3F$ (13.08)
Fe iron		$Fe(OH)_3$ (0.49); Ferrite-Ca CaFe ₂ O ₄ (3.03); Ferrite-Mg
		MgFe ₂ O ₄ (3.42); Goethite FeOOH (5.81); Hematite
		Fe ₂ O ₃ (12.55)
Hg mercury		Calomel Hg ₂ Cl ₂ (4.20); Montroydite HgO (6.74)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (60.62); Bixbyite Mn_2O_3
		(12.31); Manganite MnO(OH) (6.73); Pyrolusite MnO ₂
		(10.63); Rhodochrosite MnCO ₃ (0.73)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (11.97)
Pb lead		Cerussite PbCO₃ (0.77); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (0.58)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (27.60); Sb ₂ O ₅ (33.67)
Se selenium	SeO ₄ -2	
Sr strontium		Strontianite SrCO ₃ (0.45)
Tl thallium ¹	TI⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.49); Hydrozincite
		$Zn_5(OH)_6(CO_3)_2$ (6.66); Smithsonite $ZnCO_3$ (0.53);
		ZnCO ₃ :H ₂ O (1.12)

Condition: Maximum James River constituents, oxygen couple, pe 13.7, pH = 8

Element	Major Soluble	Major Non-Silicate Minerals (SI)
A a silver	Species	Chlorene wite Accl (0 CR)
Ag silver		Chlorargyrite AgCl (0.68)
Al aluminum		Boehmite AlO(OH) (1.77); Corundum Al ₂ O ₃ (0.07);
A	A . O . 5-2	Diaspore AlO(OH) (2.19); Gibbsite Al(OH) ₃ (1.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (2.75);
		Witherite BaCO ₃ (4.80)
Be beryllium		Bromellite BeO (9.19)
Cd cadmium		Otavite CdCO ₃ (1.95)
Co cobalt		CoFe ₂ O ₄ (18.89)
Cr chromium	CrO ₄ ⁻²	
Cu copper		Brochantite Cu ₄ (SO ₄)(OH) ₆ (1.13); Delafossite CuFeO ₂
		(3.55); Ferrite-Cu CuFe ₂ O ₄ (11.08); Malachite
		Cu ₂ CO ₃ (OH) ₂ (1.49); Tenorite CuO (1.44)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.00)
Fe iron		$Fe(OH)_3$ (0.40); Ferrite-Ca CaFe ₂ O ₄ (4.81); Ferrite-Mg
		MgFe ₂ O ₄ (5.21); Goethite FeOOH (5.72); Hematite
		Fe ₂ O ₃ (12.37)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.33); Montroydite HgO (8.77)
Mn manganese		Birnessite Mn ₈ O ₁₄ :5H ₂ O (69.70); Bixbyite Mn ₂ O ₃
		(14.58); Manganite MnO(OH) (7.87); Pyrolusite MnO ₂
		(11.76); Rhodochrosite MnCO ₃ (0.82)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (13.79)
Pb lead		Cerussite PbCO ₃ (0.67); Hydrocerussite
		$Pb_{3}(CO_{3})_{2}(OH)_{2}$ (1.33); Plattnerite PbO_{2} (0.55)
Ra radium		RaSO₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (27.60); Sb ₂ O ₅ (33.67)
Se selenium	SeO ₄ -2	
Sr strontium		Strontianite SrCO ₃ (1.39)
Tl thallium ¹	TI+	
U uranium	UO ₂ (CO ₃) ₃ ⁻⁴	
V vanadium	VO ₃ OH ⁻²	
Zn zinc	-	Ferrite-Zn ZnFe ₂ O ₄ (12.75); Hydrozincite
		$Zn_5(OH)_6(CO_3)_2$ (11.73); Smithsonite $ZnCO_3$ (0.92);
		Zincite ZnO (0.88); ZnCO ₃ :H ₂ O (1.51)

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver	-	Chlorargyrite AgCl (0.62)
Al aluminum		Boehmite AlO(OH) (0.77); Diaspore AlO(OH) (1.20);
		Gibbsite Al(OH)₃ (0.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.47); Barytocalcite BaCa(CO ₃) ₂ (3.98);
		Witherite BaCO ₃ (5.48)
Be beryllium		Bromellite BeO (7.20)
Cd cadmium		Otavite CdCO ₃ (2.04)
Co cobalt		CoFe ₂ O ₄ (15.76)
Cr chromium	CrO ₄ -2	
Cu copper		Brochantite Cu ₄ (SO ₄)(OH) ₆ (1.95); Delafossite CuFeO ₂
		(3.77); Ferrite-Cu CuFe ₂ O ₄ (10.82); Malachite
		Cu ₂ CO ₃ (OH) ₂ (1.62); Tenorite CuO (2.13)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.18)
Fe iron		Ferrite-Ca CaFe ₂ O ₄ (5.67); Ferrite-Mg MgFe ₂ O ₄ (6.15);
		Goethite FeOOH (5.24); Hematite Fe_2O_3 (11.41)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.50); Montroydite HgO (10.77)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (63.70); Bixbyite Mn_2O_3
		(13.08); Manganite MnO(OH) (7.12); Pyrolusite MnO ₂
	2	(11.01)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Bunsenite NiO (0.34); Ni(OH) ₂ (0.09); Trevorite
		NiFe ₂ O ₄ (14.64)
Pb lead		Cerussite PbCO ₃ (0.34); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (1.61); Plattnerite PbO ₂ (1.49)
Ra radium		RaSO ₄ (1.62)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (27.60); Sb ₂ O ₅ (33.66)
Se selenium	SeO ₄ -2	
Sr strontium	-1+	Strontianite SrCO ₃ (2.05)
Tl thallium ¹		
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (12.06); Hydrozincite
		$Zn_5(OH)_6(CO_3)_2$ (10.54); Zincite ZnO (1.15); Zn(OH)_2
		(gamma) (1.30)

Condition: Maximum James River constituents, pe = oxygen couple, pe = 11.7, pH = 10

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (1.40); Diaspore AlO(OH) (1.83);
		Gibbsite Al(OH) ₃ (1.31)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.51); Witherite BaCO ₃ (1.34)
Be beryllium		Bromellite BeO (5.50)
Cd cadmium	Cd ⁺²	
Co cobalt		CoFe ₂ O ₄ (16.44)
Cr chromium	HCrO ₄ -	
Cu copper		Delafossite CuFeO ₂ (1.79); Ferrite-Cu CuFe ₂ O ₄ (7.36)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (4.77)
Fe iron		Goethite FeOOH (5.29); Hematite Fe ₂ O ₃ (11.51)
Hg mercury		Calomel Hg ₂ Cl ₂ (3.31); Montroydite HgO (2.77)
Mn manganese		Birnessite Mn ₈ O ₁₄ :5H ₂ O (11.69); Bixbyite Mn ₂ O ₃
		(1.60); Manganite MnO(OH) (1.38); Pyrolusite MnO ₂
		(3.75)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (6.94)
Pb lead	Pb ⁺²	
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (24.56); Sb ₂ O ₅ (27.58)
Se selenium	SeO ₄ -2	
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI⁺	
U uranium ²		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
V vanadium ²		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (6.54)

Condition: Maximum James River constituents, pe = nitrogen couple, pe = 14.2, pH = 6

¹Minimal coverage in LLNL database.

²All other non-silicate U and V minerals were undersaturated.

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.05); Corundum Al ₂ O ₃ (0.64);
		Diaspore AlO(OH) (2.48); Gibbsite Al(OH) $_3$ (1.96)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.50); Witherite BaCO ₃ (2.77)
Be beryllium		Bromellite BeO (7.49)
Cd cadmium		Otavite CdCO ₃ (0.02)
Co cobalt		CoFe ₂ O ₄ (19.19); Spinel-Co Co ₃ O ₄ (0.44)
Cr chromium	CrO ₄ ⁻²	
Cu copper		Delafossite CuFeO ₂ (3.53); Ferrite-Cu CuFe ₂ O ₄ (9.35)
F fluoride		Fluorapatite Ca₅(PO₄)₃F (9.83)
Fe iron		Goethite FeOOH (5.73); Hematite Fe ₂ O ₃ (12.40)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.17); Montroydite HgO (4.50)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (25.08); Bixbyite Mn_2O_3
		(5.15); Manganite MnO(OH) (3.15); Pyrolusite MnO ₂
		(5.33)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (9.82)
Pb lead		Cerussite PbCO ₃ (0.71)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (24.16); Sb ₂ O ₅ (26.78)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (9.40); ZnCO ₃ :H ₂ O (0.10)

Condition: Maximum James River constituents, pe = nitrogen couple, pe = 13.0, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver	-	Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.55); Corundum Al ₂ O ₃ (1.65);
		Diaspore AlO(OH) (2.98); Gibbsite Al(OH) $_3$ (2.46)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (0.89);
		Witherite BaCO ₃ (3.85)
Be beryllium		Bromellite BeO (9.48)
Cd cadmium		Otavite CdCO ₃ (1.08)
Co cobalt		CoFe ₂ O ₄ (18.89)
Cr chromium	CrO ₄ ⁻²	
Cu copper		Ferrite-Cu CuFe ₂ O ₄ (10.43); Malachite Cu ₂ CO ₃ (OH) ₂
		(0.88); Tenorite CuO (0.61)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (13.08)
Fe iron		$Fe(OH)_3$ (0.49); Ferrite-Ca CaFe ₂ O ₄ (3.03); Ferrite-Mg
		MgFe ₂ O ₄ (3.42); Goethite FeOOH (5.81); Hematite
		Fe ₂ O ₃ (12.55)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.49); Montroydite HgO (5.46)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (37.56); Bixbyite Mn_2O_3
		(8.47); Manganite MnO(OH) (4.81); Pyrolusite MnO ₂
		(6.79); Rhodochrosite MnCO₃ (0.73)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (11.97)
Pb lead		Cerussite PbCO ₃ (0.77); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (0.58)
Ra radium		RaSO ₄ (1.58)
Sb antimony	-	Sb(OH) ₃ (1.01); Sb ₂ O ₄ (23.76); Sb ₂ O ₅ (25.98)
Se selenium	SeO ₄ ⁻²	
Sr strontium		Strontianite SrCO ₃ (0.45)
Tl thallium ¹	TI ⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.49); Hydrozincite
		$Zn_5(OH)_6(CO_3)_2$ (6.66); Smithsonite $ZnCO_3$ (0.53);
		ZnCO ₃ :H ₂ O (1.12)

Condition: Maximum James River constituents, pe = nitrogen couple, pe = 11.8, pH = 8

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.68)
Al aluminum		Boehmite AlO(OH) (1.77); Corundum Al ₂ O ₃ (0.07);
		Diaspore AlO(OH) (2.19); Gibbsite Al(OH) ₃ (1.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (2.75);
		Witherite BaCO ₃ (4.80)
Be beryllium		Bromellite BeO (9.19)
Cd cadmium		Otavite CdCO ₃ (1.95)
Co cobalt		CoFe ₂ O ₄ (17.72)
Cr chromium	CrO ₄ -2	
Cu copper		Brochantite Cu ₄ (SO ₄)(OH) ₆ (1.13); Ferrite-Cu CuFe ₂ O ₄
		(11.08); Malachite Cu ₂ CO ₃ (OH) ₂ (1.49); Tenorite CuO
		(1.44)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.00)
Fe iron		$Fe(OH)_3$ (0.40); Ferrite-Ca CaFe ₂ O ₄ (4.81); Ferrite-Mg
		MgFe ₂ O ₄ (5.21); Goethite FeOOH (5.72); Hematite
		Fe ₂ O ₃ (12.37)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Montroydite HgO (6.27)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (46.92); Bixbyite Mn_2O_3
		(11.01); Manganite MnO(OH) (6.08); Pyrolusite MnO ₂
		(5.60); Rhodochrosite MnCO₃ (1.16)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (13.79)
Pb lead		Cerussite PbCO ₃ (0.67); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (1.33)
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (23.36); Sb ₂ O ₅ (25.18)
Se selenium	SeO ₄ -2	
Sr strontium		Strontianite SrCO ₃ (1.39)
TI thallium ¹	TI⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (12.75); Hydrozincite
		Zn ₅ (OH) ₆ (CO ₃) ₂ (11.73); Smithsonite ZnCO ₃ (0.92); Zincite ZnO (0.88)
		Zincite ZnO (0.88)

Condition: Maximum James River constituents, pe = nitrogen couple, pe = 10.6, pH = 9

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver	-	Chlorargyrite AgCl (0.62)
Al aluminum		Boehmite AlO(OH) (0.77); Diaspore AlO(OH) (1.20);
		Gibbsite Al(OH) ₃ (0.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.47); Barytocalcite BaCa(CO ₃) ₂ (3.98);
		Witherite BaCO ₃ (5.48)
Be beryllium		Bromellite BeO (7.20)
Cd cadmium		Otavite CdCO ₃ (2.04)
Co cobalt		CoFe ₂ O ₄ (15.76)
Cr chromium	CrO ₄ -2	
Cu copper		Brochantite Cu ₄ (SO ₄)(OH) ₆ (1.96); Ferrite-Cu CuFe ₂ O ₄
		(10.82); Malachite Cu ₂ CO ₃ (OH) ₂ (1.62); Tenorite CuO
		(2.13)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.18)
Fe iron		Ferrite-Ca CaFe ₂ O ₄ (5.67); Ferrite-Mg MgFe ₂ O ₄ (6.15);
		Goethite FeOOH (5.24); Hematite Fe ₂ O ₃ (11.41)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.52); Montroydite HgO (7.08)
Mn manganese		Birnessite Mn_8O_{14} :5H ₂ O (55.20); Bixbyite Mn_2O_3
		(13.08); Manganite MnO(OH) (7.21); Pyrolusite MnO ₂
		(8.79); Rhodochrosite MnCO₃ (1.22)
Mo molybdenum ¹	MoO ₄ -2	
Ni nickel		Bunsenite NiO (0.34); Ni(OH) ₂ (0.09); Trevorite
		NiFe ₂ O ₄ (14.64)
Pb lead		Cerussite PbCO ₃ (0.34); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (1.61)
Ra radium		RaSO ₄ (1.62)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (22.96); Sb ₂ O ₅ (24.37)
Se selenium	SeO ₄ -2	
Sr strontium		Strontianite SrCO ₃ (2.05)
Tl thallium ¹		
U uranium	UO ₂ (CO ₃) ₃ -4	
V vanadium	VO₃OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (12.06); Hydrozincite
		Zn₅(OH)₀(CO₃)₂ (10.54); Zincite ZnO (1.15); Zn(OH)₂ (gamma) (1.30)

Condition: Maximum James River constituents, pe = nitrogen couple, pe = 9.4, pH = 10

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (1.40); Diaspore AlO(OH) (1.83);
		Gibbsite Al(OH) ₃ (1.31)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.51); Witherite BaCO ₃ (1.34)
Be beryllium		Bromellite BeO (5.50)
Cd cadmium ¹		CdCr ₂ O ₄ (6.91)
Co cobalt		CoFe ₂ O ₄ (16.44)
Cr chromium		Chromite $FeCr_2O_4$ (4.39); Eskolaite Cr_2O_3 (9.27);
		Magnesiochromite MgCr ₂ O ₄ (3.44)
Cu copper		CuCr ₂ O ₄ (6.82); Ferrite-Cu CuFe ₂ O ₄ (7.36)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (4.78)
Fe iron		Goethite FeOOH (5.29); Hematite Fe_2O_3 (11.51);
		Magnetite Fe ₃ O ₄ (3.67)
Hg mercury		Calomel Hg_2Cl_2 (5.53)
Mn manganese ³	Mn ⁺²	
Mo molybdenum ²	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (6.94)
Pb lead	Pb ⁺²	
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (16.79); Sb ₂ O ₅ (12.04)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
TI thallium ²	Tl+	
U uranium ³		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.72);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
V vanadium ³		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (6.54); ZnCr ₂ O ₄ (16.29)

Condition: Maximum James River constituents, pe = chromium couple, pe = 10.3, pH = 6

¹All other non-silicate Cd minerals were undersaturated. ²Minimal coverage in LLNL database.

³All other non-silicate U and V minerals were undersaturated.

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.05); Corundum Al ₂ O ₃ (0.64);
		Diaspore AlO(OH) (2.48); Gibbsite Al(OH) ₃ (1.96)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.50); Witherite BaCO ₃ (2.77)
Be beryllium		Bromellite BeO (7.49)
Cd cadmium		CdCr ₂ O ₄ (11.29); Otavite CdCO ₃ (0.02)
Co cobalt		CoFe ₂ O ₄ (19.19)
Cr chromium		Chromite $FeCr_2O_4$ (8.18); Eskolaite Cr_2O_3 (11.68);
		Magnesiochromite MgCr ₂ O ₄ (7.84)
Cu copper		CuCr ₂ O ₄ (10.32); Ferrite-Cu CuFe ₂ O ₄ (9.35)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (9.83)
Fe iron		Fe(OH) ₃ (0.41); Ferrite-Ca CaFe ₂ O ₄ (0.89); Ferrite-Mg
		MgFe ₂ O ₄ (1.27); Goethite FeOOH (5.73); Hematite
		Fe ₂ O ₃ (12.40)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Montroydite HgO (0.05)
Mn manganese	Mn ⁺²	
Mo molybdenum ¹	MoO ₄ -2	
Ni nickel		Trevorite NiFe ₂ O ₄ (9.82)
Pb lead		Cerussite PbCO ₃ (0.71)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (14.92); Sb ₂ O ₅ (8.30)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
TI thallium ¹	TI+	
U uranium	UO ₂ (CO ₃) ₃ ⁻⁴	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (9.40); ZnCO ₃ :H ₂ O (0.10); ZnCr ₂ O ₄ (20.67)

Condition: Maximum Jame	s River constituents, pe = ch	romium couple, pe = 8.4, pH =	- 7
	s inter constituents, pe en		

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69)
Al aluminum		Boehmite AlO(OH) (2.55); Corundum Al ₂ O ₃ (1.65);
		Diaspore AlO(OH) (2.98); Gibbsite Al(OH) ₃ (2.46)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (0.89);
		Witherite BaCO ₃ (3.85)
Be beryllium		Bromellite BeO (9.48)
Cd cadmium		Otavite CdCO ₃ (1.08)
Co cobalt		CoFe ₂ O ₄ (18.89)
Cr chromium		Chromite FeCr ₂ O ₄ (10.96); Eskolaite Cr ₂ O ₃ (13.45);
		Magnesiochromite MgCr ₂ O ₄ (11.60)
Cu copper		Ferrite-Cu CuFe ₂ O ₄ (10.43); Malachite Cu ₂ CO ₃ (OH) ₂
		(0.88); Tenorite CuO (0.61)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (13.08)
Fe iron		$Fe(OH)_3$ (0.49); Ferrite-Ca CaFe ₂ O ₄ (3.03); Ferrite-Mg
		MgFe ₂ O ₄ (3.42); Goethite FeOOH (5.81); Hematite
		Fe ₂ O ₃ (12.55)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Montroydite HgO (0.12)
Mn manganese		Rhodochrosite MnCO ₃ (0.73)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (11.97)
Pb lead		Cerussite PbCO ₃ (0.77); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (0.58)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (13.04); Sb ₂ O ₅ (4.54)
Se selenium	SeO ₄ -2	
Sr strontium		Strontianite SrCO ₃ (0.45)
Tl thallium ¹	Tl ⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.49); Hydrozincite
		Zn ₅ (OH) ₆ (CO ₃) ₂ (6.66); Smithsonite ZnCO ₃ (0.53); ZnCO ₃ :H ₂ O (1.12)

Condition: Maximum James River constituents, pe = chromium couple, pe = 6.4, pH = 8

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.68)
Al aluminum		Boehmite AlO(OH) (1.77); Corundum Al_2O_3 (0.07);
		Diaspore AlO(OH) (2.19); Gibbsite Al(OH) ₃ (1.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (2.75);
		Witherite BaCO ₃ (4.80)
Be beryllium		Bromellite BeO (9.19)
Cd cadmium		CdCr ₂ O ₄ (17.56); Otavite CdCO ₃ (1.95)
Co cobalt		CoFe ₂ O ₄ (17.72)
Cr chromium		Chromite FeCr ₂ O ₄ (12.24); CuCr ₂ O ₄ (14.46); Eskolaite
		Cr ₂ O ₃ (14.05); Magnesiochromite MgCr ₂ O ₄ (14.18)
Cu copper		Brochantite Cu4(SO4)(OH)6 (1.13); CuCr2O4 (14.46);
		Ferrite-Cu CuFe ₂ O ₄ (11.08); Malachite Cu ₂ CO ₃ (OH) ₂
		(1.49); Tenorite CuO (1.44)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.00)
Fe iron		$Fe(OH)_3$ (0.40); Ferrite-Ca CaFe ₂ O ₄ (4.81); Ferrite-Mg
		MgFe ₂ O ₄ (5.21); Goethite FeOOH (5.72); Hematite
		Fe ₂ O ₃ (12.37)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Montroydite HgO (0.35)
Mn manganese		Rhodochrosite MnCO ₃ (1.16)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (13.79)
Pb lead		Cerussite PbCO ₃ (0.67); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (1.33)
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (11.52); Sb ₂ O ₅ (1.49)
Se selenium		Hg ₂ SeO ₃ (1.18)
Sr strontium		Strontianite SrCO ₃ (1.39)
Tl thallium ¹	TI⁺	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (12.75); Hydrozincite
		Zn ₅ (OH) ₆ (CO ₃) ₂ (11.73); Smithsonite ZnCO ₃ (0.92); Zincite ZnO (0.88)

Condition: Maximum James River constituents, pe = chromium couple, pe = 4.7, pH = 9

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver	-	Chlorargyrite AgCl (0.62)
Al aluminum		Boehmite AlO(OH) (0.77); Diaspore AlO(OH) (1.20);
		Gibbsite Al(OH)₃ (0.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.47); Barytocalcite BaCa(CO ₃) ₂ (3.98);
		Witherite BaCO ₃ (5.48)
Be beryllium		Bromellite BeO (7.20)
Cd cadmium		CdCr ₂ O ₄ (17.87); Otavite CdCO ₃ (2.04)
Co cobalt		CoFe ₂ O ₄ (15.76)
Cr chromium		Chromite $FeCr_2O_4$ (11.20); Eskolaite Cr_2O_3 (13.01);
		Magnesiochromite MgCr ₂ O ₄ (15.03); ZnCr ₂ O ₄ (25.65)
Cu copper		Brochantite Cu ₄ (SO ₄)(OH) ₆ (1.96); Ferrite-Cu CuFe ₂ O ₄
		(10.82); Malachite Cu ₂ CO ₃ (OH) ₂ (1.62); Tenorite CuO
		(2.13)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.18)
Fe iron		Ferrite-Ca CaFe ₂ O ₄ (5.67); Ferrite-Mg MgFe ₂ O ₄ (6.15);
		Goethite FeOOH (5.24); Hematite Fe ₂ O ₃ (11.41)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.52); Montroydite HgO (0.86)
Mn manganese		Hausmannite Mn ₃ O ₄ (2.76); Manganite MnO(OH)
		(0.16); Rhodochrosite MnCO ₃ (1.22)
Mo molybdenum ¹	MoO ₄ -2	
Ni nickel		Bunsenite NiO (0.34); Ni(OH) ₂ (0.09); Trevorite
		NiFe ₂ O ₄ (14.64)
Pb lead		Cerussite PbCO ₃ (0.34); Hydrocerussite
		Pb ₃ (CO ₃) ₂ (OH) ₂ (1.61)
Ra radium		RaSO ₄ (1.62)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (10.53)
Se selenium		Hg_2SeO_3 (1.20); Naumannite Ag_2Se (0.42)
Sr strontium		Strontianite SrCO ₃ (2.05)
Tl thallium ¹		
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO₃OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (12.06); Hydrozincite
		Zn ₅ (OH) ₆ (CO ₃) ₂ (10.54); Zincite ZnO (1.15); Zn(OH) ₂ (gamma) (1.30)

Condition: Maximum James River constituents, pe = chromium couple, pe = 3.2, pH = 10

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69); Naumannite Ag ₂ Se (9.30)
Al aluminum		Boehmite AlO(OH) (1.40); Diaspore AlO(OH) (1.83);
		Gibbsite Al(OH) ₃ (1.31)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.50); Witherite BaCO ₃ (1.34)
Be beryllium		Bromellite BeO (5.50)
Cd cadmium ¹		CdCr ₂ O ₄ (6.82)
Co cobalt		CoFe ₂ O ₄ (15.84)
Cr chromium		Chromite FeCr ₂ O ₄ (7.40); Eskolaite Cr ₂ O ₃ (9.18);
		Magnesiochromite MgCr ₂ O ₄ (3.35)
Cu copper		CuCr ₂ O ₄ (6.72); Ferrite-Cu CuFe ₂ O ₄ (3.99);
		Klockmannite CuSe (0.34)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (4.77)
Fe iron		Goethite FeOOH (3.61); Hematite Fe_2O_3 (8.14);
		Magnetite Fe ₃ O ₄ (3.67)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.53); Tiemannite HgSe (8.99)
Mn manganese	Mn ⁺²	
Mo molybdenum ²	MoO ₄ -2	
Ni nickel		Trevorite NiFe ₂ O ₄ (3.58)
Pb lead	Pb ⁺²	
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (7.22)
Se selenium		Klockmannite CuSe (0.34); Naumannite Ag ₂ Se (9.30);
		Tiemannite HgSe (08.99)
Sr strontium	Sr ⁺²	
TI thallium ²	TI⁺	
U uranium ³		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
V vanadium ³		Carnotite $K_2(UO_2)_2(VO_4)_2$ (0.71);
		Tyuyamunite $Ca(UO_2)_2(VO_4)_2$ (1.72)
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (3.17); ZnCr ₂ O ₄ (16.19)

Condition: Maximum James River constituents, pe = iron couple, pe = 5.5, pH = 6

¹All other non-silicate Cd minerals were undersaturated. ²Minimal coverage in LLNL database. ³All other non-silicate U and V minerals were undersaturated.

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69); Naumannite Ag ₂ Se (18.11)
Al aluminum		Boehmite AlO(OH) (2.05); Corundum Al ₂ O ₃ (0.64);
		Diaspore AlO(OH) (2.48); Gibbsite Al(OH) ₃ (1.96)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Witherite BaCO ₃ (2.77)
Be beryllium		Bromellite BeO (7.49)
Cd cadmium		CdCr ₂ O ₄ (11.20); Otavite CdCO ₃ (0.02)
Co cobalt		CoFe ₂ O ₄ (15.82)
Cr chromium		Chromite FeCr ₂ O ₄ (8.18); Eskolaite Cr ₂ O ₃ (11.59);
		Magnesiochromite MgCr ₂ O ₄ (7.74)
Cu copper		$CuCr_2O_4$ (10.23); Cuprite Cu_2O (2.63); Ferrite-Cu
		CuFe ₂ O ₄ (5.98); Klockmannite CuSe (8.25)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (9.83)
Fe iron		$Fe(OH)_3$ (0.41); Ferrite-Ca CaFe ₂ O ₄ (0.89); Ferrite-Mg
		MgFe ₂ O ₄ (1.27); Goethite FeOOH (4.05); Hematite
		Fe ₂ O ₃ (9.03)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Montroydite HgO (0.05)
Mn manganese	Mn ⁺²	
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Penroseite NiSe ₂ (0.40); Trevorite NiFe ₂ O ₄ (6.46)
Pb lead		Cerussite PbCO ₃ (0.71); Clausthalite PbSe(1.58)
Ra radium		RaSO ₄ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (4.55)
Se selenium		Clausthalite PbSe (1.58); Klockmannite CuSe (8.25);
		Krutaite CuSe ₂ (9.83); Naumannite Ag ₂ Se (18.11);
		Penroseite NiSe ₂ (0.40)
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI+	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (6.04); ZnCO ₃ :H ₂ O (0.10); ZnCr ₂ O ₄ (20.58)

Condition: Maximum James River constituents, pe = iron couple, pe = 3.2, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.69); Naumannite Ag ₂ Se (29.15)
Al aluminum		Boehmite AlO(OH) (2.55); Corundum Al ₂ O ₃ (1.65);
		Diaspore AlO(OH) (2.98); Gibbsite Al(OH) ₃ (2.46)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (0.89);
		Witherite BaCO ₃ (3.85)
Be beryllium		Bromellite BeO (9.48)
Cd cadmium		Otavite CdCO ₃ (1.08)
Co cobalt		CoFe ₂ O ₄ (15.53)
Cr chromium		Chromite FeCr ₂ O ₄ (15.21); Eskolaite Cr ₂ O ₃ (13.36);
		Magnesiochromite MgCr ₂ O ₄ (11.51)
Cu copper		CuCr ₂ O ₄ (12.74); Cuprite Cu ₂ O (7.69); Ferrite-Cu
		CuFe ₂ O ₄ (6.88); Klockmannite CuSe (18.04); Malachite
		Cu ₂ CO ₃ (OH) ₂ (0.50); Tenorite CuO (0.42)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (13.08)
Fe iron		$Fe(OH)_3$ (0.49); Ferrite-Ca CaFe ₂ O ₄ (3.03); Ferrite-Mg
		MgFe ₂ O ₄ (3.42); Goethite FeOOH (4.12); Hematite
		Fe_2O_3 (12.55); Hercynite $FeAl_2O_4$ (0.35); Magnetite
		Fe ₃ O ₄ (8.09)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Tiemannite HgSe (23.72)
Mn manganese		Rhodochrosite MnCO₃(0.73)
Mo molybdenum ¹	MoO ₄ ⁻²	
Ni nickel		Trevorite NiFe ₂ O ₄ (8.61)
Pb lead		Cerussite PbCO ₃ (0.77); Clausthalite PbSe(11.60);
		Hydrocerussite $Pb_3(CO_3)_2(OH)_2$ (0.58)
Ra radium		$RaSO_4$ (1.58)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (0.99)
Se selenium		Clausthalite PbSe(11.60); Ferrolselite FeSe ₂ (7.15);
		Klockmannite CuSe (18.04); Krutaite CuSe ₂ (25.08);
		Naumannite Ag ₂ Se (29.15); Tiemannite HgSe (23.72)
Sr strontium	- 14	Strontianite SrCO ₃ (0.45)
Tl thallium ¹		
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.13); Hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂ (6.66); Smithsonite ZnCO ₃ (0.53); ZnCO ₃ :H ₂ O (1.12)

Condition: Maximum James River constituents, pe = iron couple, pe = 0.4, pH = 8

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.68); Naumannite Ag ₂ Se (34.61)
Al aluminum		Boehmite AlO(OH) (1.77); Corundum Al ₂ O ₃ (0.07);
		Diaspore AlO(OH) (2.19); Gibbsite Al(OH) ₃ (1.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.49); Barytocalcite BaCa(CO ₃) ₂ (2.75);
		Witherite BaCO ₃ (4.80)
Be beryllium		Bromellite BeO (9.19)
Cd cadmium		CdCr ₂ O ₄ (17.46); Otavite CdCO ₃ (1.95)
Co cobalt		CoFe ₂ O ₄ (14.36); Freboldite CoSe (1.04)
Cr chromium		Chromite FeCr ₂ O ₄ (12.24); CuCr ₂ O ₄ (14.46); Eskolaite
		Cr ₂ O ₃ (13.96); Magnesiochromite MgCr ₂ O ₄ (14.18)
Cu copper		CuCr ₂ O ₄ (13.11); Cuprite Cu ₂ O (10.55); Ferrite-Cu
		$CuFe_2O_4$ (6.46); Malachite $Cu_2CO_3(OH)_2$ (1.49);
		Tenorite CuO (0.18)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.00)
Fe iron		Fe(OH) ₃ (0.40); Ferrite-Ca CaFe ₂ O ₄ (1.45); Ferrite-Mg
		MgFe ₂ O ₄ (1.85); Goethite FeOOH (4.04); Hematite
		Fe_2O_3 (9.00); Hercynite $FeAl_2O_4$ (0.35); Magnetite
		Fe ₃ O ₄ (9.48); Siderite FeCO ₃ (0.29)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.51); Naumannite Ag ₂ Se (34.61)
Mn manganese		Rhodochrosite MnCO ₃ (1.16)
Mo molybdenum ¹		MoSe ₂ (3.71)
Ni nickel		Trevorite NiFe ₂ O ₄ (10.43)
Pb lead		Cerussite PbCO ₃ (0.67); Clausthalite PbSe (16.04);
		Hydrocerussite $Pb_3(CO_3)_2(OH)_2$ (1.33)
Ra radium		RaSO ₄ (1.59)
Sb antimony		Sb(OH) ₃ (1.01)
Se selenium		Clausthalite PbSe (16.04); Freboldite CoSe (1.04);
		Hg ₂ SeO ₃ (1.18); Klockmannite CuSe (21.29); Krutaite
		CuSe ₂ (28.51); Naumannite Ag ₂ Se (34.61); Stilleite
		ZnSe (7.18); Wilkmanite Ni ₃ Se ₄ (41.32)
Sr strontium		Strontianite SrCO ₃ (1.39)
TI thallium ¹	TI+	
U uranium	$UO_2(CO_3)_3^{-4}$	
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (9.38); Hydrozincite
		Zn ₅ (OH) ₆ (CO ₃) ₂ (11.73); Smithsonite ZnCO ₃ (0.92); Zincite ZnO (0.88)

Condition: Maximum James River constituents, pe = iron couple, pe = -2.3, pH = 9

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.62)
Al aluminum		Boehmite AlO(OH) (0.77); Diaspore AlO(OH) (1.20);
		Gibbsite Al(OH)₃ (0.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.47); Barytocalcite BaCa(CO ₃) ₂ (3.98);
		Witherite BaCO ₃ (5.48)
Be beryllium		Bromellite BeO (7.20)
Cd cadmium		CdCr ₂ O ₄ (17.77); Otavite CdCO ₃ (2.03)
Co cobalt		CoFe ₂ O ₄ (12.40)
Cr chromium		Chromite FeCr ₂ O ₄ (17.39); Eskolaite Cr ₂ O ₃ (12.92);
		Magnesiochromite MgCr ₂ O ₄ (14.94); ZnCr ₂ O ₄ (25.65)
Cu copper		Cuprite Cu ₂ O (12.60); Ferrite-Cu CuFe ₂ O ₄ (4.68);
		Tenorite CuO (2.13)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (15.18)
Fe iron		Ferrite-Ca CaFe ₂ O ₄ (2.31); Ferrite-Mg MgFe ₂ O ₄ (2.79);
		Goethite FeOOH (3.56); Hematite Fe_2O_3 (8.04)
		Magnetite Fe ₃ O ₄ (9.90); Siderite FeCO ₃ (0.39)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.52); Naumannite Ag ₂ Se (35.49)
Mn manganese		Hausmannite Mn ₃ O ₄ (2.76); Manganite MnO(OH)
		(0.16); Rhodochrosite MnCO₃ (1.22)
Mo molybdenum ¹		MoSe ₂ (3.43)
Ni nickel		Bunsenite NiO (0.34); Ni(OH) ₂ (0.09); Trevorite
		NiFe ₂ O ₄ (11.28); Wilkmanite Ni ₃ Se ₄ (29.04)
Pb lead		Cerussite PbCO ₃ (0.34); Clausthalite PbSe (16.04);
		Hydrocerussite Pb ₃ (CO ₃) ₂ (OH) ₂ (1.61)
Ra radium		RaSO ₄ (1.62)
Sb antimony		Sb(OH) ₃ (1.01)
Se selenium		Clausthalite PbSe (16.04); Hg ₂ SeO ₃ (1.20);
		Klockmannite CuSe (19.46); Krutaite CuSe ₂ (21.97);
		Naumannite Ag ₂ Se (35.49); Stilleite ZnSe (6.45);
		Wilkmanite Ni ₃ Se ₄ (29.04)
Sr strontium		Strontianite SrCO ₃ (2.05)
TI thallium ¹	TI+	
U uranium		UO _{2.25} (1.43); Uraninite UO ₂ (2.94)
V vanadium	VO ₃ OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.69); Hydrozincite
		$Zn_5(OH)_6(CO_3)_2$ (10.54); Zincite ZnO (1.15); Zn(OH) ₂
		(gamma) (1.30)

Condition: Maximum James River constituents, pe = iron couple, pe = -5.1, pH = 10

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Acanthite Ag ₂ S (26.56); Chlorargyrite AgCl (0.69);
		Naumannite Ag₂Se (31.64)
Al aluminum		Boehmite AlO(OH) (1.41); Diaspore AlO(OH) (1.84);
		Gibbsite Al(OH) ₃ (1.32)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.42)
Be beryllium		Bromellite BeO (5.50)
Cd cadmium		CdCr ₂ O ₄ (6.85); CdS (11.92)
Co cobalt		Cattierite CoS ₂ (12.58); CoS (1.64); Freboldite CoSe
		(2.04); Linnaeite Co ₃ S ₄ (22.22)
Cr chromium		Chromite FeCr ₂ O ₄ (7.63); Eskolaite Cr ₂ O ₃ (9.19);
		Magnesiochromite MgCr ₂ O ₄ (3.39)
Cu copper		Bornite Cu_5FeS_4 (80.45); Chalcocite (Cu_2S) (28.86);
		Covellite CuS (16.04); CuCr ₂ O ₄ (2.39); Cuprite Cu ₂ O
		(4.60); Delafossite CuFeO ₂ (4.64); Klockmannite CuSe
		(18.34); Umangite Cu ₃ Se ₂ (48.16)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (4.91)
Fe iron		Pyrite FeS _s (10.74); Pyrrhotite FeS (0.06); Troilite FeS (0.17)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.54); Cinnabar HgS (20.79);
		Metacinnabar HgS (20.39); Tiemannite HgSe (23.58)
Mn manganese	Mn ⁺²	
Mo molybdenum ¹		MoSe ₂ (21.70)
Ni nickel		Heazlewoodite Ni ₃ S ₂ (4.37); Millerite NiS (3.87);
		Penroseite NiSe ₂ (16.64); Vaesite NiS ₂ (12.15)
Pb lead		Clausthalite PbSe (15.90); Galena PbS (10.83)
Ra radium		RaSO ₄ (1.50)
Sb antimony		Stibnite Sb ₂ S ₃ (0.79)
Se selenium		Ferroselite FeSe ₂ (7.43); Klockmannite CuSe (18.34);
		Krutaite CuSe ₂ (22.60); Naumannite Ag ₂ Se (31.64);
		Tiemannite HgSe (23.58)
Sr strontium	Sr ⁺²	
Tl thallium ¹	Tl⁺	
U uranium		UO _{2.25} (0.90); UO _{2.25} (beta) (0.82); Uraninite UO ₂ (2.98)
V vanadium		Karelianite V ₂ O ₃ (0.84); V ₃ O ₅ (0.54)
Zn zinc		Sphalerite ZnS (9.14); Stilleite ZnSe (4.87); Wurtzite ZnS (6.72); ZnCr ₂ O ₄ (16.24)

Condition: Maximum James River constituents, pe = sulfur couple, pe = -2.2, pH = 6

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Acanthite Ag ₂ S (28.36); Chlorargyrite AgCl (0.69);
		Naumannite Ag ₂ Se (32.64)
Al aluminum		Boehmite AlO(OH) (2.06); Corundum Al ₂ O ₃ (0.67);
		Diaspore AlO(OH) (2.49); Gibbsite Al(OH) ₃ (1.97)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.42)
Be beryllium		Bromellite BeO (7.50)
Cd cadmium		Cadmoselite CdSe (12.83); CdCr ₂ O ₄ (11.25); CdS
		(13.72)
Co cobalt		Cattierite CoS ₂ (12.58); CoFe ₂ O ₄ (1.04); CoS (2.55);
		Freboldite CoSe (2.14); Linnaeite Co ₃ S ₄ (24.28)
Cr chromium		Chromite FeCr ₂ O ₄ (12.03); Eskolaite Cr ₂ O ₃ (11.60);
		Magnesiochromite MgCr ₂ O ₄ (7.79)
Cu copper		Bornite Cu_5FeS_4 (86.44); Chalcocite (Cu_2S) (30.66);
		Chalcopyrite CuFeS ₂ (24.79); Covellite CuS (16.61);
		CuCr ₂ O ₄ (5.57); Cuprite Cu ₂ O (6.60); Delafossite
		CuFeO ₂ (7.42); Klockmannite CuSe (18.12); Umangite
		Cu ₃ Se ₂ (48.94)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (10.00)
Fe iron		Pyrite FeS _s (10.74); Pyrrhotite FeS (1.86); Troilite FeS
		(1.97)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.54); Cinnabar HgS (21.37);
		Metacinnabar HgS (20.97); Tiemannite HgSe (23.35)
Mn manganese	Mn ⁺²	
Mo molybdenum ¹		MoSe ₂ (18.16)
Ni nickel		Heazlewoodite Ni ₃ S ₂ (10.42); Millerite NiS (5.67);
		Penroseite NiSe ₂ (16.19); Vaesite NiS ₂ (13.31)
Pb lead		Clausthalite PbSe (16.85); Galena PbS (12.59)
Ra radium		RaSO ₄ (1.50)
Sb antimony	$HSb_2S_4^-$	
Se selenium		Ferroselite FeSe ₂ (6.98); Klockmannite CuSe (18.12);
		Krutaite CuSe ₂ (20.92); Naumannite Ag ₂ Se (32.64);
		Tiemannite HgSe (23.35); Wilkmanite Ni ₃ Se ₄ (31.01)
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI⁺	
U uranium		UO _{2.25} (0.79); UO _{2.25} (beta) (0.71); Uraninite UO ₂ (2.98)
V vanadium		Karelianite V ₂ O ₃ (2.85); V ₃ O ₅ (3.33); V ₄ O ₇ (1.85)
Zn zinc		Sphalerite ZnS (10.94); Stilleite ZnSe (5.87); Wurtzite
		ZnS (8.52); ZnCr ₂ O ₄ (20.64)

Condition: Maximum James River constituents, pe = sulfur couple, pe = -3.5, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Acanthite Ag ₂ S (29.70); Chlorargyrite AgCl (0.69);
		Hercynite FeAl ₂ O ₄ (0.95); Naumannite Ag ₂ Se (33.64)
Al aluminum		Boehmite AlO(OH) (2.57); Corundum Al ₂ O ₃ (1.68);
		Diaspore AlO(OH) (3.00); Gibbsite Al(OH) ₃ (2.48)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.41)
Be beryllium		Bromellite BeO (9.49)
Cd cadmium		Cadmoselite CdSe (15.32); CdCr ₂ O ₄ (15.02); CdS
		(15.05)
Co cobalt		Cattierite CoS ₂ (12.56); CoFe ₂ O ₄ (6.09); CoS (3.28);
		Freboldite CoSe (2.54); Linnaeite Co₃S₄ (25.47)
Cr chromium		Chromite FeCr ₂ O ₄ (15.79); Eskolaite Cr ₂ O ₃ (13.36);
		Magnesiochromite MgCr ₂ O ₄ (11.56)
Cu copper		Bornite Cu ₅ FeS ₄ (90.59); Chalcocite (Cu ₂ S) (32.00);
		Chalcopyrite CuFeS ₂ (26.28); Covellite CuS (16.78);
		CuCr ₂ O ₄ (8.17); Cuprite Cu ₂ O (8.60); Delafossite
		CuFeO ₂ (10.24); Klockmannite CuSe (17.95); Umangite
		Cu ₃ Se ₂ (49.77)
F fluoride		Fluorapatite Ca ₅ (PO ₄) ₃ F (13.25)
Fe iron		Hematite Fe ₂ O ₃ (0.25); Pyrite FeS _s (12.21); Pyrrhotite
		FeS (3.19); Troilite FeS (3.30)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.54); Cinnabar HgS (21.54);
		Metacinnabar HgS (21.13); Tiemannite HgSe (23.19)
Mn manganese		Alabanite MnS (0.22)
Mo molybdenum ¹		MoSe ₂ (14.49)
Ni nickel		Heazlewoodite Ni ₃ S ₂ (15.42); Millerite NiS (7.01);
		Penroseite NiSe ₂ (15.85); Vaesite NiS ₂ (13.64)
Pb lead		Clausthalite PbSe (17.53); Galena PbS (13.60)
Ra radium		RaSO ₄ (1.50)
Sb antimony	$HSb_2S_4^-$	
Se selenium		Ferroselite FeSe ₂ (6.64); Klockmannite CuSe (17.95);
		Krutaite CuSe ₂ (19.42); Naumannite Ag ₂ Se (33.64);
		Tiemannite HgSe (23.19); Wilkmanite Ni₃Se₄ (32.67)
Sr strontium	Sr ⁺²	
TI thallium ¹	TI⁺	
U uranium		UO _{2.25} (0.70); UO _{2.25} (beta) (0.63); Uraninite UO ₂ (2.98)
V vanadium		Karelianite V ₂ O ₃ (4.82); V ₂ O ₄ (0.99); V ₃ O ₅ (6.11); V ₄ O ₇
		(5.45)
Zn zinc		Sphalerite ZnS (12.26); Stilleite ZnSe (6.85); Wurtzite
		ZnS (9.84); ZnCr ₂ O ₄ (24.39)

Condition: Maximum James River constituents, pe = sulfur couple, pe = -4.6, pH = 8

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Acanthite Ag ₂ S (30.75); Chlorargyrite AgCl (0.69);
		Hercynite $FeAl_2O_4$ (1.29); Naumannite Ag_2Se (34.64)
Al aluminum		Boehmite AlO(OH) (1.77); Corundum Al ₂ O ₃ (0.08);
		Diaspore AlO(OH) (2.20); Gibbsite Al(OH) $_3$ (1.68)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (2.42)
Be beryllium		Bromellite BeO (9.20)
Cd cadmium		Cadmoselite CdSe (16.30); CdCr ₂ O ₄ (17.59); CdS
		(16.08)
Co cobalt		Cattierite CoS ₂ (9.92); CoFe ₂ O ₄ (9.21); CoS (1.85);
		Freboldite CoSe (1.05); Linnaeite Co ₃ S ₄ (19.96)
Cr chromium		Chromite FeCr ₂ O ₄ (18.32); Eskolaite Cr ₂ O ₃ (13.96);
		Magnesiochromite MgCr ₂ O ₄ (14.16)
Cu copper		Bornite Cu_5FeS_4 (93.61); Chalcocite (Cu_2S) (33.05);
		Chalcopyrite CuFeS ₂ (27.19); Covellite CuS (16.70);
		CuCr ₂ O ₄ (9.63); Cuprite Cu ₂ O (10.60); Delafossite
		CuFeO ₂ (13.04); Klockmannite CuSe (17.82); Umangite
		Cu ₃ Se ₂ (50.64)
F fluoride		Fluorapatite Ca₅(PO₄)₃F (15.25)
Fe iron		Goethite FeOOH (1.46); Hematite Fe_2O_3 (3.85);
		Magnetite Fe ₃ O ₄ (5.26); Pyrite FeS _s (11.99); Pyrrhotite
		FeS (4.18); Troilite FeS (4.29)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.54); Cinnabar HgS (21.46);
		Metacinnabar HgS (21.05); Tiemannite HgSe (23.06)
Mn manganese		Alabanite MnS (1.26)
Mo molybdenum ¹		MoSe ₂ (10.75)
Ni nickel		Heazlewoodite Ni ₃ S ₂ (19.78); Millerite NiS (8.06);
		Penroseite NiSe ₂ (15.59); Vaesite NiS ₂ (13.64)
Pb lead		Clausthalite PbSe (17.63); Galena PbS (13.48)
Ra radium		RaSO ₄ (1.50)
Sb antimony	$HSb_2S_4^-$	
Se selenium		Ferroselite FeSe ₂ (6.31); Klockmannite CuSe (17.82);
		Krutaite CuSe ₂ (18.03); Naumannite Ag ₂ Se (34.64);
		Tiemannite HgSe (23.06); Wilkmanite Ni₃Se₄ (34.40)
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI⁺	
U uranium		UO _{2.25} (0.64); UO _{2.25} (beta) (0.56); Uraninite UO ₂ (2.98)
V vanadium		Karelianite V ₂ O ₃ (4.09); V ₂ O ₄ (0.01); V ₃ O ₅ (4.90); V ₄ O ₇
		(3.74)
Zn zinc		Ferrite-Zn Fe ₂ O ₄ (4.36); Hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂
		(2.44); Sphalerite ZnS (12.77); Stilleite ZnSe (7.31);
		Wurtzite ZnS (10.35); ZnCr ₂ O ₄ (26.45)

Condition: Maximum James River constituents, pe = sulfur couple, pe = -5.8, pH = 9

Element	Major Soluble	Major Non-Silicate Minerals (SI)
A = eilueu	Species	Accurate its $A = C (24.7C)$, Chlans are write $A = C (0.00)$.
Ag silver		Acanthite Ag ₂ S (31.76); Chlorargyrite AgCl (0.69);
		Naumannite Ag ₂ Se (35.64)
Al aluminum		Boehmite AlO(OH) (0.77); Diaspore AlO(OH) (1.20);
		Gibbsite Al(OH) ₃ (0.68); Hercynite FeAl ₂ O ₄ (0.88);
As arsenic	AsO ₃ F ⁻²	$P_{2} = \frac{1}{2} \left(2 + 2 \right) \left(\frac{1}{2} + 2 \right) $
Ba barium		Barite $BaSO_4$ (2.42); Witherite $BaCO_3$ (1.00)
Be beryllium		Bromellite BeO (7.21)
Cd cadmium		Cadmoselite CdSe (17.07); CdCr ₂ O ₄ (18.34); CdS
Ca ashalt		(16.86)
Co cobalt		Cattierite CoS_2 (6.68); $CoFe_2O_4$ (11.14); Linnaeite Co_3S_4
Crahranium		(12.74)
Cr chromium		Chromite FeCr ₂ O ₄ (18.87); Eskolaite Cr ₂ O ₃ (12.92);
Cu company		Magnesiochromite MgCr ₂ O ₄ (15.12)
Cu copper		Bornite Cu ₅ FeS ₄ (96.10); Chalcocite (Cu ₂ S) (34.05);
		Chalcopyrite CuFeS ₂ (27.67); Covellite CuS (16.58);
		$CuCr_2O_4$ (9.47); Cuprite Cu_2O (12.60); Delafossite
E fluorido		CuFeO ₂ (15.51); Umangite Cu ₃ Se ₂ (51.51)
F fluoride		Fluorapatite $Ca_5(PO_4)_3F(15.92)$
Fe iron		Ferrite-Ca CaFe ₂ O ₄ (1.32); Ferrite-Mg MgFe ₂ O ₄ (1.70);
		Goethite FeOOH (2.92); Hematite Fe_2O_3 (6.78);
		Magnetite Fe ₃ O ₄ (9.78); Pyrite FeS _s (11.34); Pyrrhotite FeS _s (4.32), Tarilita FeS (4.80)
		FeS (4.77); Troilite FeS (4.88)
Hg mercury		Calomel Hg ₂ Cl ₂ (5.54); Cinnabar HgS (21.34);
		Metacinnabar HgS (20.93); Tiemannite HgSe (22.93)
Mn manganese		Alabanite MnS (1.58)
Mo molybdenum ¹		MoSe ₂ (7.00)
Ni nickel		Bunsenite NiO (0.35); Heazlewoodite Ni ₃ S ₂ (23.44);
		Millerite NiS (8.86); Ni(OH) ₂ (0.10); Penroseite NiSe ₂ (15.14); Travarite NiSe ₂ (10.02); Magaine NiSe (12.04)
Dhilaad		(15.14); Trevorite NiFe ₂ O ₄ (10.03); Vaesite NiS ₂ (13.04)
Pb lead		Clausthalite PbSe (17.10); Galena PbS (13.23)
Ra radium		RaSO ₄ (1.50)
Sb antimony	HSb ₂ S ₄ ⁻	
Se selenium		Ferroselite FeSe ₂ (5.64); Klockmannite CuSe (17.69);
		Krutaite CuSe ₂ (16.65 Naumannite Ag ₂ Se (35.64);
	c ±)	Tiemannite HgSe (22.93); Wilkmanite Ni₃Se₄ (35.55)
Sr strontium	Sr ⁺²	
Tl thallium ¹	TI ⁺	
U uranium		UO _{2.25} (0.58); UO _{2.25} (beta) (0.50); Uraninite UO ₂ (2.98)
V vanadium		Karelianite V_2O_3 (0.64)
Zn zinc		Ferrite-Zn Fe ₂ O ₄ (7.44); Hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂
		(1.47); Sphalerite ZnS (11.94); Stilleite ZnSe (6.47);
		Wurtzite ZnS (9.51); Zincite ZnO (1.16); ZnCr ₂ O ₄ (25.56)

Condition: Maximum James River constituents, pe = sulfur couple, pe = -6.9, pH = 10

7.5 Appendix E

Discussion of Results for Amended Maximum James River Solution

Maximum Amended James River Results

Below are summaries for the PHREEQC results for the Maximum Amended James River solutions in Appendix D compared to State analytical water quality results for the James River and Spiritwood Aquifer.

Ag - Silver

Chlorargyrite [AgCl] was supersaturated for all conditions simulated. The James River database has 19 samples that were analyzed for Ag and the Spiritwood Aquifer database has 21 samples. All results were below detection; therefore, either Ag supplies are limited in both environments or chemical equilibrium successfully predicted that Ag will not be very soluble in either the river or the aquifer. Ag has a secondary drinking water standard of 0.100 mg/L and all detection limits were either < 0.001 mg/L or < 0.005 mg/L.

Al - Aluminum

Aluminum minerals, such as boehmite [AlO(OH)] and gibbsite $[Al(OH)_3]$, were supersaturated for all conditions simulated. The James River database has 19 samples that were analyzed for Al and the Spiritwood Aquifer database has 21 samples. One of the river samples and none of the aquifer samples were above detection. Either Al supplies are limited in both environments or chemical equilibrium successfully predicted that Al will not be very soluble in either the river or the aquifer. The secondary drinking water standard for Al is 0.050 mg/L to 0.200 mg/L and the detection limits in the databases are < 0.05 mg/L and < 0.250 mg/L, respectively. Therefore, comparisons of the analytical results to the standard are inconclusive.

As - Arsenic

Arsenic was soluble as $AsO3F^{-2}$ for all conditions simulated. Had stronger sulfate-reducing conditions been simulated, minerals such as arsenopyrite [FeAsS] and orpiment [As₂S₃], may have become supersaturated. In the James River, 88.6% of the 44 samples were above detection with a maximum value of 0.011 mg/L; in the Spiritwood Aquifer, 88.5% of the 87 samples were above detection with a maximum value of 0.0354 mg/L. The primary drinking water standard is 0.010 mg/L. Chemical equilibrium modeling successfully predicted that As will be soluble in both the river and the aquifer.

Ba - Barium

Barite $[BaSO_4]$ was supersaturated for all conditions simulated. Had stronger sulfate-reducing conditions been simulated, BaS may have become supersaturated. The James River database has 19 samples that were analyzed for Ba and the Spiritwood Aquifer database has 21 samples. All of the measurements were above detection, with a maximum concentration of 0.108 mg/L in the river and 0.144 mg/L in the aquifer. The primary drinking water standard for Ba is 2 mg/L. Chemical equilibrium modeling unsuccessfully predicted the solubility of Ba in both the river and the aquifer.

Be - Beryllium

Bromellite [BeO] was supersaturated for all conditions simulated. The James River database has 19 samples that were analyzed for Be and the Spiritwood Aquifer database has 21 samples. None of the measurements was above detection; therefore, Be supplies are limited in both environments or chemical equilibrium successfully predicted that Be will not be mobile in either the river or the aquifer. Be has a primary drinking water standard of 0.004 mg/L and detection limits were either < 0.001 mg/L or < 0.005 mg/L. Therefore, comparisons of the analytical results to the standard are somewhat inconclusive.

Cd - Cadmium

Cd was only soluble as Cd^{+2} at pH = 6 for the oxygen and nitrogen couples. Otovite $[CdCO_3]$ was supersaturated for all other conditions simulated above the sulfur couple, except for the chromium and iron couples at pH = 6 where $CdCr_2O_4$ was supersaturated (If there was no Cr in the water, Cd would have been soluble.). At sulfate-reducing conditions, CdS was supersaturated. The James River database has 19 samples that were analyzed for Cd and the minimum pH was 7.0. The Spiritwood Aquifer database has 21 samples and the minimum pH = 6.5. None of the measurements was above detection. Therefore, Cd supplies are limited in both environments or chemical equilibrium successfully predicted that Cd will not be mobile in either the river or the aquifer. Cd has a primary drinking water standard of 0.005 mg/L and detection limits were either < 0.001 mg/L or < 0.005 mg/L, respectively. Therefore, comparisons of the analytical results to the standard are inconclusive.

Co - Cobalt

Co was supersaturated at all conditions simulated, as either CoFe_2O_4 above the sulfur couple or as Cattierite $[\text{CoS}_2]$ at sulfate-reducing conditions. No Co measurements are reported in the James River or Spiritwood Aquifer databases. Co has no drinking water standard, but it is a contaminant candidate for a possible future standard.

Cr - Chromium

Cr was soluble as either $HCrO^{-4}$ or CrO^{-2} for the oxygen and nitrogen couples, but chromite [FeCr₂O₄] was supersaturated for all other conditions simulated. In the James River, 21.1% of the 19 samples were above detection with a maximum value of 0.0051 mg/L; none of the Spiritwood samples was above detection limits of either < 0.001 mg/L or < 0.005 mg/L, respectively. All 37 river samples had detectable concentrations of nitrate and almost certainly there are dissolved oxygen concentrations in the river. In the aquifer, 67.4% of the nitrate samples (n = 765) were above detection; oxygen concentrations are generally unknown. However, aquifers in North Dakota are typically less oxidized then rivers, so in this regard chemical equilibrium modeling was successful in predicting that Cr would generally be more soluble in the river than in the aquifer. Injecting James River water will cause an initial increase in pe and create conditions favorable for an increase in Cr. As the pe decreases, Cr may also decrease. A pilot field-scale study would indicate the kinetics of these reactions. The primary drinking water standard for Cr is 0.100 mg/L.

Cu - Copper

Cu was supersaturated at all conditions simulated, as either ferrite-Cu [CuFe₂O₄] above the sulfur couple or as covellite [CuS] at sulfate-reducing conditions. In the James River, 53.6% of the 19 samples were above detection with a maximum value of 0.00242 mg/L; in the Spiritwood Aquifer, 19.1% of the 21 samples were above detection with a maximum value of 0.0121 mg/L. The higher rate of detection of Cu in the James suggests that the aquifer environment is closer to equilibrium for Ni. The primary drinking water stand for Cu is 1.3 mg/L, which is more than 100 times greater than the maximum concentration for the Spiritwood. Therefore, it is unlikely that Cu will be a problem with James/Spiritwood ASR.

F - Fluoride

F was supersaturated as fluorapatite $[Ca_5(PO_4)_3F]$ at all conditions simulated. The James River database has 61 samples that were analyzed for F and the Spiritwood Aquifer database has 770 samples. All measurements in both environments were above detections. The mean concentration was 0.17 mg/L in the river and 0.25 mg/L in the aquifer. All concentrations were below and the primary drinking water standard of 4.0 mg/L. Therefore, it is unlikely that F will be a problem with James/Spiritwood ASR. Chemical equilibrium modeling had limited ability to predict the solubility of F in both the river and the aquifer.

Fe - Iron

Fe was supersaturated at all conditions simulated, as either oxides or hydroxides above the sulfur couple, or as sulfides at sulfate-reducing conditions. In the river, 83.8% of the 62 Fe measurements were above detection; in the aquifer, 98.1% of the 773 measurements were above detection. The mean value was 0.08 mg/L in the river and 0.95 mg/L in the aquifer. The lower mean in the river suggests that Fe concentrations are precipitating out as oxides or hydroxides, as predicted by chemical equilibrium modeling. The higher mean value in the aquifer likely indicates more production of ferrous iron (Fe⁺²), the more soluble iron species, and suggests that the redox conditions generally prevalent in the aquifer are near the iron couple and kinetics are limiting the availability of ferric iron concentrations (Fe⁺³), or the redox conditions are between the iron and sulfur couples. The secondary drinking water standard for Fe is 0.3 mg/L. When oxygenated James River water is initially injected into the aquifer, Fe concentrations will likely be lower than the standard initially, but they will tend to increase as pe decreases. Eventually, Fe concentrations during ASR would likely exceed 0.3 mg/L. A pilot field-scale study would indicate the kinetics of these reactions.

Hg - Mercury

Calomal $[Hg_2Cl_2]$ was supersaturated at all conditions simulated and cinnabar [HgS] was also supersaturated at sulfate-reducing conditions. In the river, 87.5% of the 24 Hg measurements were above detection with a maximum value of 0.0050 mg/L; in the aquifer, 88.2% of the 68 measurements were above detection with a maximum value of 0.0008 mg/L. The primary drinking water standard is 0.002 mg/L and detection limits are at or near this concentration. Chemical equilibrium modeling unsuccessfully predicted the solubility of Hg in both the river and the aquifer.

Mn - Manganese

Mn was insoluble oxides and hydroxides at the oxygen and nitrogen couples. Mn as Mn^{+2} was soluble at pH = 6 and pH = 7 for the chromium, iron, and sulfide couples. For pH > 7, Mn oxides were supersaturated above sulfate-reducing conditions and alabandite [MnS] was supersaturated at sulfate-reducing conditions. In the river, all of the 62 Mn measurements were above detection with a mean concentration of 0.51 mg/L; in the aquifer, all but 1 of the 759 measurements were above detection with a mean concentrations of 0.49 mg/L. Chemical equilibrium modeling unsuccessfully predicted Mn concentrations in the river and its effectiveness in the aquifer is uncertain at this level because there were multiple redox conditions represented in the analytical data. The secondary drinking water standard for Mn is 0.05 mg/L and measurements in both river and aquifer samples typically exceed this standard.

Mo - Molybdenum

Mo had minimal coverage in PHREEQC and simulations for Mo are not discussed further. All of the 25 river samples were above detection with a maximum concentration of 0.014 mg/L; 91.3% of the 80 aquifer samples were above detection with a maximum concentration of 0.050 mg/L. Mo has no drinking water standard, but it is a contaminant candidate for a possible future standard.

Ni - Nickel

Ni was supersaturated at all conditions simulated, as Trevorite [NiFe₂O₄] above the sulfur couple and as millerite [NiS] at sulfate-reducing conditions. In the river, 84.2% of the 19 Ni measurements were above detection with a mean value of 0.00791 mg/L; in the aquifer, 33.3% of the 21 measurements were above detection with a maximum value of 0.00578 mg/L. There is no current primary drinking water standard for Ni, but from 1992 to 1995 the standard was 0.100 mg/L. The higher rate of detection of Ni in the James suggests that the aquifer environment is closer to equilibrium for Ni.

Pb - Lead

Pb as Pb^{+2} was soluble at pH = 6 above the sulfur couple. It was supersaturated at all other conditions simulated, as cerrussite [PbCO₃] above the sulfur couple and as galena [PbS] at sulfate-reducing conditions. In the river, 50.0% of the 44 Pb measurements were above detection with a maximum value of 0.002 mg/L; in the aquifer, 68.5% of the 89 measurements were above detection with a maximum value of 0.00164 mg/L. The primary drinking water standard for Pb is 0.015 mg/L. Chemical equilibrium modeling had limited ability to predict the solubility of Pb in both the river and the aquifer.

Ra - Radium

 $RaSO_4$ was supersaturated at all conditions simulated. There were no State measurements for Ra in either the river or aquifer.

Sb - Antimony

Sb was supersaturated as Sb(OH) above the sulfur couple. At sulfate-reducing conditions, it was supersaturated as stibute $[Sb_2S_3]$ at pH = 6; otherwise it was soluble as HSb_2S_4 . Presumably, stibute would become supersaturated for pH > 6 under stronger sulfate-reducing conditions. The James River database has 19 samples that were analyzed for Sb and the Spiritwood Aquifer database has 21 samples. None of the measurements was above detection; therefore, either Sb supplies are limited in both environments or chemical equilibrium successfully predicted that Sb will not be mobile in them. Sb has a secondary drinking water standard of 0.006 mg/L and detection limits were either < 0.001 mg/L or < 0.005 mg/L, respectively.

Se - Selenium

Se as SeO_4^{-2} was soluble at the oxygen and nitrogen couple and at the chromium couple for pH < 9. At the chromium couple for pH = 9 and pH = 10, Hg₂SeO₃ was supersaturated, but this assumes that Hg is available at these conditions. At the iron and sulfur couple, numerous selenides were supersaturated. In the river, 75.0% of the 44 Se measurements were above detection with a maximum value of 0.0101 mg/L; in the aquifer, 74.7% of the 91 measurements were above detection with a maximum value of 0.00234 mg/L. The primary drinking water standard for Se is 0.050 mg/L. When oxygenated James River water is initially injected into the aquifer, Se concentrations may initially increase, but eventually they would decrease as pe decreases. A pilot field-scale study would indicate the kinetics of these reactions.

Sr - Strontium

Sr was soluble as Sr^{+2} at pH = 6 and pH = 7 for all redox couples and it was soluble as Sr^{+2} for pH values simulated for the sulfur couple. Elsewhere, strontianite [SrCO₃] was supersaturated. All of the Sr measurements in the river (n = 25) and in the aquifer (n = 69) were above detection, with a maximum concentration of 0.490 mg/L in the river and a maximum concentration of 0.890 mg/L in the aquifer. These results suggest that Sr concentrations may increase with ASR. Chemical equilibrium modeling was unsuccessful in predicting that Sr would not be soluble in either the river or aquifer for pH > 7. Sr has no drinking water standard, but it is a contaminant candidate for a possible future standard.

Tl - Thallium

Tl had minimal coverage in PHREEQC and simulations for Tl are not discussed further. However, the James River database has 19 samples that were analyzed for Tl and the Spiritwood Aquifer database has 21 samples. None of the measurements was above detection. However, 11 of the James River detection limits were < 0.001 mg/L and 8 were < 0.005 mg/L; for the Spiritwood, 7 were < 0.001 mg/L and 14 were < 0.005 mg/L. The primary drinking water standard for Tl is 0.002 mg/L, so more results at the lower detection limit are needed.

U - Uranium

U as $UO_2(CO_3)_3^{-4}$ was soluble for pH > 6 for the oxygen, nitrogen, and chromium couples. For these same couples with pH = 6, carnotite $[K_2(UO_2)_2(VO_4)_2]$ was supersaturated; however, this assumes that V is available. For the iron couple at pH = 6, carnotite was also supersaturated and at pH = 10 uraninite $[UO_2]$ was supersaturated. Uraninite was supersaturated for the sulfur couple. There were no State measurements for U in either the river or aquifer.

V - Vanadium

V as VO_3OH^{-2} was soluble for pH > 6 for the oxygen, nitrogen, chromium, and iron couples. Like U for these same couples with pH = 6, carnotite was supersaturated; however, this assumes that U is available. Karelianite $[V_2O_3]$ was supersaturated for the sulfur couple. There were no State measurements for V in either the river or aquifer. V has no drinking water standard, but it is a contaminant candidate for a possible future standard.

Zn - Zinc

Ferrite-Zn [ZnFe₂O₄] was supersaturated at the oxygen, nitrogen, chromium, and iron couples. Sphalerite [ZnS] was saturated at sulfate-reducing conditions. In the river, 68.4% of the 19 Zn measurements were above detection with a maximum value of 0.0308 mg/L; in the aquifer, 57.1% of the 21 measurements were above detection with a maximum value of 0.0246 mg/L. Chemical equilibrium modeling had little success in predicting that Zn would generally be soluble in either environments. However, the secondary drinking water standard for Zn is 5 mg/L and none of the measurements was close to this limit.

7.6 Appendix F

PHREEQC Results for Amended Minimum James River Solution

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)
Ag silver		Chlorargyrite AgCl (0.35)
Al aluminum		Boehmite AlO(OH) (2.15); Gibbsite Al(OH) ₃ (2.08)
As arsenic	AsO ₃ F ⁻²	
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (2.38)
Be beryllium		Bromellite BeO (7.60)
Cd cadmium	Cd ⁺²	
Co cobalt		CoFe ₂ O ₄ (17.93); Spinel-Co Co ₃ O ₄ (4.18)
Cr chromium	CrO ₄ -2	
Cu copper		Delafossite CuFeO ₂ (1.60); Ferrite-Cu CuFe ₂ O ₄ (8.46)
F fluoride	F⁻	
Fe iron		Goethite FeOOH (5.06); Hematite Fe ₂ O ₃ (11.05)
Hg mercury		Calomel Hg ₂ Cl ₂ (0.92); Montroydite HgO (4.90)
Mn manganese		Manganite MnO(OH) (3.91); Pyrolusite MnO ₂ (7.80)
Mo molybdenum ¹	MoO ₄ -2	
Ni nickel		Trevorite NiFe ₂ O ₄ (8.65)
Pb lead		Cerussite PbCO ₃ (0.60)
Ra radium		RaSO ₄ (0.86)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₅ (33.66)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
TI thallium ¹	TI⁺	
U uranium	$UO_2(CO_3)_2^{-2}$	Carnotite K ₂ (UO ₂) _s (VO ₄) ₂ (0.01); Tyuyamunite
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)
V vanadium	VO₃OH ⁻²	Carnotite K ₂ (UO ₂) _s (VO ₄) ₂ (0.01); Tyuyamunite
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.25);

Condition: Minimum James River constituents, pe = oxygen couple, pe = 14.7, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)					
Ag silver	Species	Chlorargyrite AgCl (0.34)					
Al aluminum		Boehmite AlO(OH) (1.80); Gibbsite Al(OH) ₃ (1.71)					
As arsenic	AsO₃F ⁻²						
Ba barium	713031	Barite BaSO₄ (1.77); Witherite BaCO₃ (4.44)					
Be beryllium		Bromellite BeO (9.33)					
Cd cadmium		Otavite CdCO ₃ (1.74)					
Co cobalt		CoFe ₂ O ₄ (16.40)					
Cr chromium	CrO ₄ -2						
Cu copper	0.04	Delafossite CuFeO ₂ (3.53); Ferrite-Cu CuFe ₂ O ₄ (10.38)					
F fluoride	F ⁻						
Fe iron		Goethite FeOOH (5.04); Hematite Fe ₂ O ₃ (11.02)					
Hg mercury		Calomel Hg ₂ Cl ₂ (3.89); Montroydite HgO (8.38)					
Mn manganese		Pyrolusite MnO ₂ (10.7					
Mo molybdenum ¹	MoO ₄ -2						
Ni nickel		Trevorite NiFe ₂ O ₄ (12.62)					
Pb lead		Cerussite PbCO ₃ (0.73); Plattnerite PbO ₂ (1.10)					
Ra radium		RaSO ₄ (0.86)					
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₅ (33.66)					
Se selenium	SeO ₄ ⁻²						
Sr strontium		Strontianite SrCO ₃ (0.42)					
Tl thallium ¹	Tl+						
U uranium	UO ₂ (CO ₃) ₃ -4						
V vanadium	VO ₃ OH ⁻²						
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.51); Smithsonite ZnCO ₃ (0.54)					

Condition: Minimum James River constituents, pe = oxygen couple, pe = 12.7, pH = 9

Element	Major Soluble	Major Non-Silicate Minerals (SI)
	Species	
Ag silver		Chlorargyrite AgCl (0.35)
Al aluminum		Boehmite AlO(OH) (2.17); Gibbsite Al(OH) ₃ (2.08)
As arsenic	AsO₃F ⁻²	
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (2.38)
Be beryllium		Bromellite BeO (7.60)
Cd cadmium	Cd ⁺²	
Co cobalt		CoFe ₂ O ₄ (17.93); Spinel-Co Co ₃ O ₄ (0.45)
Cr chromium	CrO ₄ -2	
Cu copper		Delafossite CuFeO ₂ (3.46); Ferrite-Cu CuFe ₂ O ₄ (8.46)
F fluoride	F ⁻	
Fe iron		Goethite FeOOH (5.06); Hematite Fe ₂ O ₃ (11.05)
Hg mercury		Calomel Hg ₂ Cl ₂ (3.84); Montroydite HgO (4.49)
Mn manganese		Manganite MnO(OH) (2.04); Pyrolusite MnO ₂ (4.07)
Mo molybdenum ¹	MoO ₄ -2	
Ni nickel		Trevorite NiFe ₂ O ₄ (8.65)
Pb lead		Cerussite PbCO ₃ (0.60)
Ra radium		RaSO ₄ (0.86)
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₅ (26.20)
Se selenium	SeO ₄ ⁻²	
Sr strontium	Sr ⁺²	
Tl thallium ¹	Tl⁺	
U uranium	UO ₂ (CO ₃) ₂ ⁻²	
V vanadium	VO₃OH ⁻²	
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.25)

Condition: Minimum James River constituents, pe = nitrogen couple, pe = 12.8, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)						
Ag silver		Chlorargyrite AgCl (0.34)						
Al aluminum		Boehmite AlO(OH) (1.80); Gibbsite Al(OH) ₃ (1.71)						
As arsenic	AsO ₃ F ⁻²							
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (4.44)						
Be beryllium		Bromellite BeO (9.33)						
Cd cadmium		Otavite CdCO ₃ (1.74)						
Co cobalt		CoFe ₂ O ₄ (16.40)						
Cr chromium	CrO ₄ -2							
Cu copper		Delafossite CuFeO ₂ (5.79); Ferrite-Cu CuFe ₂ O ₄ (10.38);						
		Malachite Cu ₂ CO ₃ (OH) ₂ (2.29)						
F fluoride	F ⁻							
Fe iron		Goethite FeOOH (5.04); Hematite Fe ₂ O ₃ (11.02)						
Hg mercury		Calomel Hg ₂ Cl ₂ (4.05); Montroydite HgO (6.20)						
Mn manganese		Manganite MnO(OH) (5.17); Pyrolusite MnO ₂ (6.8						
Mo molybdenum ¹	MoO ₄ -2							
Ni nickel		Trevorite NiFe ₂ O ₄ (12.62)						
Pb lead		Cerussite PbCO ₃ (0.73); Hydrocerussite Pb ₃ (CO ₃) ₂ (OH) ₂						
		(2.00)						
Ra radium		RaSO ₄ (0.86)						
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₅ (24.60)						
Se selenium	SeO ₄ -2							
Sr strontium		Strontianite SrCO ₃ (0.42)						
Tl thallium ¹	TI⁺							
U uranium	UO ₂ (CO ₃) ₃ ⁻⁴							
V vanadium	VO ₃ OH ⁻²							
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.52); Smithsonite ZnCO ₃ (0.54)						

Condition: Minimum James River constituents, pe = nitrogen couple, pe = 10.4, pH = 9

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)						
Ag silver		Chlorargyrite AgCl (0.35)						
Al aluminum		Boehmite AlO(OH) (2.17); Gibbsite Al(OH) ₃ (2.08)						
As arsenic	AsO₃F ⁻²							
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (2.38)						
Be beryllium		Bromellite BeO (7.60						
Cd cadmium ¹		CdCr ₂ O ₄ (11.61)						
Co cobalt		CoFe ₂ O ₄ (17.93)						
Cr chromium		Chromite FeCr ₂ O ₄ (7.55); Eskolaite Cr ₂ O ₃ (11.76);						
		Magnesiochromite MgCr ₂ O ₄ (7.25)						
Cu copper		CuCr ₂ O ₄ (10.87); Ferrite-Cu CuFe ₂ O ₄ (8.46); Malachite						
		Cu ₂ CO ₃ (OH) ₂ (0.34);						
F fluoride	F ⁻							
Fe iron		Goethite FeOOH (5.06); Hematite Fe ₂ O ₃ (11.05)						
Hg mercury		Calomel Hg ₂ Cl ₂ (4.05); Montroydite HgO (0.1						
Mn manganese	Mn ⁺²							
Mo molybdenum ²	MoO ₄ -2							
Ni nickel		Trevorite NiFe ₂ O ₄ (8.65)						
Pb lead		Cerussite PbCO ₃ (0.60); Crocoite PbCrO ₄ (0.02)						
Ra radium		RaSO ₄ (0.86)						
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₅ (8.40)						
Se selenium	SeO ₄ ⁻²							
Sr strontium	Sr ⁺²							
TI thallium ¹	TI+							
U uranium	$UO_2(CO_3)_2^{-2}$	Carnotite K ₂ (UO ₂) _s (VO ₄) ₂ (0.01); Tyuyamunite						
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)						
V vanadium	VO ₃ OH ⁻²	Carnotite $K_2(UO_2)_s(VO_4)_2$ (0.01); Tyuyamunite						
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)						
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.25); ZnCr ₂ O ₄ (20.95)						

Condition: Minimum James River constituents, pe = chromium couple, pe = 8.4, pH = 7

¹All other non-silicate Cd minerals were undersaturated. ²Minimal coverage in LLNL database.

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)						
Ag silver		Chlorargyrite AgCl (0.34)						
Al aluminum		Boehmite AlO(OH) (1.80); Gibbsite Al(OH) ₃ (1.71)						
As arsenic	AsO ₃ F ⁻²							
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (4.44)						
Be beryllium		Bromellite BeO (9.3						
Cd cadmium		CdCr ₂ O ₄ (17.87); Otavite CdCO ₃ (1.74)						
Co cobalt		CoFe ₂ O ₄ (16.40)						
Cr chromium		Chromite FeCr ₂ O ₄ (11.55); Eskolaite Cr ₂ O ₃ (14.08);						
		Magnesiochromite MgCr ₂ O ₄ (13.55)						
Cu copper		Ferrite-Cu CuFe ₂ O ₄ (10.38); Malachite Cu ₂ CO ₃ (OH) ₂						
		(2.29)						
F fluoride	F ⁻							
Fe iron		Goethite FeOOH (5.04); Hematite Fe ₂ O ₃ (11.02)						
Hg mercury		Calomel Hg ₂ Cl ₂ (4.05); Montroydite HgO (0						
Mn manganese	MnCO ₃							
Mo molybdenum ¹	MoO ₄ -2							
Ni nickel		Trevorite NiFe ₂ O ₄ (12.62)						
Pb lead		Cerussite PbCO ₃ (0.73); Hydrocerussite Pb ₃ (CO ₃) ₂ (OH) ₂						
		(2.00)						
Ra radium		RaSO ₄ (0.86)						
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (11.60)						
Se selenium		Hg₂SeO₃ (1.45)						
Sr strontium		Strontianite SrCO ₃ (0.42)						
Tl thallium ¹	Tl+							
U uranium	UO ₂ (CO ₃) ₃ ⁻⁴							
V vanadium	VO ₃ OH ⁻²							
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (11.52); Hydrozincite						
		Zn ₅ (OH) ₆ (CO ₃) ₂ (11.33); Smithsonite ZnCO ₃ (0.54)						

Condition: Minimum James River constituents, pe = chromium couple, pe = 4.7, pH = 9

¹Minimal coverage in LLNL database. ²All other non-silicate Se minerals were undersaturated.

Element	Major Soluble	Major Non-Silicate Minerals (SI)						
	Species							
Ag silver		Chlorargyrite AgCl (0.35); Naumannite Ag ₂ Se (19.53)						
Al aluminum		Boehmite AlO(OH) (2.17); Gibbsite Al(OH)₃ (2.08)						
As arsenic	AsO ₃ F ⁻²							
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (2.38)						
Be beryllium		Bromellite BeO (7.60)						
Cd cadmium		Cadmoselite CdSe (0.49); CdCr ₂ O ₄ (11.51)						
Co cobalt		CoFe ₂ O ₄ (14.53)						
Cr chromium		Chromite FeCr ₂ O ₄ (11.04); Eskolaite Cr ₂ O ₃ (11.66);						
		Magnesiochromite MgCr ₂ O ₄ (7.15)						
Cu copper		Cuprite Cu ₂ O (3.69); Ferrite-Cu CuFe ₂ O ₄ (5.05);						
		Malachite Cu ₂ CO ₃ (OH) ₂ (0.31)						
F fluoride	F-							
Fe iron		Goethite FeOOH (3.36); Hematite Fe ₂ O ₃ (7.65)						
Hg mercury		Calomel Hg ₂ Cl ₂ (4.05)						
Mn manganese	Mn ⁺²							
Mo molybdenum ²	MoO ₄ -2							
Ni nickel		Trevorite NiFe ₂ O ₄ (5.25)						
Pb lead		Cerussite PbCO ₃ (0.6						
Ra radium		RaSO ₄ (0.86)						
Sb antimony		Sb(OH) ₃ (1.01); Sb ₂ O ₄ (4.41						
Se selenium		Clausthalite PbSe (2.50); Hg ₂ SeO ₃ (1.00); Krutaite						
		CuSe ₂ (11.15); Naumannite Ag ₂ Se (19.53); Penroseite						
		NiSe ₂ (1.44)						
Sr strontium	Sr ⁺²							
TI thallium ²	TI+							
U uranium		Carnotite K ₂ (UO ₂) ₅ (VO ₄) ₂ (0.01); Tyuyamunite						
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)						
V vanadium		Carnotite K ₂ (UO ₂) ₅ (VO ₄) ₂ (0.01); Tyuyamunite						
		Ca(UO ₂) _s (VO ₄) ₂ (1.52)						
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (4.85); ZnCr ₂ O ₄ (20.85)						

Condition: Minimum James River constituents, pe = iron couple, pe = 3.1, pH = 7

¹All other non-silicate Cd minerals were undersaturated. ²Minimal coverage in LLNL database.

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)				
Ag silver		Chlorargyrite AgCl (0.34)				
Al aluminum		Boehmite AlO(OH) (1.80); Gibbsite Al(OH) ₃ (1.71)				
As arsenic	AsO₃F ⁻²					
Ba barium		Barite BaSO ₄ (1.77); Witherite BaCO ₃ (4.45)				
Be beryllium		Bromellite BeO (9.33)				
Cd cadmium		CdCr ₂ O ₄ (17.77); Otavite CdCO ₃ (1.75)				
Co cobalt		CoFe ₂ O ₄ (13.00)				
Cr chromium		Chromite $FeCr_2O_4$ (16.86); Eskolaite Cr_2O_3 (13.98);				
		Magnesiochromite MgCr ₂ O ₄ (13.46)				
Cu copper		Cuprite Cu ₂ O (10.71); Ferrite-Cu CuFe ₂ O ₄ (5.02)				
F fluoride	F ⁻					
Fe iron		Goethite FeOOH (3.34); Hematite Fe ₂ O ₃ (7.62)				
Hg mercury		Calomel Hg ₂ Cl ₂ (4.05)				
Mn manganese	Mn ⁺²					
Mo molybdenum ¹	MoO ₄ -2					
Ni nickel		Trevorite NiFe ₂ O ₄ (9.22)				
Pb lead		Cerussite PbCO ₃ (0.73); Hydrocerussite Pb ₃ (CO ₃) ₂ (C				
		(1.99)				
Ra radium		RaSO ₄ (0.86)				
Sb antimony		Sb(OH) ₃ (1.01)				
Se selenium		Clausthalite PbSe (16.62); Freboldite CoSe (1.11);				
		Krutaite CuSe ₂ (28.26); Naumannite Ag ₂ Se (35.57);				
		Penroseite NiSe ₂ (11.54); Stilleite ZnSe (7.33)				
Sr strontium		Strontianite SrCO ₃ (0.43)				
Tl thallium ¹	TI⁺					
U uranium	UO ₂ (CO ₃) ₃ ⁻⁴					
V vanadium	VO ₃ OH ⁻²					
Zn zinc		Ferrite-Zn ZnFe ₂ O ₄ (8.12); Hydrozincite Zn ₅ (OH) ₆ (CO ₃) ₂ (11.34); Smithsonite ZnCO ₃ (0.55); Zincite ZnO (1.00)				

Condition: Minimum James River constituents, pe = iron couple, pe = -2.4, pH = 9

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)						
Ag silver		Acanthite Ag ₂ S (28.23); Chlorargyrite AgCl (0.36)						
Al aluminum		Boehmite AlO(OH) (2.18); Gibbsite Al(OH) ₃ (2.09)						
As arsenic	AsO ₃ F ⁻²							
Ba barium		Barite BaSO ₄ (1.69)						
Be beryllium		Bromellite BeO (7.63						
Cd cadmium		CdS (12.88)						
Co cobalt		Cattierite CoS ₂ (11.95); CoFe ₂ O ₄ (1.26); CoS (2.67)						
Cr chromium		Chromite FeCr ₂ O ₄ (11.59); Eskolaite Cr ₂ O ₃ (11.60);						
		Magnesiochromite MgCr ₂ O ₄ (7.18)						
Cu copper		Covellite CuS (15.64); Cuprite Cu ₂ O (6.72); Delafossite CuFeO ₂ (6.99)						
F fluoride	F ⁻							
Fe iron		Pyrite FeS₅ (9.32); Pyrrhotite FeS (0.30); Troilite FeS						
		(0.40)						
Hg mercury		Calomel Hg ₂ Cl ₂ (4.07); Cinnabar HgS (20.40)						
Mn manganese	Mn ⁺²							
Mo molybdenum ¹		MoSe ₂ (18.30)						
Ni nickel		Millerite NiS (4.78); Vaesite NiS ₂ (11.41)						
Pb lead		Galena PbS (11.65)						
Ra radium		RaSO ₄ (0.78)						
Sb antimony		Stibnite Sb ₂ S ₃ (1.08)						
Se selenium		Cadmoselite CdSe (14.58); Ferroselite FeSe ₂ (6.58);						
		Klockmannite CuSe (18.24); Krutaite CuSe ₂ (21.13);						
		Naumannite Ag ₂ Se (33.60); Tiemannite HgSe (23.48);						
		Umangite Cu_3Se_2 (49.20); Wilkmanite Ni_3Se_4 (31.67)						
Sr strontium	Sr ⁺²							
Tl thallium ¹	TI⁺							
U uranium		UO _{2.25} (0.80); UO _{2.25} (beta) (0.72); Uraninite UO ₂ (2.98)						
V vanadium		Karelianite V ₂ O ₃ (2.92); V ₃ O ₅ (3.45); V ₄ O ₇ (2.04)						
Zn zinc		Sphalerite ZnS (10.06); Wurtzite ZnS (7.63)						

Condition: Minimum James River constituents, sulfur couple, pe = -3.4, pH = 7

Element	Major Soluble Species	Major Non-Silicate Minerals (SI)							
Ag silver		Acanthite Ag ₂ S (30.64); Chlorargyrite AgCl (0.36)							
Al aluminum		Boehmite AlO(OH) (1.80); Gibbsite Al(OH) ₃ (1.71)							
As arsenic	AsO ₃ F ⁻²								
Ba barium		Barite BaSO ₄ (1.70)							
Be beryllium		Bromellite BeO (9.34)							
Cd cadmium		CdS (15.27)							
Co cobalt		Cattierite CoS ₂ (7.94); CoFe ₂ O ₄ (8.22); CoS (0.85)							
Cr chromium		Chromite FeCr ₂ O ₄ (17.81); Eskolaite Cr ₂ O ₃ (13.99);							
		Magnesiochromite MgCr ₂ O ₄ (13.50							
Cu copper		Covellite CuS (15.75); Cuprite Cu ₂ O (10.72); Delafossite							
		CuFeO ₂ (12.59)							
F fluoride	F⁻								
Fe iron		Goethite FeOOH (0.95); Hematite Fe_2O_3 (2.83); Pyrite							
		FeS _s (9.45); Pyrrhotite FeS (2.61)							
Hg mercury		Calomel Hg ₂ Cl ₂ (4.07); Cinnabar HgS (20.52)							
Mn manganese	Mn ⁺²								
Mo molybdenum ¹		MoSe ₂ (10.90)							
Ni nickel		Millerite NiS (7.19); Vaesite NiS ₂ (11.63)							
Pb lead		Galena PbS (12.76)							
Ra radium		RaSO ₄ (0.78)							
Sb antimony		Stibnite Sb ₂ S ₃ (0.66)							
Se selenium		Cadmoselite CdSe (16.55); Ferroselite FeSe ₂ (5.88);							
		Klockmannite CuSe (17.94); Krutaite CuSe ₂ (18.22);							
		Naumannite Ag ₂ Se (35.60); Tiemannite HgSe (23.18);							
		Umangite Cu ₃ Se ₂ (50.91); Wilkmanite Ni ₃ Se ₄ (35.07)							
Sr strontium	Sr ⁺²								
TI thallium ¹	TI⁺								
U uranium		UO _{2.25} (0.65); UO _{2.25} (beta) (0.57); Uraninite UO ₂ (2.98)							
V vanadium		Karelianite V ₂ O ₃ (4.27); V ₃ O ₅ (5.18); V ₄ O ₇ (4.13)							
Zn zinc		Ferrite-Zn Fe ₂ O ₄ (3.38); Sphalerite ZnS (11.77); Wurtzite ZnS (9.36)							

Condition: Minimum James River constituents, pe = sulfur couple, pe = -5.7, pH = 9

7.7 Appendix G

Mann-Kendall Trend Test Results for Denitrification Tests in Aquifers

Tracer Test	Ag	Al	As	В	Ва	Be	Cd	Cr	Cu	Ni	Total P	Pb	Sb	Se	TI	Zn
*Akeley-C	NĂ	NA	NA	NA	NA	NA	NA									
*Akeley-N	NA	NA	0	NA	NA	NA	NA	NA	NA	-	NA	NA	NA	NA	NA	NA
Hamar-1C	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	+
Hamar-1N	0	0	0	0	+	0	0	0	0	0	+	0	0	0	0	+
Hamar-2C	0	0	0	0	+	0	0	0	0	-	0	-	0	0	0	0
Hamar-2N	0	0	0	0	+	0	0	0	0	0	0	0	0	0	0	-
Karlsruhe G	0	0	0	0	0	0	0	0	+	0	+	0	0	0	0	0
Karlsruhe S1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Karlsruhe S2	0	0	0	0	-	0	0	0	-	0	0	0	0	0	0	0
Larimore-1C	NA	NA	0	NA	0	NA	NA	NA	NA	NA						
Larimore-1N	NA	NA	0	NA	0	NA	NA	NA	NA	NA						
Larimore-2C	NA	NA	+	NA	0	NA	NA	NA	NA	NA						
Larimore-2N	NA	NA	+	NA	0	NA	NA	NA	NA	NA						
Larimore-3C	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0	0
Larimore-3N	0	0	0	0	-	0	0	0	0	0	0	0	+	+	0	-
Larimore-4C	0	0	0	0	0	0	0	0	0	+	0	0	0	0	0	0
Larimore-4N	0	0	0	0	-	0	0	0	0	0	0	0	0	+	0	0
Larimore-5C	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
Larimore-5N	0	0	0	0	-	0	0	0	0	0	0	0	0	+	0	0
Larimore-6C	0	0	?	0	0	0	0	0	0	0	0	0	0	?	0	0
Larimore-6N	0	0	?	0	0	0	0	0	0	0	0	0	0	?	0	0
*Luverne-C	NA	NA	-	NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	NA
*Luverne-N	NA	NA	0	NA	NA	NA	NA	NA	NA	-	NA	NA	NA	NA	NA	NA
*PerhamM-N	NA	NA	0	NA	NA	NA	NA	NA	NA	+	NA	NA	NA	NA	NA	NA
*PerhamW-C	NA	NA	0	NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	NA
*PerhamW-N	NA	NA	0	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Robinson-1C	0	0	0	-	+	0	0	0	0	0	0	0	0	0	0	+
Robinson-1N	0	0	0	0	0	0	0	0			+	0	0	0	0	+
Robinson-2C	0	0	0	0	+	0	0	0	0	0	0	-	0	0	0	-
Robinson-2N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

* Site in Minnesota.

Increasing trend. Decreasing trend. No trend. +

0

Lab reported that bromide caused interference with As and Se. Not analyzed. ?

NA