Review of Water Quality Assessments for the North Dakota National Guard Camp Grafton (South Unit), Eddy County, North Dakota: 1986 through 2006

By W. M. Schuh

Water Resources Investigation No. 40 North Dakota State Water Commission Dale L. Frink, State Engineer

Prepared by the North Dakota State Water Commission in cooperation with the North Dakota Army National Guard

Review of Water Quality Assessments for the North Dakota National Guard Camp Grafton (South Unit), Eddy County, North Dakota: 1986 through 2006

By W. M. Schuh

Water Resources Investigation No. 40 North Dakota State Water Commission Dale L. Frink, State Engineer

Prepared by the North Dakota State Water Commission in cooperation with the North Dakota Army National Guard

ACKNOWLEDGEMENTS

This project was funded by the North Dakota National Guard. Military liaison, including initiation, funding supervision, planning assistance, and inventory of herbicide, pesticide, and munitions and explosives used on the CGS facility were provided by Warrant Officer Neal Jacobson, Colonel David Anderson, and later Major Steven Herda, North Dakota National Guard. Louise Parker, of the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, provided assistance in interpreting potential sources of detected organic residues from munitions and explosives sources during the 2001 sampling, and her advice is still applied in the 2006 sampling. Dr. Robert Benson (USEPA, Denver) provided assistance in evaluating toxicological significance of detected species that do not have published limits or standards. His advice, also offered in 2001, are also still applied in this sampling. Field sampling was assisted by Merlyn Skaley of the North Dakota State Water Commission (NDSWC). I thank Brenda Hove of the NDSWC for editorial and artistic assistance in preparing this report.

LIST OF COMMONLY USED ABBREVIATIONS AND ACRONYMS

bls	Below land surface
CGS	Camp Grafton South Unit facility
CPQL	Combat Pistol Qualification Range
DNT	Dinitrotoluene; an explosive chemical
DOD	U.S. Department of Defense
DRO	Diesel-range organics
DWEL	"protective of adverse, non-cancer health effects, that assumes all of the contaminant is from a drinking water source"
EPA-MCL	The U.S. Environmental Agency Maximum Contaminant Level. Maximum permissible level of contaminant in water which is delivered to any user of a public water system
EPA-MCL ^N	The proposed new EPA-MCL for arsenic (10 mg/L), compared with the previous standard of 50 mg/L
GCEM	General C. Emerson Murray Ranges
GRO/BTEX	Gasoline-range organics / benzene, toluene, ethyl-benzene, xylene
HAL	Health Advisory Level
HMX	Cyclotetramethylene-tetranitramine; an explosive chemical
MDL	Laboratory minimum detection level
MICLIC	Mine Clearing Line Charge
MPMG	Multiple Purpose Machine-Gun range
MRF	Modified Record Fire range
RDX	Cyclotrimethylenetrinitramine; an explosive chemical
RID	"Reference Dose:" an estimate of daily exposure to the human population that is likely to be non-deleterious to human health over a lifetime

LIST OF ACRONYMS (Continued)

SAR	Sodium-adsorption ratio
SI	Screened interval for well screen
TDS	Total Dissolved Solids
TNT	Trinitrotoluene; an explosive chemical
ТРН	Total petroleum hydrocarbons
USEPA	U.S. Environmental Protection Agency
ZERO	Sighting range

Photo 1. North Spring

Photo 2. Purging a well by compressed air lift.

Photo 3. Purging a well by suction lift using a screw pump.

Photo 4. Purging a well using a gas squeeze pump.

EXECUTIVE SUMMARY

Ground water of the Cherry Lake aquifer and surface water (Lake Coe, South Washington Lake, two springs and a reservoir) on the CGS reservation have been monitored for general chemistry and trace elements since 1986, and for munitions and explosives residues, petroleum residues, and pesticide residues since 1993. Sample analytes have been targeted to specific use areas of CGS. Comprehensive sampling is conducted at five-year intervals.

Shallow ground water and springs within the CGS reservation are characterized by a low TDS, calcium bicarbonate type chemical composition. Deeper ground water and lakes are characterized by higher concentrations of sodium sulfate and TDS, likely through the proximity and influence of the underlying Pierre Shale, and some evaporative concentration in the lakes. There is no indication of increasing salinity or other signs of ground-water quality degradation with respect to general chemistry, that could be attributed to CGS use and management.

Nitrate concentrations on the CGS reservation are highest in shallow ground water (less than 100 feet below land surface), and negligible below that depth. Of all ground-water samples analyzed during the period of measurement, more than 95% of each well set are below concentrations common to "natural" conditions without anthropogenic influence, and all but one sample are below the EPA-MCL. The one high-concentration detection was in a very shallow well, screened at the water table, in a pasture with a lot of cattle and considerable manure on the surface, and near a wetland. A deeper well on the same site had low nitrate, so nitrate was concentrated and stratified near the surface. These data indicate that there is no evidence of ground-water or surface-water deterioration with respect to nitrate at CGS due to management practices, and that measured ground-water concentrations conform to very high standards with respect to nitrate management.

Trace elements, other than arsenic, have been consistently low in ground water and surface water of the CGS reservation. There was one detection of lead at 2 μ g/L in the reservoir west of the GCEM ranges in 2001. No concentration of lead is acceptable for tap water. However, action levels of 15 μ g/L have been set for remediation. In 2001 lead concentrations briefly reached 2 μ g/L. But as of 2006 lead was non detectable in the reservoir. There have been no confirmed indications of ground-water or surface-water degradation with respect to trace elements at CGS. It is cautioned that many trace metals can be mobilized more effectively at lower pH values, and that any management practice that might cause acidification of the soil might enhance mobilization of trace metals. Acidification processes might include addition of large quantities of elemental sulfur, ammonium or urea. It is difficult to conceive of a reason for applying such chemicals, but the caution is given for the sake of awareness.

Arsenic is common in CGS ground water and surface water. More than 20% of CGS ground-water samples have arsenic concentrations above the EPA-MCL. These percentages are approximately double those of the Northwest Provenance glacial drift from which CGS lands are formed. Arsenic sources are natural, and are likely derived from oxidation of arseno-pyrite in the underlying shale, and in the shale-derived glacial materials. Arsenic tends to be higher in deeper wells, and elevated concentrations appear to be associated with reducing conditions and the mobilization of iron, which removes sorption surfaces that normally sequester arsenic. Highest ground-water arsenic concentrations are in the Colvin Creek subbasin, east of the GCEM ranges.

Arsenic in the two lakes (Lake Coe, and South Washington Lake) is high, and generally above the EPA-MCL. High arsenic concentrations in both lakes appear to be affected to a great degree by high pH, which results from algal photosynthesis. Concentrations in Lake Coe fluctuate within a range of 10 to 26 μ g/L, and usually above 16 μ g/L, and may be governed by fluctuating pH. Highest concentrations of all water sources were in South Washington Lake, which peaked at 71 μ g/L in 1993 (7 times the EPA-MCL), but which declined to as low as 16.7 μ g/L in 2006. The decreasing concentrations are systematic and appear to be affected somewhat by pH changes, and also by dilution from ground water following large rains in the 1990s. They may be expected to rise again during drier climatic periods.

High arsenic in CGS reservation waters are all of natural origin, and precede military use of the reservation. High arsenic concentrations are also found in similar settings near, but off of, the reservation. There are no indications of degradation of surface or ground waters with respect to arsenic, caused by management or use of the reservation. Two management measures have been undertaken in relation to elevated arsenic: (1) CGS has contracted for treated drinking water rather than use of local wells; and (2) CGS has developed procedures, acceptable to the North Dakota Health Department, for disposal of filtrate (containing concentrated arsenic) following water purification training.

Munitions and explosives residues have been detected in small quantities in ground water used to monitor the demolitions and munitions ranges. Acetone, methylene chloride and toluene were detected in several water samples in 2001, but it seemed likely that they were introduced by sample contamination, possibly in the laboratory. In 2006

toluene was again detected in one shallow well, indicating its probable occasional presence in shallow ground water. In 2001 carbon disulfide was detected in several ground-water and surface-water samples and seemed authentic. Benzoic acid was detected in the reservoir and in Lake Coe. Di-n-butylphthalate was detected in one ground-water sample (Site 2 in the Colvin Creek subbasin) and in Lake Coe. Except for benzene and toluene, none of these were detected in the 2006 sampling. In 2006 benzene and toluene were detected in one shallow well south of the demolitions range. Detections were below levels of toxicological concern, and were not present in the deeper well at the same site. Because of repeated detections (2001 and 2006), benzene and toluene are likely authentic and periodically present at trace concentrations. The repeated presence of benzene and toluene, and the single detection of other explosives residues, indicate that small amounts are reaching ground water. However, all detections were below EPA-MCL, and most were lower by several orders of magnitude. Most were also detected only once. None were detected more than once in the same source location. There is, therefore, evidence of munitions and explosives residues reaching ground water and surface waters sporadically and in very small quantities. There is no evidence of a persistent or growing problem that would likely reach levels of toxicological concern.

Petroleum residues as DRO (diesel-range organics) were first detected in 2001 in ground water at the Engineering Training Site (Site 9), in buck hollow (Site 8), and in wells northeast of South Washington Lake. Detections were below lab MDL (minimum detection levels) and were therefore considered "qualitative." They were also several thousand times below levels of toxicological concern. DRO were not sampled in 2006. GRO (gasoline-range organics)/BTEX (benzene, toluene, ethylbenzene, xylene) samples indicated no detections in all sample events before 2006. In 2006 there were low-level detections of benzene and toluene in one shallow well. These were attributed to demolitions residues rather than to petroleum spills. There have been no indications in any of the sample assays that management and use of the CGS reservation is causing deterioration of ground water or surface water through contamination with petroleum products.

Since 1993 pesticide analyses have been performed for various herbicides and insecticides. Picloram, 2,4-D and malathion have been assayed in all years. Dimethoate was assayed only in 1993. Chlorpyrifos was assayed in 2001, and bromoxynil and prometone were assayed in 2001 and 2006. There have been no detections of any of the insecticides (malathion, dimethoate, chlorpyrifos) in any of the sample sets. There have been no detections of 2,4-D and prometone in any of the sample sets. Picloram was detected consistently in South Washington Lake and in Lake Coe at barely detectable

concentrations (0.1 to 0.2 μ g/L) during the 1993, 1996 and other supplemental assays during the 1990s. Beginning in 2001 picloram was no longer detectable in the lakes. Again, in 2006 there were no detections. All concentrations were several orders of magnitude below EPA-MCLs. It was concluded that wet conditions during the 1990s contributed to runoff of picloram into the lakes during that time, and that contemporary influx seems to have decreased. There was one low-level (2.3 μ g/L) detection of picloram in the North Spring water sample collected in 2006. This was likely caused by local spraying for leafy spurge. In general, as of 2006 there is no indication of degradation of CGS ground water or surface water due to use or management of pesticides.

There is no evidence to indicate that CGS land use and management have caused any substantial degradation of local water resources during the period of operation to date.

RECOMMENDATIONS

There are no indications of significant degradation of the CGS facility from management and use. The following summary recommendations are made.

1. Be aware of high arsenic concentrations, and continue to practice cautionary measures in reverse-osmosis water purification exercises on the CGS facility. Follow Health Department guidelines. Return purified water with the filtrate to the original source to maintain net concentration.

2. Continue the current grazing management plan. It is successful with respect to ground-water contamination with nitrate and other nutrients.

3. Avoid any practices that could enhance acidification of firing range areas where heavy metals might be present. These practices would include the addition of any acidifying materials, like anhydrous ammonia, urea, or elemental sulfur.

4. Be aware of sporadic traces of organic solvents in ground water in the demolitions range areas. While all current indications are non-threatening, these should be resampled every five years to assure that accumulations are not occurring.

5. Pesticide residues are rare and of negligible concern. Trace detections of picloram have decreased in area lakes over the last six years, and have been non-detectable. Continue the same management practices with respect to herbicide and insecticide use.

TABLE OF CONTENTS

	Page
INTRODUCTION	
LOCATION AND NUMBERING SYSTEM	
CLIMATE, GEOLOGY AND HYDROLOGY	
Climate	
Geologic and Hydrologic Setting	
SAMPLE PLAN DESIGN	6
Objectives and Priorities	6
Monitoring Plan Criteria	
Well Set 1 (WS-1)	
Well Set 2 (WS-2)	
Surface-Water Sampling Sites	
CAMP GRAFTON SOUTH USE PATTERNS	
Overview of CGS Chemical Use	
Munitions and Explosive Use, Residues and Sampling Strategy	
FIELD SAMPLING AND LABORATORY METHODS	
Field Methods	
General Water Chemistry and Trace Elements	
Organic Compounds	
SUMMARY OF 1993 THROUGH 2001 SAMPLING AND ASSESSMENT	
Summary of 1993 Sampling and Assessment	
Summary of 1996 Sampling and Assessment	
Summary of 2001 Sampling and Assessment	
General Chemistry in 2001	
Nitrate in 2001	
Trace Elements and Arsenic in 2001	
Munitions and Explosives Residues in 2001	
Pesticide Residues	30
Petroleum Residues	
PREVIOUS SAMPLING RECOMMENDATIONS	
RESULTS FOR 2006 SAMPLING AND ASSESSMENT	
General Chemistry and Trace Elements in CGS Ground Water	
General Chemistry in WS-1 and WS-2 Wells	
Nitrate in WS-1 and WS-2 Wells	49
Minor and Trace Element Concentrations in WS-1 and WS-2 Wells	52
Arsenic Concentrations in CGS Waters	
Arsenic Concentrations in WS-1 Wells	
Arsenic Concentrations in WS-2 Wells	64
Summary of General and Trace Elements in CGS Wells	
General Chemistry and Trace Elements in Surface Waters	
Lake Coe	
Lake Coe General Chemistry	69

Nitrate Concentrations in Lake Coe	70
Trace Elements in Lake Coe	70
Arsenic in Lake Coe	70
Summary of General and Trace Elements in Lake Coe	70
South Washington Lake	
South Washington Lake General Chemistry	70
Nitrate Concentrations in South Washington Lake	71
Trace Elements in South Washington Lake	72
Arsenic in South Washington Lake	
Summary of General and Trace Elements in South Washington Lake	72
North and South Springs	72
North and South Springs General Chemistry	72
North and South Springs Nitrate Concentrations	72
North and South Springs Trace Elements	72
North and South Springs Arsenic	73
Summary of General and Trace Elements in North and South Spring	s73
Reservoir	73
Reservoir General Chemistry	73
Reservoir Nitrate Concentrations	73
Reservoir Trace Elements	73
Reservoir Arsenic	73
Summary of General and Trace Elements in the Reservoir	73
Munitions and Explosives Residues	74
Munitions and Explosives Data Quality Control	75
Petroleum Residues	76
Pesticide Residues	77
SUMMARY AND CONCLUSIONS	
CITATIONS	83

APPENDIX A: LETTERS OF CORRESPONDENCE (INCLUDING E-MAIL)

Includes correspondence with LTC (2001) David Anderson on composition and use of munitions and explosives on the CGS facility; e-mail correspondence with Louise Parker on interpretation of residue detections; e-mail correspondence with Bob Benson on the toxicology of carbon disulfide; correspondence with DATACHEM laboratories over 2006 sample holding times.

APPENDIX B: MUNITIONS AND EXPLOSIVES RESIDUES

Includes 2006 laboratory results, case narratives, method descriptions, and QA/QC for munitions and explosives residues assays (EPA Methods 8260B, 8270C, 8330 and 8332).

APPENDIX C: MUNITIONS AND EXPLOSIVES RESIDUES

Includes 2006 laboratory results, chain of custody, case narratives, method descriptions, and QA/QC for residues of herbicides, insecticides and petroleum.

LIST OF TABLES

	Pag	P
Table 1.	List and locations of 1993 proposed sampling sites for the CGS training facility as presented in the initial plan proposal	
Table 2.	List and locations of 1996 proposed sampling sites for the CGS training facility as presented in the initial plan proposal	2
Table 3.	List and locations of 2001 proposed sampling sites for the CGS training facility as presented in the initial plan proposal	3
Table 4.	List and locations of 2006 proposed sampling sites for the CGS training facility as presented in the initial plan proposal	7
Table 5.	List of analytes for EPA Methods 8260B, 8270C, 8330, and 8332 used for 2001 samples at CGS)
Table 6.	EPA laboratory method procedures for known compounds from each designated use area, based on munitions and explosives use inventory (Appendix A)20)
Table 7.	Water sample sites associated with ranges)
Table 8.	Water chemistry parameters for the WS-1 monitoring well set, CGS	1
Table 9.	General cations and anions for water samples from the WS-1 well set, CGS	3
Table 10.	Water Chemical Parameters for water samples from the WS-2 well set, CGS42	2
Table 11.	General cations and anions for water samples from the WS-2 well set, CGS45	5
Table 12.	Dissolved minor and trace element concentrations in the WS-1 well set	5
Table 13.	Dissolved minor and trace element concentrations in the WS-2 well set	9
Table 14.	Summary of selected well construction and chemical parameters in high arsenic wells of the WS-1 well set	2
Table 15.	Chemical parameters for water samples from surface water at CGS	5
Table 16.	General cations and anions for water samples from surface water at CGS	7
Table 17.	Trace elements for water samples from surface water at CGS	8
Table 18.	Sample sites, and well and surface-water identifiers for munitions and explosives residue samples	4
Table 19.	Results of water sample analysis for gasoline-range organics and BTEX	5
Table 20.	Results of water sample analysis for herbicides and insecticides used on CGS7	7

LIST OF FIGURES

	I	Page
Figure 1.	Location and numbering system used in this report	2
Figure 2.	Location of Camp Grafton (South Unit) training reservation	3
Figure 3.	Location of WS-2 sample-well sites and surface-water sampling sites in relation to moraine subunits, and direction of ground-water flow	7
Figure 4.	Location of ground-water and surface-water sampling sites used for monitoring water quality on Camp Grafton (South Unit) lands	10
Figure 5.	Sample sites for pesticide samples in relation to bivouac sites; and sample sites for explosives residue samples in relation to training areas involving demolitions and munitions training	16
Figure 6.	Piper diagram showing cation and anion distributions of the WS-1 wells	48
Figure 7.	Piper diagram showing cation and anion distributions of the WS-2 wells	49
Figure 8.	Probability distribution of nitrate concentrations in WS-1 and WS-2 wells from 1987 through 2006.	50
Figure 9.	Dissolved arsenic concentration vs. dissolved ferrous iron for selected WS-1 wells	63
Figure 10.	Piper diagram showing cation and anion distributions of Lake Coe	65
Figure 11.	Piper diagram showing cation and anion distributions of South Washington Lake	71

INTRODUCTION

In 1992 a water quality monitoring plan for the North Dakota National Guard Camp Grafton South (CGS) facility in Eddy County, North Dakota, was submitted to the North Dakota National Guard (Schuh 1992). The plan was designed to consider existing geologic and hydrologic information, current and future use patterns of the facility, objectives and goals for protection - including the sensitivity of resources to be protected, and the limitations of funding and resources available for implementing the plan. An attempt was also made to consider training objectives and resource conservation in a balanced manner, and to maximize the information obtainable from limited field data.

The initial sampling plan was laid out in two phases. Phase I consisted of the selection of appropriate surface-water sites and the construction of appropriate observation wells for monitoring munitions and explosives residues, petroleum residues, and pesticide contamination. Phase I also included baseline water samples for appropriate contaminants and for basic water quality and trace elements on each of the selected sites. Phase I was implemented in 1992 and 1993. In 1994 a report was published describing the monitoring well network, the water sample collection plan, and results of the baseline samples collected for each of the potential contaminant groups sampled at CGS (Schuh 1994). Included in the 1994 publication were:

1. Well and sampling locations;

2. Well completion information, including lithologies, materials, construction methods, development, and cleaning procedures;

3. Sampling procedures, including well purging methods, sampling methods, and sample-handling methods and procedures;

4. Baseline data for basic water chemistry and trace elements from each newly constructed sample well;

5. Data for water quality and trace elements measured in wells constructed before Phase I; and

6. A brief analysis and interpretation of results.

Phase II consisted of a plan for ongoing periodic assessment of water quality at CGS. The provisions of the initial Phase II plan were designed to be flexible and to allow for modification as understanding of area hydrology and its effect on water quality increases. Ongoing assessments of CGS water quality were to be accomplished through periodic (three- to six-year interval) reevaluation of use of CGS and potential water contamination resulting from use patterns. We have since adopted a five-year interval for targeted sampling, and a 10-year interval for full comprehensive sampling of all wells.

LOCATION AND NUMBERING SYSTEM

The location and numbering system used in this report is based on the public land classification system used by the U.S. Bureau of Land Management. The system is illustrated in Figure 1. The first number denotes the township north of a base line, the second number denotes the range west of the fifth principal meridian, and the third number denotes the section in which the well or test hole is located. The letters A, B, C, and D designate, respectively, the northeast, northwest, southwest, and southeast quarter section, quarter-quarter section, and quarter-quarter section (10-acre tract). For example, well 149-063-4ADD is located in the SE 1/4 SE 1/4 NE 1/4 Sec. 4, T. 149 N., R. 63 W. Consecutive terminal numerals are added if more than one well or test hole is located within a 10 acre tract.

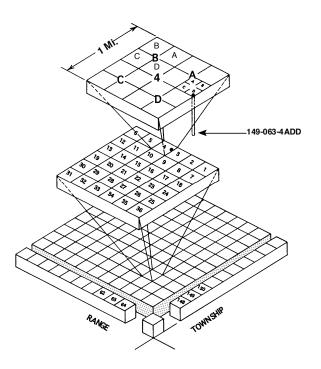


Figure 1. Location and numbering system used in this report (from the U.S. Bureau of Land Management).

CLIMATE, GEOLOGY, AND HYDROLOGY

CGS is located in Eddy County in east central North Dakota (Figure 2). The facility occupies portions of four townships, Lake Washington (149-063), Colvin (149-062), Paradise (148-062), and Cherry Lake (148-062). CGS lands are approximately bisected by State Highway 15, which runs east-west.

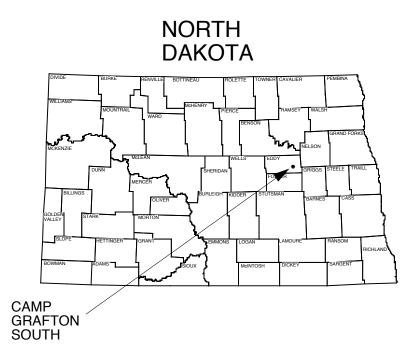


Figure 2. Location of Camp Grafton (South Unit) training reservation.

Climate

The climate of Eddy County North Dakota is continental, having cold winters and hot summers. The onset of cold weather usually begins in early November. The frost usually leaves the soil in mid April. The moisture regime is borderline between semi-arid and sub-humid, with a long-term average precipitation of about 48 cm (19 inches).

Geologic and Hydrologic Setting

The general geological setting of Camp Grafton South has been described by Bluemle (1965), and by Comeskey (1989). Local geology and its relation to water resources on the CGS facility and the sampling plan were discussed in detail by Schuh (1994). In general, the surficial geology of the CGS facility consists of uplands which are composed of glacial drift which comprise subunits of the McHenry End Moraine, and

lowlands, or drainage basins, which drain toward the Sheyenne River about five miles north of CGS. A simple schematic of the relationship between moraine uplands and lowland basins is shown on Figure 3.

There are three distinct subunits of the McHenry End Moraine on the CGS facility (called moraine units 1, 2, and 3 in this report). The largest subunit (moraine unit 1) extends from the southern through the northern boundary on the east side of the facility, and separates the drainage into two principal basins. On the east side, all drainage flows northeastward toward the Sheyenne River through the Colvin Creek basin. On the west side of moraine unit 1, all drainage flows toward the Sheyenne River through the Lake Coe and South Washington Lake basin. The other two subunits of the McHenry End Moraine on the CGS facility (moraine units 2 and 3) are oriented north to south, and are located entirely in the southern half of the facility. Neither extends north of Hwy 15. These two moraine subunits serve to divide the southern portion of the Lake Coe and South Washington Lake basin into three subbasins. Most drainage through the Lake Coe and South Washington Lake basin originates from the eastern two of these subbasins. Between moraine unit 1 and moraine unit 2 water flows northward to Lake Coe through a series of small lakes and littoral areas. Between moraine unit 2 and moraine unit 3, water flows northward to Lake Coe through North and South Twin Lakes. Drainage from uplands to lowlands occurs through a series of coulees.

The principal ground-water resource underlying the CGS facility is the Cherry Lake aquifer. Trapp (1966B) and Comeskey (1989) described Cherry Lake aquifer system as composed of two confined units, separated by 20 to 40 feet of glacial till. The surface of the deepest (and least areally extensive) unit is located approximately between 126 and 182 feet below land surface. In addition to the two confined units of the Cherry Lake aquifer, Comeskey (1989) identified a surficial unconfined unit. The surficial unit consists of a sand mantle overlying the glacial till confining the lower units. In many areas, however, this mantle is not saturated. Comeskey also described the presence of some coarse deposits within the glacial drift that are apparently locally isolated and not connected with the larger aquifer units.

The lake system has been described as an exposure of the water table, and has been used to describe a general regional flow system northward to the Sheyenne River. Water-table maps (Trapp 1966A), which may or may not be related to piezometric levels in the underlying aquifers, indicate that overall regional ground-water flow at the water table is toward the Sheyenne River through the Washington lakes chain, and through the Colvin Creek lowland.

There is a very slight water table gradient southeastward toward the Johnson Lake aquifer, and some water movement may occur in that direction. Flow from Cherry Lake is indicated to be southward toward the Juanita Lake aquifer and the James River. Generally, however, CGS land is too far north to affect the southward drainage system. Also water-table gradients toward the Johnson Lake aquifer are small. All indications from current information are that most ground water and surface water moves on a regional scale northward to the Sheyenne River through the Lake Coe /South Washington Lake chain (and subunits), and through the Colvin Creek basin.

Readers are also referred to Comeskey (1989) and Trapp (1966B) for in-depth studies of the Cherry Lake aquifer. In addition, Schuh (1994) described the relationship between local geology and hydrology and land use practices and potential risk of ground-water contamination.

SAMPLE PLAN DESIGN

Objectives And Priorities

Objectives and priorities for the CGS water quality sampling plan were discussed in detail by Schuh (1994). In brief, priorities in designing the plan were:

Priority 1 - protection of ground-water and surface-water exterior to CGS. The primary focus is on detection of contaminants migrating to regional, rather than local, flow systems, before they can substantially effect the regional resource.

Priority 2 - protection of the wildlife, such as migratory waterfowl, that inhabit the lakes and wetlands of CGS.

Priority 3 - protection of the local fresh-water supply.

Monitoring Plan Criteria

Factors considered in the water quality monitoring plan included: (1) The nature of local and regional surface drainage; (2) The nature of local and regional ground-water flow; (3) The disposition and use of water by others near the military reservation; (4) The sensitivity of specific water uses on and near the reservation to specific contaminants; and (5) Land use patterns on the military reservation. Consideration was also given to the desirability of having all major use areas of the reserve given sample representation

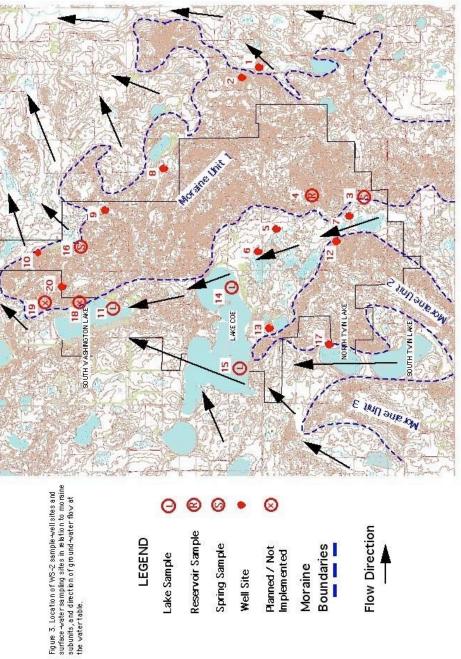


Figure 3. Location of WS-2 sample-well sites and surface-water sampling sites in relation to moraine subunits, and direction of ground-water flow.

Water samples are collected from three basic sources on CGS. The three sample sources include two sets of sampling and monitoring wells, and a number of surface water sources that include two lakes, two springs, and one reservoir (Fig. 3).

Well Set 1 (WS-1)

The first well set (labeled Well Set 1, or WS-1) was constructed by driller Gary Calheim under direction of Comeskey (1989), in mapping the Cherry Lake aquifer on CGS. This well set consists of 25 wells placed in nests of one to four wells at a total of 12 sites. Well placement was non biased with respect to CGS use patterns, geology, and topography. Wells were placed at approximately evenly spaced intervals along two transects, one north to south, and the other east to west. Well construction was of 2-inch and 1.25-inch diameter polyvinyl chloride (PVC) casing, and joints were bonded using solvent-weld cement containing methyl-ethyl ketone. WS-1 wells are protected from cattle by barbed wire fences, but they do not have a protective cover (PC), nor are they locked and secured. Placement of these wells limits their usefulness for sampling contaminants from targeted land uses. Construction methods and security limitations also limit their usefulness for sampling organic contaminants (Parker et al. 1990, Sykes et al. 1986). However, both construction and placement methods render the WS-1 wells suited for sampling background inorganic water chemistry. In addition, these wells have the longest sampling record for basic water chemistry (dating to 1987). WS-1 wells are used for ongoing sampling of basic water chemistry and for piezometric readings. They may also be used for supplemental sampling of organic contaminants if needed for investigation of specific problems. Locations of WS-1 wells are summarized on Table 1, and illustrated on Figure 4. A description of the hydrologic setting of well nests, lithologic logs for WS-1 wells, and initial water chemistry data from samples collected in 1987 are in Comeskey (1989). A list of locations and wells for the 1996 sampling is shown on Table 2.

Well Set 2 (WS-2)

The second well set (labeled Well Set 2, or WS-2) was constructed by driller Gary Calheim, under direction of Schuh (1994). This set consists of 23 wells placed in nests of one to three, at 12 sites. WS-2 sites were selected for coverage of drainage areas from areas of specific use within the CGS facility.

The WS-2 wells were placed primarily in the lower reaches of coulees feeding into the Colvin Creek and Lake Coe and South Washington Lake basins and their tributaries. The mouths of coulees were selected for two reasons: (1) The coulees are the major conduits of surface water runoff. For this reason, they are the logical points of Table 1. List and locations of 1993 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. L indicates a lake sampling site, R indicates a reservoir sampling site, S indicates a natural spring sampling site, and W indicates a well sampling site. WS-1 designates wells placed by Comeskey (1989). WS-2 designates wells placed by Schuh (1994). All WS well nests were to be sampled only in the shallowest well.

Well Set	Site	SWC Well No.	Township N	Range W	Section	Location	water source	Mun.	ТРН	picloram	chlor- pyrifos	Basic	Trace
WS-1		12024A	148	63	1	CBBC1	W					х	х
WS-1		12024B	148	63	1	CBBC2	W					х	х
WS-1		12024C	148	63	1	CBBC3	W					х	х
WS-1		12020A	149	63	14	DACD1	W					х	х
WS-1		12020B	148	63	14	DACD2	W					х	х
WS-1		12020C	148	63	14	DACD3	W					х	х
WS-1		12019A	149	63	23	ADBB1	W					х	х
WS-1		12019B	149	63	23	ADBB2	W					х	х
WS-1		12019C	149	63	23	ADBB3	W					х	х
WS-1		12017A	149	63	25	DBBC1	W					х	х
WS-1		12017B	149	63	25	DBBC2	W					х	х
WS-1		12017C	149	63	25	DBBC3	W					х	х
WS-1		12017D	149	63	25	DBBB4	W					х	х
WS-1		12025	149	63	26	DCA	W					х	х
WS-1		12012	149	63	27	DDDC1	W					х	х
WS-1		12015B	149	63	31	ABBC2	W					х	х
WS-1		12015C	149	63	31	ABBC3	W					х	х
WS-1		12026A	149	63	34	BBB1	W					х	х
WS-1		12026B	149	63	34	BBB2	W					х	х
WS-1		12011B	149	63	35	ABBD2	W					х	х
WS-1		12014A	149	63	36	AACB1	W					х	х
WS-1		12014B	149	63	36	AACB2	W					х	х
WS-1		12014C	149	63	36	AACB3	W					х	х
WS-1		12014D	149	63	36	AACB4	W					х	х
WS-1		12023A	149	63	36	DDBBC1	W					х	х
WS-1		12023B	149	63	36	DDBBC2	W					х	х
WS-1		12023C	149	63	36	DDBC3	W					х	х
WS-1		12021A	149	63	13	BAAB1	W					х	х
WS-2	1	13104	149	62	28	CCC2	W	х				х	х
WS-2	2	13105	149	62	29	DAD	W	х		х	х	х	х
WS-2	3	Spring	148	63	2	DA	S	х				х	х
WS-2	4	Reservoir	149	62	31	С	R	х				х	х
WS-2	5	13098	149	63	36	ACA2	W	х				х	х
WS-2	6	13102	149	63	25	CDC2	W	х		х	х	х	х
WS-2	7	13087	148	63	2	ACA2	W	х				х	х
WS-2	8	13091	149	62	19	DBD2	W		х	х	х	х	х
WS-2	9	13089	149	63	13	DAA2	W		х	х	х	х	х
WS-2	10	13093	149	63	12	CAC2	W		х	х	х	х	х
WS-2	11	S W Lake	149	63	14	CAC	L		x	x	x	x	x
WS-2	12	13085	148	63	2	BABC2	W		x	x	x	x	x
WS-2	13	13100	149	63	35	BCBA2	W		x	x	x	x	x
WS-2	14	Lake Coe	149	63	26	ADD	L		x	X	X	X	x
WS-2	15	Lake Coe	149	63	27	DDB	L		x	x	x	x	x
WS-2	16	Spring	149	63	13	BDA	S			х	х	х	х
WS-2	17	13096	148	63	4	ABA2	Ŵ			x	x	x	x
WS-2	18a		149	63	14	BAA	S			x	x	x	x
WS-2	18b)		149	63	14	BAA	S			x	x	x	x
WS-2 WS-2	180) 18c		149	63	14	BAA	s			x	X	x	x
WS-2	19		149	63	11	DDC	w			x	X	x	X
WS-2 WS-2	20	13094	140	63	14	AAB	w			X	X	x	X
110-2	20	15074	17/	00	17	11110	**			А	А	л	А

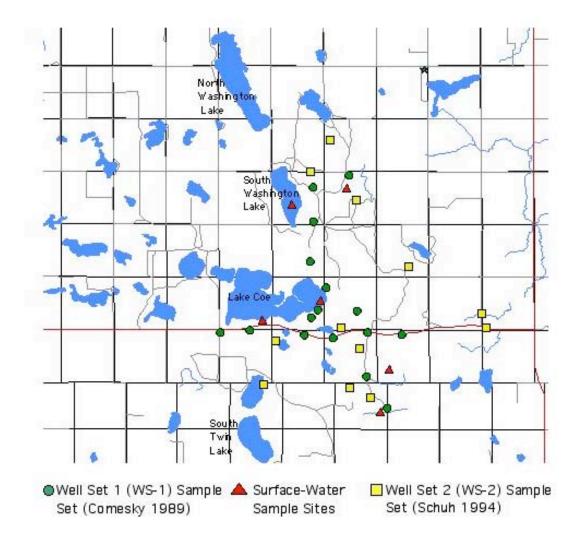


Figure 4. Location of ground-water and surface-water sampling sites used for monitoring water quality on Camp Grafton (South Unit) lands.

concentration for contaminants draining from higher elevations. (2) Coulees are frequently the locations of springs, where till and overlying coarse units outcrop along the cuts or walls of the coulees. In some cases, seepage faces are extensive and relatively permanent. In others, they may flow only some of the time during wet years, or sporadically following particularly large rainfall events. When such springs are flowing, or when ground water is nearer the surface so that higher evaporation occurs, ground water discharges into the coulees. This means that local ground water in the vicinity of springs should tend to preferentially receive both surface-water and ground-water contaminant plumes from the upland recharge sites. Such advanced monitoring points should provide the highest probability of early detection and protection for both the regional ground-water flow system and the lake and littoral areas.

Well placement was also based on specific land use within the watershed. Specific targeted uses included weapons and demolitions ranges, vehicle staging areas, bivouac areas, and pest control areas. To accommodate sampling for organic contaminants, well construction consisted of 2-inch PVC casing, with joints fastened using stainless steel screws, rather than solvent weld cement (Parker et al. 1990, Schuh et al. 1997, Sykes et al. 1986). Well annuli above the well-screen were sealed with high solids bentonite. Each well was secured by a 6-inch PVC protective cover (PC) with concrete at the base, and by a locking aluminum cap.

Placement, construction, and security make WS-2 wells most appropriate for sampling organic contaminants, and site-specific contaminants from munitions, pesticides, and petroleum spills on weapons and demolitions ranges, vehicular staging areas, bivouac sites, and pest control areas. Specific uses and locations for each well set were described in detail by Schuh (1994). A summary of samples collected from each well site in 1996 is shown on Table 2. A summary of samples collected from each well site in 2001 is shown on Table 3. Water-level measurements were not made in these wells because of the desirability of avoiding surface contamination. WS-2 wells were sampled after their construction to provide baseline data in basic water chemistry and trace elements. The deeper WS-2 wells are not routinely sampled for general chemistry and trace elements. These samples are routinely collected from WS-1 wells. WS-2 wells may be used for supplementary samples for basic water chemistry if needed for a specific investigative purpose. They are also sampled at all depths in periodic comprehensive sample sets. Locations of WS-2 wells are summarized on Table 2, and illustrated on Figure 4. Detailed hydrologic setting of well nests, lithologic logs for WS-2 wells, and initial water chemistry data from samples collected in 1992 and 1993 are described in Schuh (1994).

Table 2. List and locations of 1996 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. L indicates a lake sampling site, R indicates a reservoir sampling site, S indicates a natural spring sampling site, and W indicates a well sampling site. WS-1 designates wells placed by Comeskey (1989). WS-2 designates wells placed by Schuh (1994). All WS well nests were to be sampled only in the shallowest well.

WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12024A 12024B 12024C 12020A 12020B 12020C 12019A 12019B 12019C 12017B 12017B 12017C 12017D 12025	N 148 148 149 149 148 149 149 149 149 149 149 149	63 63 63 63 63 63 63 63 63 63 63 63	1 1 14 14 14 23 23 23 23 25	CBBC1 CBBC2 CBBC3 DACD1 DACD2 DACD3 ADBB1 ADBB2 ADBB3	Source W W W W W W					X X X X X X	X X X X X
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12024B 12024C 12020A 12020B 12020C 12019A 12019B 12019C 12017A 12017B 12017C 12017D	148 148 149 148 148 149 149 149 149 149 149	63 63 63 63 63 63 63 63 63 63 63	1 14 14 14 23 23 23	CBBC2 CBBC3 DACD1 DACD2 DACD3 ADBB1 ADBB2	W W W W W					x x x x	x x x x
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12024C 12020A 12020B 12020C 12019A 12019B 12019C 12017B 12017B 12017C 12017D	148 149 148 148 149 149 149 149 149 149 149	63 63 63 63 63 63 63 63	1 14 14 14 23 23 23	CBBC3 DACD1 DACD2 DACD3 ADBB1 ADBB2	W W W W					x x x	x x x
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12020A 12020B 12020C 12019A 12019B 12019C 12017A 12017B 12017C 12017D	149 148 148 149 149 149 149 149 149 149	63 63 63 63 63 63 63	14 14 14 23 23 23	DACD1 DACD2 DACD3 ADBB1 ADBB2	W W W W					x x	x x
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12020B 12020C 12019A 12019B 12019C 12017A 12017B 12017C 12017D	148 148 149 149 149 149 149 149 149	63 63 63 63 63 63	14 14 23 23 23	DACD2 DACD3 ADBB1 ADBB2	W W W					х	x
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12020C 12019A 12019B 12019C 12017A 12017B 12017C 12017D	148 149 149 149 149 149 149 149	63 63 63 63 63	14 23 23 23	DACD3 ADBB1 ADBB2	W W						
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12019A 12019B 12019C 12017A 12017B 12017C 12017D	149 149 149 149 149 149 149	63 63 63 63	23 23 23	ADBB1 ADBB2	W					x	
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12019B 12019C 12017A 12017B 12017C 12017C	149 149 149 149 149	63 63 63	23 23	ADBB2						~	х
WS-1 WS-1 WS-1 WS-1 WS-1 WS-1		12019C 12017A 12017B 12017C 12017D	149 149 149 149	63 63	23		117					х	х
WS-1 WS-1 WS-1 WS-1 WS-1		12017A 12017B 12017C 12017D	149 149 149	63		ADBB3	W					х	х
WS-1 WS-1 WS-1 WS-1		12017B 12017C 12017D	149 149		25		W					х	х
WS-1 WS-1 WS-1		12017C 12017D	149	63	25	DBBC1	W					х	х
WS-1 WS-1		12017D			25	DBBC2	W					х	х
WS-1				63	25	DBBC3	W					х	х
		12025	149	63	25	DBBB4	W					х	х
WS-1			149	63	26	DCA	W					х	х
		12012	149	63	27	DDDC1	W					х	х
WS-1		12015B	149	63	31	ABBC2	W					х	х
WS-1		12015C	149	63	31	ABBC3	W					х	х
WS-1		12026A	149	63	34	BBB1	W					x	x
WS-1		12026B	149	63	34	BBB2	W					x	x
WS-1		12011B	149	63	35	ABBD2	W					x	x
WS-1		12014A	149	63	36	AACB1	W					x	x
WS-1		12014B	149	63	36	AACB2	W					x	x
WS-1		12014D 12014C	149	63	36	AACB3	w					x	x
WS-1		12014C	149	63	36	AACB4	w					x	x
WS-1 WS-1		12014D 12023A	149	63	36	DDBBC1	W					X X	x
WS-1 WS-1		12023A 12023B	149	63	36	DDBBC1 DDBBC2	W						x
WS-1 WS-1			149	63	36	DDBBC2 DDBC3	W					x	
WS-1 WS-1		12023C 12021A	149	63	13	BAAB1	W					X X	X X
W 5-1		12021A	149	05	15	DAADI	vv					л	л
WS-2	1	13103	149	62	28	CCC1	W	х				х	х
	1	13104	149	62	28	CCC2	W	x				X	x
	2	13104	149	62	28 29	DAD	W	x				x	x
	3			63	29		S						
		Spring	148			DA		x				x	x
	4	Reservoir	149	62	31	C	R	х				х	х
	5	13097	149	63	36	ACA1	W	х				х	х
	5	13098	149	63	36	ACA2	W	х				х	х
	6	13101	149	63	25	CDC1	W	х				х	х
	6	13102	149	63	25	CDC2	W	х				х	х
	7	13086	148	63	2	ACA1	W	х				х	х
	7	13087	148	63	2	ACA2	W	х				х	х
	8	13090	149	62	19	DBD1	W		х	х	x		
	8	13091	149	62	19	DBD2	W						
	8	13106	149	62	19	DBD3	W		х	х	х		
	9	13088	149	63	13	DAA1	W		х	х	х		
	9	13089	149	63	13	DAA2	W		х	x	х		
	10	13092	149	63	12	CAC1	W		х	х	х		
WS-2	10	13093	149	63	12	CAC2	W		х	х	х		
-	11	S W Lake	149	63	14	CAC	L		х	х	х		
WS-2	12	13084	148	63	2	BABC1	W						
WS-2	12	13085	148	63	2	BABC2	W						
	13)	13099	149	63	35	BCBA1	W			х			
	13	13100	149	63	35	BCBA2	W			x			
	14	Lake Coe	149	63	26	ADD	L		х	x	х		
	15	Lake Coe	149	63	27	DDB	L		x	x	x		
	16	Spring	149	63	13	BDA	S			X	x		
	17	13095	148	63	4	ABA1	W			x			
	17	13096	148	63	4	ABA2	w			X			
	20	13094	148	63	4 14	AAB	W			А			

Table 3. List and locations of 2001 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. L indicates a lake sampling site, R indicates a reservoir sampling site, S indicates a natural spring sampling site, and W indicates a well sampling site. WS-1 designates wells placed by Comeskey (1989). WS-2 designates wells placed by Schuh (1994). All WS well nests were to be sampled only in the shallowest well.

Well Set	Site	SWC Well No.	Townshi p N	Range W	Section	Location	Water Source	Mun. + Expl.	Petrol (GRO /	prom- eton	piclor- am +	malat- thion	Basic	Trace
								•	DRO)		2,4-D			
WS-1		12024A	148	63	1	CBBC1	W							
WS-1		12024B	148	63	1	CBBC2	W							
WS-1		12024C	148	63	1	CBBC3	W						х	х
WS-1		12020A	149	63	14	DACD1	W							
WS-1		12020B	149	63	14	DACD2	W							
WS-1		12020C	149	63	14	DACD3	W						х	х
WS-1		12019A	149	63	23	ADBB1	W							
WS-1		12019B	149	63	23	ADBB2	W							
WS-1		12019C	149	63	23	ADBB3	W						х	х
WS-1		12017A	149	63	25	DBBC1	W							
WS-1		12017B	149	63	25	DBBC2	W							
WS-1		12017C	149	63	25	DBBC3	W							
WS-1		12017D	149	63	25	DBBB4	W						х	х
WS-1		12025	149	63	26	DCA	W						х	х
WS-1		12012	149	63	27	DDDC1	W							
WS-1		12015B	149	62	31	ABBC2	W							
WS-1		12015C	149	62	31	ABBC3	W						х	х
WS-1		12026A	149	63	34	BBB1	W							
WS-1		12026B	149	63	34	BBB2	W							
WS-1		12011B	149	63	35	ABBD2	W						х	х
WS-1		12014A	149	63	36	AACB1	W							
WS-1		12014B	149	63	36	AACB2	w							
WS-1		12014D	149	63	36	AACB3	w							
WS-1		12014C 12014D	149	63	36	AACB4	w						х	х
WS-1		12014D 12023A	149	63	36	DDBBC	w						л	л
W D-1		1202574	14)	05	50	1	••							
WS-1		12023B	149	63	36	DDBBC 2	W							
WS-1		12023C	149	63	36	DDBC3	W						х	х
WS-1		12021A	149	63	13	BAAB1	Ŵ						x	x
		1202111	,	00	10	Dinibi								
WS-2	1	13103	149	62	28	CCC1	W	х	х	х			х	х
WS-2	1	13104	149	62	28	CCC2	w	x	x	x			x	x
WS-2 WS-2	2	13105	149	62	20	DAD	w	x	л	л			x	x
WS-2 WS-2	3	Spring	148	63	2	DA	s	x					x	x
WS-2 WS-2	4	Reservoir	143	62	31	C	R	x	х	v			x	
WS-2 WS-2	5	13097	149	63	36	ACA1	W		х	X				x
WS-2 WS-2	5	13097	149	63		ACA1 ACA2	W	x	v	x			x	x
WS-2 WS-2					36			x	х	х			x	x
	6	13101	149	63	25	CDC1	W	x					x	X
WS-2	6	13102	149	63	25	CDC2	W	x			х		x	X
WS-2	7	13086	148	63	2	ACA1	W	х					х	х
WS-2	7	13087	148	63	2	ACA2	W	х	х		х		х	х
WS-2	8	13090	149	62	19	DBD1	W							
WS-2	8	13091	149	62	19	DBD2	W							
WS-2	8	13106	149	62	19	DBD3	W		х		х	х		
WS-2	9	13088	149	63	13	DAA1	W							
WS-2	9	13089	149	63	13	DAA2	W		х		х	х		
WS-2	10	13092	149	63	12	CAC1	W							
WS-2	10	13093	149	63	12	CAC2	W		х		х	х		
WS-2	11	S W Lake	149	63	14	CA	L		х		х	х	х	х
WS-2	12	13084	148	63	2	BABC1	W							
WS-2	12	13085	148	63	2	BABC2	W				х			
WS-2	13)	13099	149	63	35	BCBA1	W							
WS-2	13	13100	149	63	35	BCBA2	W			х	х	х		
WS-2	14	Lake Coe	149	63	26	ADD	L	х	х		х	х	х	х
WS-2	15	Lake Coe	149	63	27	DDB	L							
WS-2	16	Spring	149	63	13	BDA	s		х		х	х	х	х
WS-2	17	13095	148	63	4	ABA1	w		-		-	-		
WS-2	17	13096	148	63	4	ABA2	W				х			
WS-2	20	13094	149	63	14	AAB	Ŵ				x	х		
			/											

Surface-Water Sampling Sites

There are five surface-water sampling sites. These include two springs, two sampling sites on Lake Coe, one sampling site on South Washington Lake, and one sampling site on a small reservoir located west of the General C. Emerson Murray (GCEM) weapons ranges. The two spring sites, and the three lake sites were sampled with the WS-1 well set in 1986. The reservoir was added with the 1993 sampling because of its position for collecting runoff from the firing range complex (Area Descriptions R-1-3 through R-1-8 on Fig. 5). Surface-water sampling locations are summarized on Table 2, and shown on Figures 3 and 4.

CAMP GRAFTON SOUTH USE PATTERNS

Overview of CGS Chemical Use

In 2001 only the shallow WS-1 wells were sampled. Deeper wells in nests were not sampled. Sampling from the WS-2 wells was designed to monitor potential contamination based on CGS use patterns. In 2006 all WS-1 and WS-2 wells, and all surface-water sites were sampled for general chemistry and trace elements. Sample results in this report will be discussed under categories: 1. General chemistry; 2. Trace elements; 3. Munitions and explosives residues; 4. Petroleum residues; and 5. Pesticides. CGS use patterns affecting water quality can be summarized as follows.

1. Agricultural use: Most of the CGS facility is used for grazing during part of the year. The primary chemical parameter of concern would be nitrate. Nitrate is assayed with general chemistry for water samples from the WS-1 wells and selected WS-2 wells. Weed control (primarily leafy spurge) is practiced throughout CGS. Herbicides used are bromoxynil, picloram and 2,4-D. In addition, prometon is used for weed control around buildings and other infrastructure. In 2006 water samples were collected and analyzed for picloram, 2,4-d, bromoxynil and prometon.

2. Bivouac sites: Common bivouac site locations are shown on Figure 5. Potential contaminants on bivouac sites include gasoline and diesel fuel (from vehicles staged on site), and insecticides used for mosquito control (usually malathion or chlorpyrifos). In 2006 water samples were collected and analyzed for malathion. Previously, potential nitrate and bacterial contamination from latrines was possible. Current CGS practice (since about 1990) is to use portable lavatories, which should minimize future contamination. Tests for bivouac areas previously included TPH as gasoline and TPH as fuel oil (which includes diesel fuel). This has been replaced by GRO (gasoline range organics) and DRO (diesel range organics). In 2006 water samples were collected and analyzed only for GRO. Nitrates were assayed in samples on bivouac sites. Some trace metals were also assayed as possible indicators of contamination from spills of used motor oils. Locations of planned pesticide, petroleum, basic water chemistry, and trace element samples are on Table 4.

3. Munitions and explosives use sites: Most of these are located south of Hwy 15. The demolitions range, located at 149-063-36DC has been in operation since 1993. The M60 range located at 149-062-32B was completed in 1993. The M203 range was completed in 1992; and the pistol range was completed in 1995. The combined system of weapons ranges was completed in 1997, and has been named the General C. Emerson Murray range. A wide range of munitions and explosives residues were assayed in 2001, and again in 2006.

20

BIVOUAC SITES, TRAINING AREAS & RANGES

ż

1

87

ŝ

-87

North Access Road									Carlor Jan 1 - 1 - 1 - 1 - 1																		B - 12 - 15 - 15 - 21 - 28 - 12				- 1 - 12		20 1 4(20 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	
	ALL NO TON 3 ALL ALL ALL ALL ALL ALL ALL ALL ALL A				الربی الاربی ا			A THANK A THAN A																										
	GRID LOCATION E W A S	NII 22658585	NII 23108489 NII 23108489	NI123808503	NII 25558490 + + + + + + + + +	NH 24958630	NII 23368054	NII 22908090	NII 24148175	C/18C/57 HN	NII 22908160	VII 22158152	00705007 IN	<u>ק</u> ק ר	111 2228280 IIN	VIC NI1 245845	VIC NII 257825	NI1251825 TO 257817	VIC NII 247827	VIC NII 246824	_		VIC NII 146826	A STORAGE STOR			AZONCOZINI		NI 28308055	NII 28308060	C808082	Pesticide	and TPH	Samples
NYOUAU SHES, IRAINING AREAS & RANGES	NO. AREA DESCRIPTION	1 BIVOUAC SITE					Η			-					-		F	-	-4 TIMBER TRESTLE BRIDGE SITE								1	-			1-8 MICLIC RANGE		Explosive	
	AREA NO.	B-1-1	I3-1-2	B-1-3	B-1-4	B-1-5	B-1-6	13-1-7	B-1-8	1-1-9	B-1-10	B-1-1	B-1-12	B-1-13	B-1-14	1-1-1.	T-1-2	E-1-1.	1-1-4	2-1-2	9-1-J.	T-1-7	T-1-8	R-I-I	K-1-2	R-1-3	R-1-4	R-1-5	R-1-6	R-1-7	R-1-8		<	

samples in relation to training areas involving demolitions and munitions training. \bigcirc Indicates sites with no TPH sample. Figure 5. Sample sites for pesticide samples in relation to bivouac sites, and sample sites for explosives residue

Table 4. List and locations of 2006 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. L indicates a lake sampling site, R indicates a reservoir sampling site, S indicates a natural spring sampling site, and W indicates a well sampling site. WS-1 designates wells placed by Comeskey (1989). WS-2 designates wells placed by Schuh (1994). All WS well nests were to be sampled only in the shallowest well.

Well Set	Site	SWC Well No.	Township	Range W	Section	Location	Water Source	Mun.	Petrol	Prome	pic +2,4- D	malath	Basic	Trace
			Ν											
WS-1		12024A	148	63	1	CBBC1	W						х	х
WS-1		12024B	148	63	1	CBBC2	W						х	х
WS-1		12024C	148	63	1	CBBC3	W						х	х
WS-1		12020A	149	63	14	DACD1	W						х	х
WS-1		12020B	149	63	14	DACD2	W						х	х
WS-1		12020C	149	63	14	DACD3	W						х	х
WS-1		12019A	149	63	23	ADBB1	W						х	х
WS-1		12019B	149	63	23	ADBB2	W						х	х
WS-1		12019C	149	63	23	ADBB3	W						х	х
WS-1		12017A	149	63	25	DBBC1	W						х	х
WS-1		12017B	149	63	25	DBBC2	W						х	х
WS-1		12017C	149	63	25	DBBC3	W						х	х
WS-1		12017D	149	63	25	DBBC4	W						х	х
WS-1		12025	149	63	26 27	DCA DDDC1	W W						X	x
WS-1		12012	149	63 62	31	DDDC1	W						x	x
WS-1		12015B	149	62 62	31	ABBC2	W						x	x
WS-1 WS-1		12015C 12026A	149 149	62 63	31 34	ABBC3 BBB1	W						x	x x
WS-1 WS-1		12026A 12026B	149	63	34	BBB2	W						x x	x
WS-1 WS-1		12020B 12011B	149	63	34	ABBD2	W							
WS-1 WS-1		12011B 12014A	149	63	36	AACB1	W						x	x
WS-1 WS-1		12014A 12014B	149	63	36	AACB1 AACB2	W						x x	x x
WS-1 WS-1		12014B 12014C	149	63	36	AACB2 AACB3	W						x	x
WS-1 WS-1		12014C 12014D	149	63	36	AACB3 AACB4	W						x	x
WS-1		12014D 12023A	149	63	36	DDBBC1	W						x	X
WS-1		12023A 12023B	149	63	36	DDBBC1 DDBBC2	W						x	x
WS-1		12023B 12023C	149	63	36	DDBBC2 DDBBC3	W						x	X
WS-1		12025C 12021A	149	63	13	BAAB1	W						x	x
WS-2	1	13103	149	62	28	CCC1	W	x	х	х			x	х
WS-2	1	13104	149	62	28	CCC2	W	х	х	х			х	х
WS-2	2	13105	149	62	29	DAD	W	х					х	х
	3	Spring	148	63	2	DA	S	х					х	х
	4	Res.	148	62	31	С	R	х	х	х			х	х
WS-2	5	13097	149	63	36	ACA1	W	х		х			х	х
WS-2	5	13098	149	63	36	ACA2	W	х	х	х			х	х
WS-2	6	13101	149	63	25	CDC1	W	х					х	х
WS-2	6	13102	149	63	25	CDC2	W	х			х		х	х
WS-2	7	13086	148	63	2	ACA1	W	х					х	х
WS-2	7	13087	148	63	2	ACA2	W	х	х		х		х	х
WS-2	8	13090	149	62	19	DBD1	W						х	х
WS-2	8	13091	149	62	19	DBD2	W						х	х
WS-2	8	13106	149	62	19	DBD3	W		х		х	х	х	х
WS-2	9	13088	149	63	13	DAA1	W						х	х
WS-2	9	13089	149	63	13	DAA2	W		х		х	х	х	х
WS-2	10	13092	149	63	12	CAC1	W						х	х
WS-2	10	13093	149	63	12	CAC2	W		х		х	х	х	х
	11	S W Lake	149	63	14	CAC	L		х		х	х	х	х
WS-2	12	13084	148	63	2	BABC1	W						х	х
WS-2	12	13085	148	63	2	BABC2	W				х		х	х
WS-2	13)	13099	149	63	35	BCBA1	W						х	х
WS-2	13	13100	149	63	35	BCBA2	W			х	х	х	х	х
	14	Lake Coe	149	63	26	ADD	L	х	х		х	х	х	х
	15	Lake Coe	149	63	27	DDB	L						х	х
	16	Spring	149	63	13	BDA	S		х		х	х	х	х
WS-2	17	13095	148	63	4	ABA1	W						х	х
WS-2	17	13096	148	63	4	ABA2	W				х		х	х
WS-2	20	13094	149	63	14	AAB	W				х	х		

Munitions and Explosives Use, Residues and Sampling Strategy

In 2001 sample plans for munitions and explosives residues were revised and intensified to: (1) Identify well and surface-water sample sites associated with each operational area; (2) Identify as many known compounds as possible for each use and operational area; (3) Identify sampling procedures and laboratory methods required to evaluate those compounds; and (4) Sample each well and surface-water site for the required compounds and methods.

Use areas of influence were:

(1) The M203 range, located in the northwest quarter of 148-063-02. Both ground water and surface runoff from this area flows westward toward the wetlands in the center of 148-063-02, and from there northward through the Lake Coe and South Washington Lake basins toward the Sheyenne River. Ground water from the M203 range may also discharge from the spring located at 148-063-02DA.

(2) The western half of 149-062-32 is occupied by several training sites, including an M-60/ 50-caliber machine gun training site (MPMG), a pistol range, an M-16 zero range, and a modified record fire range (MRF), which are collectively identified as the General Emerson Murray (GCEM) ranges. Depending on time, conditions and specific locations of use, both surface-water and ground-water flow could carry contaminants in either direction. A reservoir located in the southwest quarter of 149-062-31 collects water from the training area and would be expected to trap contaminants.

(3) A demolitions range is located in the south half of 149-063-36. Surface water and ground water draining from this area likely flows northwestward to the Lake Coe and South Washington Lake basins, and from there toward the Sheyenne River. In addition, possible contamination of the Reservoir between the demolitions range and the firing ranges (Site 4, Figures 3, 4, 5) and the South Spring (Site 3, Figure 3, 4, 5) could occur through atmospheric deposit following demolitions exercises.

Table 5.List of analytes for EPA Methods 8260B, 8270C, 8330, and 8332 used for2001 samples at CGS. * indicates partial list of specific target analytes known to be inuse.

Method / Analyte	MDL	Method / Analyte	MDL	Method / Analyte	MDL
EPA Method 8260B	/ mg/L	EDA M-41 - 1 9270C (+)	/ mg/L	EDA M-4h- J 9270C (4)	mg/L
EPA Method 8260B		EPA Method 8270C (cont.)		EPA Method 8270C (cont.)	
1,1,1-Trichloroethane	0.0971	Benzyl Alcohol	0.0699	Carbazole	0.0726
1,1,2,2-Tetrachloroethane	0.182	1,2-Dichlorobenzene	0.0638	Di-n-butylphthalate *	0.347
1,1,2-Trichloroethane	0.116	2-Methylphenol	0.113	Fluoranthene	0.0723
1,1-Dichloroethane	0.0585	Bis (2-chloroisopropyl)ether	0.0967	Pyrene	0.0836
1,1-Dichloroethene	0.0507	2-Methylphenol	0.0552	Butylpenzylphthalate	0.204
1,2-Dichloroethane	0.0395	2-Nitrosodi-n-propyl amine	0.109	3,3'-Dichlorobenzidine	0.372
1,2-Dichloropropane	0.0752	Hexachloroethane	0.0773	Benzo (a) anthracene	0.075
2-Butanone	1.4	Nitrobenzene	0.0924	Chrysene	0.076
2-Hexanone	2.06	Isophorone	0.114	Bis (2-ethylhexyl) phthalate	2.49
2-methol-2-Pentanone	0.774	2-Nitrophenol	0.0830	Di-n-octylphthalate	0.126
Acetone	2.16	2,4-Dimethylphenol	0.285	Benzo (b) fluoranthene	0.105
Benzene	0.0357	Benzoic Acid	4.35	Benzo (k) fluoranthene	0.132
Bromodichloromethane	0.0544	bis (2-Chloroethoxy) methane	0.0508	Benzo (a) pyrene	0.0772
Bromoform	0.0868	2,4-Dichlorophenol	0.144	Ideno (1,2,3-c,d) pyrene	0.318
Bromoethane	0.0629	1,2,4-Trichlorobenzene	0.0492	Dibenz (a,h) Anthracene	0.287
Carbon Disulfide	0.0573	Naphthalene	0.0532	Benzo (g,h,i)perylene	0.276
Carbon Tetrachloride	0.0888	4Chloroanaline	0.155	Denile (g,i,i)perfiere	0.270
Chlorobenzene	0.0706	Hexachlorobutadiene	0.112		
Chloroethane	0.127	4-Chloro-3-methylphenol	0.0794	EPA Method 8330	
Chloroform	0.0405	2-Methylnaphthalene	0.0687		
Chloromethane	0.0955	Hexachlorocyclopentadiene	0.0864	1,3,5-Trinitrobenzene	0.0758
Dibromochloromethane	0.0562	2,4,6-Trichlorophenol	0.0925	1,3-Dinitrobenzene	0.0256
Ethylbenzene *	0.0551	2,4,5-Trichlorophenol	0.112	2,4,6-Trinitrotoluene *	0.0250
Methylene Chloride	0.0491	2-Chloronaphthalene	0.0769	2,4,0 Thild to to tue the *	0.0681
Styrene	0.0928	2-Nitroanaline	0.14	2,6-Dinitrotoluene *	0.0154
Tetrachloroethene	0.0696	Dimethylphthalate	0.0766	2-Amino-4,6-Dinitrotoluene	0.0582
Toluene *	0.0483	2.6-Dinitrotoluene	0.152	2-Nitrotoluene	0.0129
Trichloroethene	0.0548	Acenaphthylene	0.0467	3-Nitrotoluene	0.196
Vinyl Chloride	0.114	3-Nitroaniline	0.313	2-Amino-2,6-Dinitrotoluene	0.153
cis-1,3-Dichloropropene	0.0618	Acenapthene	0.0680	4-Nitrotoluene	0.123
trans-1,3-Dichloropropene	0.128	2,4-Dinitrophenol	1.24	HMX *	0.0445
cis-1,2-Dichloroethene	0.0667	4-Nitrophenol	0.7415	nitrobenzene	0.0696
trans-1,2-Dichloroethene	0.0791	Dibenzofuran	0.0519	RDX *	0.0539
o-Xylene *	0.0451	2.4-Dinitrotoluene	0.0981	Tetryl *	0.0853
m,p-Xylene *	0.136	Diethylphthalata	0.140	reuyr	0.0055
m,p-Mytene	0.150	4-Chlorophenyl Phenyl Ether	0.0478		
		Fluroene	0.0737	EPA Method 8332	
EPA Method 8270C		4-Nitroanaline	0.341	El A Methou 0552	
EI A Method 0270C		2,4-Dinitro-2-Methylphenol	1.48	PETN *	0.354
Pyridine	0.315	N-nitrosodiphenylamine *	0.0865	Nitroglycerin *	0.376
Phenol	0.0525	4-Bromophenyl Phenyl Ether	0.108	ruogiyeeim	0.570
Bis (2-chloroethyl) ether	0.0323	Hexachlorobenzene	0.108		
2-Chlorophenol	0.0851	Pentachlorophenol	1.03		
1,3-Dichlorobenzene	0.0851	Pentachiorophenor	0.0582		
1,4-Dichlorobenzene	0.0369	Anthracene	0.0382		
1,+-Diemoiouenzene	0.0022	Antinacelle	0.000		

An inventory of known compounds for uses on each location was compiled by LTC David Anderson (Letter of 3/23/2000); Personal Communication, Appendix A-1). Most common uses of munitions and explosives are located at the Demolition Range and the assembly of ranges (GCEM) located in the northeast corner of the camp, south of Hwy 29. Of the listed chemicals, there are standard EPA screening methods for Pentaerytrital Tetranitrate (PETN), 2,4,6-trinitrogoluene (TNT), Styrene, Nitroglycerin, Dipubylphthalate, and Toluene. Cadmium, magnesium, lead, nickel, and zinc components can also be tested using standard trace element methods. A general list of all analytes determined for each of the four method is in Table 5. Table 6 matches the targeted analytes for specific EPA methods with CGS use areas. Table 7 lists the water sample sites targeted for each of the use areas.

		2 (202
Demo Range	GCEM ranges	M203
8260B	-	-
-	8270C	-
8330	-	-
8332	8332	-
Zn, Pb, Ni, Cu, Ba	Zn, Pb	Zn, Pb

Table 6. EPA laboratory method procedures for known compounds from each designated use area, based on munitions and explosives use inventory (Appendix A).

Table 7 Water sample sites associated with ranges. Demo=Demolition range, (R) = Reservoir, (S) = South Spring, GCEM = General C. Emerson Murray combined ranges. Site Locations are shown on Table 5.

Munitions and Explosives Use Site	Water Sample Site
Demo	3(S), 4(R), 5,6,7,
	15 (Lake Coe)
M203	5,7
GCEM ranges	1,2,3*S),
	4(R),5,6

FIELD SAMPLING AND LABORATORY METHODS

Field Methods

Sampling methods were designed for specific contaminants. Sampling procedures for low level detection of organic compounds, such as petroleum products, explosives residues, and pesticides, require "clean-clean" procedures, which involve high assurance against spurious contamination caused by field procedures (U.S. EPA 1992). Because of their low concentrations, trace elements also require greater cleanliness in sampling. Basic water chemistry can usually be sampled using less stringent procedures, although even for these elements reasonable care is necessary to avoid contamination.

In the CGS monitoring plan, general water chemistry and trace elements were sampled using PVC bailers. They were collected from wells from which at least three well volumes had been purged using either air lift (Photo 2, front), or suction lift (Photo 3, front) methods. Air-lift purging was used for WS-1 wells having piezometric surface too deep for suction lift. A rubber compressor hose was field-cleaned by coiling it in a polyethylene tub, and scrubbing it with non-phosphate soap, and rinsing with distilled water. The tip was inserted in the well to a level at least 20 feet above the well screen. An air compressor was used to air lift the water. Suction lift was used on both WS-1 and WS-2 wells having piezometric surface near enough to the surface to support a water column (generally less than 20 feet). A 1-inch rigid polyethylene hose was washed with non-phosphate soap and stored in a polyethylene bag. The hose was inserted in the well, and water was pumped using a screw pump.

For organic contaminants, five well volumes were evacuated from the well to be sampled. Air lift was not used for these samples, because of concern over possible introduction of petroleum residues on a compressor hose. Clean-clean procedures were used. A polyethylene apron was placed on the soil around each well to be sampled, and weeds and brush were cut or flattened. The well-cap was removed, and the inside and outside of the well were cleaned using non phosphate soap and a clean-white disposable laboratory tissue. Shallow wells were purged using the suction-lift procedure described above. Deeper wells were purged using a gas-squeeze pump (Photo 4, front). For petroleum samples, the engine used for operating the gas-squeeze pump was moved as far downwind as possible from the sample well. Both the polyethylene hose of the suction pump and the gas squeeze pump were thoroughly cleaned with non phosphate detergent and distilled water before placement in the well.

After purging, water samples were collected using a disposable polyethylene bailer. Before sampling the assistant washed his hands with soap and distilled water, and put on clean latex gloves from a container held by the clean worker. Throughout the sampling process the assistant would periodically rinse his gloves with distilled water.

The assistant washed the hands of the clean worker with non-phosphate soap and distilled water and then presented an opened package of disposable latex gloves to the clean worker, who removed them without touching the container and put them on his hands. The assistant opened the end of the disposable bailer package, without touching the bailer, and placed the still-covered body of the bailer under the arm of the clean worker. The assistant then removed a spool of nylon rope from a polyethylene bag, and without touching the rope presented the spool to the clean worker. The clean worker tied the rope to the bailer with gloved hand, and then placed the bailer down the well for sampling. About one additional well volume was bailed using the disposable bailer, and the well was then sampled. The assistant opened caps of the bottles. Replicate bottles were partially filled from each bailer sample. Bottles were filled to the top before capping. After completion the samples were placed in coolers with frozen "blue-ice". All samples were placed in a refrigerator in a utility building at the CGS facility within two hours of sampling. Cold samples (approx. 3° C) were packed on ice in insulated coolers and transported for arrival at the laboratory within 24 hours of packing. All samples arrived on ice. Chain of custody and evaluations of sample condition on arrival are provided with laboratory data in Appendices C and D.

General Water Chemistry and Trace Elements

Water samples for general water chemistry [pH, total dissolved solids (TDS), hardness, specific conductivity (EC), temperature, sodium adsorption ration (SAR), bicarbonate (HCO₃⁻), potassium (K⁺), sodium (Na⁺), sulfate (SO₄²⁻), nitrate (NO₃⁻), chloride (CI), fluoride (F⁻), boron (B), silicate (SiO₂), iron (Fe²⁺), manganese (Mn²⁺), calcium (Ca²⁺), and magnesium (Mg²⁺)] were collected from each well and surface-water site. In 1996 samplings water samples for determination of trace elements [arsenic (As), mercury (Hg), lead (Pb), and selenium (Se)] were collected. Previous samples collected in 1993 included cadmium (Cd) and zinc (Zn) as well. In 2006 trace elements determined included aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), lithium (Li), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), and zinc (Zn).

All samples were collected after purging of at least three well volumes of water from the well. Samples were stored in 500 ml polyethylene bottles. All basic chemistry bottles were washed with well water before collecting the sample. Bottles used for water samples for trace metal analysis were washed with concentrated nitric acid, two distilled water washes, and one deionized water wash before use. Samples for trace metal analysis were acidified in the field with 2 ml of concentrated nitric acid per 500 ml sample. Lab methods for general chemistry and trace elements were described previously by Shaver (1991). Nitrate measurements were made using an Orion ion-specific electrode, using an Orion conductivity meter.

Organic Compounds

GRO (gasoline range organics), DRO (diesel range organics), malathion, prometon, and picloram were analyzed by Minnesota Valley Testing Laboratory (New Ulm, MN). For DRO and GRO the laboratory used Method 8015B (EPA-SW-846, Rev. 2, 1996). Prometon and malathion were extracted using Method 3510, and measured using Method 8270, while picloram and 2,4-D were extracted and measured using Method 8151 (EPA-SW-846, Rev. 2, 1996). Methods for determining TPH and pesticides in previous sampling (1992 and 1993) were described by Schuh (1994, 1997). Water samples collected in 1996 for determination of munitions and explosives residues were analyzed by Data Chem Laboratories (Salt Lake City, Utah). Laboratory procedures used were Methods 8260B, 8270C, and 8332 (U.S. EPA-SW-846, Rev. 2, 1996); and Method 8330 (U.S. EPA-SW-846, Rev. 0, 1994). Methods for initial munitions and explosives samples collected prior to 1996 are described in Schuh (1994).

SUMMARY OF 1993 THROUGH 2001 SAMPLING AND ASSESSMENT

Summary of 1993 Sampling and Assessment

The following conclusions were reached in a previous ground-water quality study at CGS (Schuh 1994). Basic water quality of the Cherry Lake aquifer is of low to average total dissolved solids (TDS < 800), near-neutral pH, and low to slightly high sodium adsorption ratio (SAR). Shallow ground water is usually of the calcium bicarbonate type, while deeper aquifer units are frequently of the sodium sulfate type. There was no significant lead, mercury, selenium, or cadmium in any of the wells sampled. However, arsenic was present in most samples, and in some of the deeper aquifer units approached and even exceed EPA-MCL (then 50 μ g/L, now 10 μ g/L). Natural lakes were very high in TDS, sulfate, chloride, and sodium, with pH above 9 and very high SAR. There was no significant lead, mercury, selenium, or cadmium in any of the samples. However, arsenic approached or exceeded the recent EPA-MCL of 10 μ g/L in many samples. Nitrates were low in both surface and ground water. There were no indications of anthropogenic degradation of basic water quality on the reserve.

Of the wells sampled in 1992 and 1993 there was only one pesticide detection. Dimethoate was detected at a level just below the EPA Lifetime Health Advisory Level (HAL) in one well near Lake Coe. However, dimethoate was never deliberately sprayed on CGS land. The well site of the detection was within the spray drift zone of aerially sprayed picloram during drilling and construction of the well. Dimethoate residual in the picloram spray is a likely source. The dimethoate detection does not indicate a likely case of environmental contamination from routine facility use and care. There were no detections of picloram, malathion, chlorpyrifos, or any other pesticides used on the reserve in any of the well or spring samples.

There were detections of picloram at low levels (0.1 to 0.2 μ g/L) in Lake Coe and South Washington Lake in August of 1993. Because picloram was not detected in 1986, and because of the exceptionally heavy rainfall in 1993, it was suspected that these detections were a result of exceptional runoff. It is unlikely that contaminants entered Lake Coe or South Washington Lake through ground water.

There were no indications of total petroleum hydrocarbons (gasoline or fuel oil) in any of the samples collected from ground water in August of 1993.

There were no detections of munitions and explosives residues (HMX, RDX, Nitrobenzene, tetryl, 1,3-dinitrobenzene, 2,4,6-TNT, 2,4-DNT, and 2,6-DNT) in any of the water samples collected in the fall of 1992.

Summary of 1996 Sampling and Assessment

In 1996 the use of the CGS facility was again evaluated, and a water-quality sampling plan was designed to monitor potential contamination from current land use practices. In September of 1996 water samples were collected from wells and surface waters at CGS. The 1996 sample report (Schuh, 1997) evaluated progress in accomplishing previous recommendations resulting from the 1994 assessment, apparent water quality status of CGS water resources based on the most recent (1996) sample results, and trends in the chemical composition of water samples collected over the tenyear period from 1986 through 1996.

Results indicated that there was no evidence of significant anthropogenic impact on the basic water chemistry or trace elements in the Cherry Lake aquifer, or in surface waters. Background water chemistry in the Cherry Lake aquifer varied from low TDS (total dissolved solids) of less than 200 mg/L to brackish water having TDS as high as 5,000 mg/L. Principal dissolved salts varied from calcium and bicarbonate, to predominantly sodium and sulfate. In some cases, chloride concentrations were as high as 1,000 mg/L. Shallower water was usually freshest, having lowest TDS and sulfate concentrations. Deeply buried aquifer subunits had higher dissolved solids, sodium, and sulfate. Highest sodium and sulfate appeared to be related to proximity the underlying Pierre shale bedrock.

Nitrate concentrations in surface waters and ground-water at CGS were below levels of toxicological concern, based on an EPA Maximum Contaminant Level (EPA-MCL) of 44 mg/L (U.S. EPA 1996a). Of all water samples collected in 1996, the median nitrate concentration was 1 mg/L. The maximum concentration was 7 mg/L. Most of the higher nitrate concentrations were in shallower wells. Since fertilizer is not used on the CGS Reservation, the most probable nitrate source was manure from cattle grazed on the land. Trends in nitrate concentration since 1987 are variable, but from 1991 through 1996 the overall trend is toward lower nitrate concentrations. South Washington Lake has low nitrate concentrations. However, presence of manure along the lake border and strong algal blooms indicate that substantial nitrate influx is likely, and that nitrate is biologically consumed.

As in previous samplings (1986, 1991) non-arsenic trace elements, including barium, lead, selenium, and mercury were not detected in significant quantities in 1996. Arsenic concentrations were relatively high in waters sampled on CGS. In some wells and in some surface water samples, arsenic concentrations exceed levels of toxicological concern (EPA-MCL was 50 mg/L). Arsenic concentrations have been relatively consistent over time, but varied over the area of the facility. Concentrations were at levels of toxicological concern in South Washington Lake. They were high in Lake Coe, and in the area of the CGS supply wells. Concentrations were also high in the area of the

GCEM ranges. Arsenic concentrations were almost certainly natural in origin, and have not been introduced by human use. However, certain uses that concentrate salts, such as use of reverse osmosis systems or boiling the water, were noted to cause concentration of arsenic. Care was suggested in disposal of reverse osmosis filtrate waters, or in consumptive use of boiled water.

Eleven water samples were collected from nine sites, including five well sites, one spring (148-063-02DA) and one reservoir (149-062-02DA) for 14 organic compounds used in munitions and explosives. Samples were collected from watersheds fed by the major munitions and demolitions training areas. Results indicated no detections of any of the compounds tested.

Nine water samples were collected from nine sites, including one from South Washington Lake, two from Lake Coe, and six from two wells on each of three sites, for measurement of total petroleum hydrocarbon (TPH) as gasoline and as fuel oil (including diesel fuel). Chosen sites were in watersheds near, or fed by areas used for vehicle staging, such as the Engineering Training Site, or common bivouac areas. Results indicated no detections of TPH as gasoline or fuel oil in any of the water samples.

Fourteen water samples were collected from eight sites for determination of pesticide concentrations. Samples included one from South Washington Lake, two from Lake Coe, one from a spring (149-063-13BDA), and ten samples from two wells on each of five well sites in appropriate target areas. Samples were tested for chlorpyrifos and picloram. Results indicated no detections of chlorpyrifos in any of the water samples. Picloram was not detected in any of the well samples or in the spring sample. Picloram was detected at low concentration (about $0.1 \mu g/L$) in Lake Coe and South Washington Lake. Annual samples from 1993 through 1996 have indicated that trace concentrations of picloram are consistently present in South Washington Lake and Lake Coe. Detected presence is several orders of magnitude below EPA-MCL (500 $\mu g/L$).

Summary of 2001 Sampling and Assessment

In 2001 the use of the CGS facility was again evaluated, and a water-quality sampling plan was designed to monitor potential contamination from current land use practices. A summary of the water-sample plan is shown on Table 3.

General Chemistry in 2001

In September of 2001 water samples were collected from CGS wells and surface waters. Results were substantially the same as in 1996.

TDS varied from as low as 200 mg/L to as much as 2,000 mg/L in ground-water samples. Water from most shallow wells was determined to be of good quality for drinking. Shallow ground water was mainly a calcium bicarbonate type with low EC

and TDS. The pH of most shallow wells was described as slightly acid to neutral (6.5 to 7.5).

Anionic composition of many deep ground-water samples was a mixture of chloride, sulfate, and bicarbonate. Deeper wells are, in general, more sulfatic and chloridic than shallower wells. Sodium was elevated in some of the deeper wells, and sulfate concentrations were mainly correlated with sodium. Several of the deep wells had SAR values greater than ten, and some were as large as 35. Highest SAR and specific conductance values are in the deep wells of nests placed in the uplands east of South Washington Lake.

Effects of hydrologic connections between the three aquifer subunits described by Comeskey (1989) were examined in 2001. In some areas, aquifer subunits were identified as interconnected, while others occurred as isolated pockets within the glacial till. Temporal changes in water chemistry of some deep wells indicated that they are connected to other aquifer units, and could be freshened. For example, the deep well on Site 6 located in the littoral area southeast of Lake Coe changed from an EC of 1,041 μ S/cm in October of 1992, to 471 μ S/cm in September of 1996. Following large rains in 1993 this well was flowing, indicating a large change in piezometric pressure caused by recharge in the uplands. Thus, both changing piezometric pressure and water chemistry data indicated a deep well connected to the surface, and freshened by rainfall in the uplands at some distance (more than one mile) from the well. Similar, but less marked decreases in specific conductance occurred in several deep wells. Differences in water chemistry between deep wells were determined to be strongly related to their levels of isolation from other fresher bodies of water.

Surface waters, and particularly Lake Coe and South Washington Lake, were described as "windows" on the water tables. They were described to function as evaporative sinks for waters moving slowly toward the Sheyenne River. Water in the lakes was brackish, having specific conductance ranging from 3,720 to 6,430 μ S/cm. Lake waters were high in sodium, having very large SAR values, and also in sulfate and bicarbonate. Higher sodium was likely related to their proximity to the underlying Pierre Shale. Water from springs were found to be of good quality, and similar in chemistry to water samples collected from shallow wells.

Nitrate in 2001

Nitrate has an EPA-MCL of 10 mg/L nitrate as N, or 44 mg/L nitrate. In general, nitrate concentrations in samples were variable, but low, having a median concentration near 1 mg/L for all three sample years in the WS-1 wells (1987, 1992, and 1993). Concentrations appeared to increase slightly in 1993, likely due to heavy rains in that year, and then decreased by 1996 for most wells. Concentrations were highest for wells

screened at less than 100 feet bls. Occasional nitrate concentrations above 1 - 3 mg/L likely originated in manure from cattle pastured on the CGS Reservation. However, all detections were below levels of toxicological concern, and appeared to be ephemeral. In surface-water samples, including South Washington Lake and Lake Coe, nitrate concentrations were low and were likely limited by algae growth.

Trace Elements and Arsenic in 2001

Results for trace elements barium (Ba), cadmium (Cd), mercury (Hg), lithium (Li), molybdenum (Mo), lead (Pb), selenium (Se), strontium (Sr), and zinc (Zn) indicated no concentrations above levels of toxicological concern, and no increasing trends.

A review of arsenic (As) concentrations for both well sets indicated similar median concentrations (4.5 μ g/L for WS-1, 5.5 for WS-2) and similar coefficients of variation (120% on WS-1, and 130% on WS-2). Concentrations approaching the EPA-MCL (then 50 μ g/L) were detected in South Washington Lake. Elevated concentrations were observed in several wells, including the following:

(1) In 1988 two 5-inch diameter supply wells were drilled at a site just south of Hwy 15 (149-063-35A). Well-screens were placed at intervals (SI) of 26 to 34 feet bls, and 28 to 36 feet bls. Measured pumping capacities were 51 and 55 gpm. About 200 feet west of the supply wells (at 149-063-35ABBD2) a sample well (WS-1 set) was placed with screen at about 45 to 50 feet. Arsenic concentrations in this well varied from 16 to 22 mg/L (one third to half of the EPA-MCL of 50 μ g/L, but 1.6 to 2.2 times the new EPA-MCL of 10 μ g/L).

(2) One well having a particularly high arsenic concentration is located at 149-062-31ABBC2, which is located just south of Hwy 15, west of the GCEM range, with a screened interval from 162 to 167 feet bls.

(3) The deep well (Site 1, 149-062-28CCC2) is located about one-half mile east of the previously described (149-062-31ABBC2). This well had high arsenic concentration, varying between 47 and 52 mg/L. This exceeded EPA-MCL. The well placed at Site 2 (149-062-29DAD) also had a high arsenic concentration.

(4) Arsenic concentrations were high in the sections bordering the south side of Hwy 15. These include 149-063-35, 149-063-36, 149-063-29, 149-063-31, and 149-063-32. The area having potentially high arsenic concentrations would include the GCEM range, the equipment storage site located in 149-063-36, and the main well site 149-63-35.

The analysis in 2001 indicated no detectable trends of increasing arsenic or arsenic-related degradation of ground-water caused by CGS use. Because of impending changes in the EPA-MCL (from 50 μ g/L to 10 μ g/L), however, CGS managers converted from local wells to treated water imported from a rural water system in November of 2004. It was further recommended that use of ground water or surface water on the CGS facility for water purification training using reverse osmosis return purified water as well as filtrate to the natural system to avoid depositing a water stream containing concentrated arsenic which would be classified as toxic waste.

Munitions and Explosives Residues in 2001

In the 2001 sampling, four of the Method 8260B compounds were detected in water samples from several sites. Detected volatile compounds were acetone, carbon disulfide, methylene chloride, and toluene. Of these, all except carbon disulfide were detected in the trip blank in concentrations comparable to, or greater than those in the environmental samples. One, methylene chloride was also detected in the laboratory method blank. Only carbon disulfide was detected in field samples alone.

Louise Parker of the U.S. Army ERDC-CRREL, New Hampshire, assisted in identifying some potential sources of detected compounds through a search of the Department of Defense (DOD) data base and additional sources in response to specific queries. In e-mail queries (cited previously in Schuh 2002, Appendix A-2) she identified the following potential sources:

1. Di-n-butylphthalate: Parker (cited in Appendix A-2a, Schuh 2002) cited the Encyclopedia of Explosives and Related Items (U.S. Army Armanent Research, Development, and Engineering Center, 1999) in identifying its use as a solvent for nitroaromatic compounds such as DNT and Dinitroethylbenzene, and as a coat for nitrocellulose and nitroguanidine propellants. She found it associated with 24 pages of munitions (20 munitions per page) in "one of the DOD data bases" queried.

2. Acetone: Parker (cited in Appendix A-2a, Schuh 2002) found, in a DOD database query, 60 munitions listed, including "flares, fuses, hand grenades (smoke and riot types), anti-personnel mines, signals, and smoke pots."

3. Toluene: Citing the Encyclopedia of Explosives and Related Items, Parker (cited in Appendix A-2a, Schuh 2002) found toluene to be one of the major components of explosives, including DNT and TNT. Citing Hawley's Condensed Chemical Dictionary (Sax and Lewis, 1987), "it is also a diluent and thinner for nitrocellulose and explosives

such as TNT." In the DOD database, she found "78 munitions listed including fuses, fuse bombs, and several sizes of projectiles and ... rockets."

4. Methylene Chloride: In a search of the DOD database Parker (cited in Appendix A-2a, Schuh 2002) found 15 matches of methylene chloride, including "several signals and smoke grenade launchers and a personnel signal kit."

5. Carbon disulfide: Parker (cited in Appendix A-2a, Schuh 2002) found carbon disulfide listed in the <u>Encyclopedia of Explosives and Related Items</u> as a compound that "had been tested as a developmental component for munitions," but was unable to find details of specific uses (there were no matches in the DOD database).

Conclusions of 2001 findings were: (1) Acetone, methylene chloride and toluene were detected in several samples, but seem likely to have had sources other than the well and surface waters sampled. (2) Carbon disulfide was detected in several ground-water and surface-water samples, and detections seemed to be authentic. All concentrations were at least 30 times lower than levels of potential toxicological concern. (3) Benzoic acid was detected in the Reservoir (Site 4) and in Lake Coe (Site 15). Detections were qualitative, indicating a likely presence, but at concentrations below that of the laboratory minimum detection level (MDL). (4) Di-n-butylphthalate was detected in one well-water sample (Site 2 in the Colvin Creek subbasin) and in Lake Coe (Site 15). Detections were qualitative, indicating a likely presence, but at concentrations below that of the laboratory minimum detection level (MDL). All detections were below levels of toxicological concern by a large margin. These are discussed in detail in Schuh (2002).

Pesticide Residues

Water samples were collected for herbicide and insecticide residues in 2001. The primary pesticides used at CGS included a mixture of picloram (Tordon) and 2,4-D, which is used for leafy spurge control, and malathion and chlorpyrifos (Lorsban) which is used for mosquito control in bivouac areas. Prometon is also used to control vegetation around buildings and operational facilities.

There were no detections of Prometon, 2,4-D or picloram in any of the well- or surface-water samples collected. Absence of picloram was significant in that the 2001 sample set was the first in which there were no detections of picloram in Lake Coe and South Washington Lake at the 0.1 to 0.2 μ g/L concentration level. Picloram had been detected in all previous samplings.

Of the insecticides, only malathion was sampled in 2001. There were no detections of malathion in any of the well or surface-water samples collected.

Petroleum Residues

Petroleum residues [gasoline range organics (GRO) and diesel range organics (DRO)] were sampled in 15 wells and surface-water locations located on 12 sites. There were no detections of GRO. DRO were detected in the range of 0.041 to 0.07 μ g/L on Site 8 (Buck Hollow), Site 9 (Engineering Training Site) and Site 10 (northeast of South Washington Lake). These detections were less than the MDL (0.3 μ g/L) and were considered qualitative. The State of North Dakota as represented by the State Health Department uses a value of 0.5 mg/L as a threshold of "concern" for DRO. This is not a regulatory limit, but value at which further investigation is considered warranted. All detections on environmental samples were 10,000 times below this threshold. It was concluded that if the DRO detections truly represent field conditions and not incidental sample contamination (which is a real possibility at such low concentrations), they are far below levels of toxicological concern and warrant no further action.

PREVIOUS SAMPLING RECOMMENDATIONS

Following water sampling and analysis in 1992 and 1993, six recommendations were made:

Recommendation #1994-1, that Lake Coe and South Washington Lake be sampled at least once per year to determine if picloram contamination is an ephemeral or This recommendation has been implemented. long-term condition. Samples for picloram were collected in 1994, 1995, and 1996 from each lake. Results indicated that trace levels of picloram were consistently present, and that background picloram is therefore a consistent outcome of current weed-control management on the CGS facility. Recommendation #1994-2, that dimethoate be resampled in WS-2 Well 13102 (Site 6) in early 1994 to determine whether the well was contaminated was implemented in June of 1994. Results indicated no further detections of dimethoate. The initial (fall 1993) detection was therefore either spurious or ephemeral. Recommendation #1994-3, that sampling for each potential contaminant group be selectively repeated in 1996 was implemented. Recommendation #1994-4, that all wells drilled in 1992 be surveyed for measuring point elevation (MP) has not yet been implemented. Recommendation #1994-5, that all wells drilled in 1992 be fitted with locking caps, was completed by the North Dakota National Guard in 1995. However, WS-2 Well 13103 (Site 6, 149-062-28CCC1) was too long for the outside protective case, and the aluminum cap could not be closed without removing the inside cap, risking contamination of the well. This PC was repaired to accommodate the cap. Recommendation #1994-6, that a comparative analysis of water chemistry data trends be considered following the 1996 sampling was implemented in Schuh (1997), and will be updated in this report.

Following water sampling and analysis in 1996, seven recommendations were made (Schuh 1997):

Recommendation #1997-1, that samples for picloram in Lake Coe and South Washington Lake be collected every other year instead of every year. The lakes were sampled in 2001. Recommendation #1997-2, stated that water supply wells located south of Hwy 15 (149-063-35A) should be sampled for water chemistry and for trace elements, and sampled annually to determine arsenic concentration. These wells were sampled and reported in a memorandum from W.M. Schuh to Mr. Neal Jacobson, titled Water Quality and Arsenic Concentrations in the Camp Grafton South Supply Wells, dated 5/20/98. Recommendation #1997-3, stated that appropriate procedures for disposal of high arsenic filtrate should be established following use or training in water purification using reverse osmosis. Appropriate procedures have been worked out with the North Dakota Department of Health. Recommendation #1997-4, stated that the well-house area (149-063-35A) as a staging area for storage of herbicide and for mixing herbicides should be

reviewed for well-protection safety, and that pesticides be stored away from the well site. A separate storage and staging facility was constructed in 2005. Recommendation #1997-5, that CGS wells should be sampled again for water quality in 2001, has been implemented was completed and reported in Schuh (2002). Recommendation #1997-6, that the PVC protective cover for WS-2 well 13103 (Site 1, 149-062-28CCC1) should be extended three or four inches, has been remedied by the SWC. Recommendation #1997-7, stated that elevations of the measuring points (tops) of all wells should be surveyed. Surveys of WS-1 well set elevations were conducted in 1989 and 1994.

Following water sampling and analysis in 2001, ten recommendations were made (Schuh 2002):

Recommendation #2001-1, that annual sampling for picloram be discontinued and that sampling be implemented only at times of major sampling, was implemented. Recommendation #2001-2, that ramifications of the new arsenic standard of 10 μ g/L be considered for drinking water supplies on the CGS Reservation, were implemented in the 2004 with the change to contract rural water. Recommendation #2001-3, that procedures for handling high-arsenic filtrate during reverse osmosis operational training be approved by the North Dakota Health Department, were implemented. Implementation status of Recommendation #2001-4, that the well-house area at 149-063-35A not be used for storage of pesticides, was implemented in 2005 with establishment of a separate storage and staging facility. Recommendation #2001-5, that camp waters be resampled in 2006 has been implemented, and is presented in this report. Recommendation #2001-7, that the protective cover for well 13103 (Site 1, 149-062-28CCC1) be extended, has been implemented. Recommendation #2001-8, that elevations of measuring points (tops) of all wells be surveyed to the nearest 0.1 foot, was implemented in 1989 and 1994. Recommendation #2001-9, that South Washington Lake should be resampled for lead and zinc to test the validity of 2001 detections, was implemented in 2006 and is presented in this report. Recommendation #2001-10, that storage and handling procedures for volatile organic compounds should be reviewed before the next major sampling to assure non-contamination of samples, was implemented in the 2006 sampling set.

\mathbf{S}	parameters for tr	101 010 IT		 		Weter	Eiald	۲ مار			Trial d	5 CT	3UT			
l op_ Screen	- 1	Screen			0+0C	water Level	Cond.	Cond.	Eiold	40	Temp	Det.	Calc.	Hardness	NCH	
Feet		Feet	Longitude	Latitude	Date Sampled	Feet bls	μS/cm	µS/cm	pH	pH_	°C	mg/L	mg/L	mg/L	mg/L	SAR
45		50	-98.68326785	47.68561295	9/1/87	16.04	880	864		7.82	10	505	564	270	0	2.5
45		50	-98.68326785	47.68561295	10/24/91	21.54	869	893	8.02	7.47	٢	565	585	280	0	2.4
45		50	-98.68326785	47.68561295	9/10/96		835	984		7.6	7.7	647	627	320	0	2.4
45		50	-98.68326785	47.68561295	9/6/01	15.45	887	994		7.95		622	609	320	0	2.4
45		50	-98.68326785	47.68561295	90/9/6	16.12	842	887	8.45	7.45			550	260	0	2.38
164		169	-98.70573941	47.68694066	9/9/6	58.85	653	688	8.41	7.96			427	181	0	2.2
22		27	-98.67150962	47.68462529	9/1/87	3.7	620	627		7.87	14	377	395	240	0	1.3
22		27	-98.67150962	47.68462529	10/24/91	7.01	620	628	7.96	7.33	6	377	394	230	0	1.4
22		27	-98.67150962	47.68462529	9/11/96		536	634		7.67	8.7	401	376	240	0	1.3
22		27	-98.67150962	47.68462529	9/9/6	4.89	744	786	7.57	7.56			487	275	0	1.41
181		186	-98.65790652	47.6861436	9/2/87	49.15	950	958		7.94	10	523	626	210	0	4.2
181		186	-98.65790652	47.6861436	10/22/91	53.91	929	984	7.75	7.45	7	578	619	210	0	4.2
181		186	-98.65790652	47.6861436	9/11/96		804	096		7.74	8.4	608	601	210	0	4.2
181		186	-98.65790652	47.6861436	9/2/06	45.09	935	666	6.36	8.02			619	187	0	4.64
64		69	-98.65790652	47.6861436	9/2/87	11.36	740	685		7.73	10	348	450	400	70	0.2
64		69	-98.65790652	47.6861436	10/22/91	15.53	763	807	7.41	7.28	8	416	499	430	33	0.2
64		69	-98.65790652	47.6861436	9/11/96		627	744		7.61	8.4	464	444	390	7	0.2
64		69	-98.65790652	47.6861436	9/2/06	11.88	705	745	6.26	7.7			462	347	0	0.22
24		29	-98.65790652	47.6861436	9/2/87	12.31	540	510		7.87	12	286	325	290	42	0.1
24		29	-98.65790652	47.6861436	10/22/91	16.14	597	568	7.59	7.48	8	359	353	290	20	0.2
24		29	-98.65790652	47.6861436	9/10/96		481	563		7.54	7.6	334	323	300	19	0.1
24		29	-98.65790652	47.6861436	9/6/01	12.18	577	009		7.89		319	346	330	46	0.1
24		29	-98.65790652	47.6861436	9/2/06	13.25	613	643	7.02	7.8			399	302	3	0.14
162		167	-98.64374799	47.68552364	9/1/87	94.68	570	575		7.9	13	358	370	160	0	2.2
162		167	-98.64374799	47.68552364	10/23/91	98.97	563	580	8.44	7.48	5	378	358	150	0	2.3
162		167	-98.64374799	47.68552364	9/11/96		493	565		7.83	7.9	348	329	150	0	2.2
162		167	-98.64374799	47.68552364	9/5/06	92.07	558	582	6.97	8.06			361	140	0	2.51

		Top_ Screen	Bottom _Screen		Top_ Bottom Water Field_ Lab_ Screen _Screen	ſ	Water _Level	Field_ Cond.	Lab_ Cond.	: :	-	Field Temp	TDS Det.	TDS Calc.	Hardness	NCH	
Well No.	Location	Feet	Feet	Longitude	Latitude	Date Sampled	Feet bls	μS/cm	μS/cm	riela pH	PH_	°C	mg/L	mg/L	mg/L	mg/L	SAR
12015C	14906231ABBC3	78	83	-98.64374799	47.68552364	10/23/91	64.75	455	471	7.97	7.22	9	287	295	230	0	0.2
12015C	14906231ABBC3	78	83	-98.64374799	47.68552364	9/11/96		410	475		7.48	7.6	299	269	250	0	0.1
12015C	14906231ABBC3	78	83	-98.64374799	47.68552364	9/6/01	58.35	470	491		8.3		292	266	240	0	0.2
12015C	14906231ABBC3	78	83	-98.64374799	47.68552364	9/2/06	57.3	456	480	7.07	7.49			298	207	0	0.19
12017A	14906325DBBC1	263	268	-98.66232991	47.69220213	9/1/87	39.48	1200	1190		8.21	12	743	721	66	0	13
12017A	14906325DBBC1	263	268	-98.66232991	47.69220213	10/24/91	44.23	1144	1210	8.15	7.92	5	722	729	64	0	14
12017A	14906325DBBC1	263	268	-98.66232991	47.69220213	9/11/96		1008	1180		7.98	8.8	733	715	64	0	14
12017A	14906325DBBC1	263	268	-98.66232991	47.69220213	9/2/06	35.05	1150	1230	7.24	8.02			763	54	0	16
12017B	14906325DBBC2	78	83	-98.66232991	47.69220213	9/2/87	5.17	860	877		7.99	11	567	573	96	0	7.1
12017B	14906325DBBC2	78	83	-98.66232991	47.69220213	10/24/91	7.29	706	719	8.16	7.96	7	467	460	94	0	5.8
12017B	14906325DBBC2	78	83	-98.66232991	47.69220213	9/11/96		632	702		7.89	7.9	471	435	110	0	5
12017B	14906325DBBC2	78	83	-98.66232991	47.69220213	9/2/06	4.22	646	668	7.21	8.17			414	105	0	5.02
12017C	14906325DBBC3	51	56	-98.66232991	47.69220213	9/2/87	3.04	490	505		7.99	11	303	316	260	5	0.2
12017C	14906325DBBC3	51	56	-98.66232991	47.69220213	10/24/91	9.45	457	449	7.84	7.62	6	275	274	220	8	0.2
12017C	14906325DBBC3	51	56	-98.66232991	47.69220213	9/10/96		411	473		7.62	9.4	274	269	240	ъ	0.1
12017C	14906325DBBC3	51	56	-98.66232991	47.69220213	9/2/06	5.92	506	532	6.98	7.8			330	237	0	0.18
12017D	14906325DBBC4	23	28	-98.66232991	47.69220213	9/2/87	6.13	500	504		7.98	6	316	314	260	0	0.1
12017D	14906325DBBC4	23	28	-98.66232991	47.69220213	10/24/91	9.39	500	506	7.32	7.11	6	298	317	250	0	0.2
12017D	14906325DBBC4	23	28	-98.66232991	47.69220213	9/10/96		442	508		7.44	7.5	301	289	260	0	0.2
12017D	14906325DBBC4	23	28	-98.66232991	47.69220213	9/6/01	7.55	504	531		7.84		284	289	270	7	0.2
12017D	14906325DBBC4	23	28	-98.66232991	47.69220213	9/2/06	8.2	509	526	6.8	7.19			326	234	0	0.22
12019A	14906323ADBB1	218	223	-98.68074564	47.70575185	9/1/87	7.99	590	579		7.82	12	347	367	140		2.8
12019A	14906323ADBB1	218	223	-98.68074564	47.70575185	10/23/91	13.87	569	592	8.3	7.4	9	368	363	160	0	2.3
12019A	14906323ADBB1	218	223	-98.68074564	47.70575185	9/11/96		491	572		7.52	8.5	362	335	140	0	2.6
12019A	14906323ADBB1	218	223	-98.68074564	47.70575185	9/9/6	3.9	601	612	9.23	7.44			379	135	0	5
12019B	14906323ADBB2	32	37	-98.68074564	47.70575185	9/1/87	4.23	515	511		8.03	11	294	323	270	27	0.2
12019B	14906323ADBB2	32	37	-98.68074564	47.70575185	10/23/91	7.88	524	538	8.08	7.25	6	325	331	270	17	0.2
12019B	14906323ADBB2	32	37	-98.68074564	47.70575185	9/10/96		471	541		7.57	7.9	334	317	280	29	0.2
12019B	14906323ADBB2	32	37	-98.68074564	47.70575185	9/9/06	2.21	499	521	8.6	7.4			323	239	2	0.16

I aUIC O	I auto o (cutte.). VV a		f ucilli				Water	MCII 2	<u>, CO</u>								
		Top Screen	Bottom Screen				Level	FieldCond	Lab_ Cond.			Field Temp	TDS Det	TDS Cale.	Hardness	NCH	
Well No.	Location	Feet	Feet	Longitude	Latitude	DateSampled	Feet bls	µS/cm	µS/cm	Field pH	Lab_ pH_	°,	mg/L	mg/L	mg/L	mg/L	SAR
12019C	14906323ADBB3	7	12	-98.68074564	47.70575185	9/1/87	4.29	585	461		7.87	14	272	301	270	31	0.1
12019C	14906323ADBB3	7	12	-98.68074564	47.70575185	10/23/91	7.53	537	558	8.08	7.24	10	303	334	290	16	0.1
12019C	14906323ADBB3	7	12	-98.68074564	47.70575185	9/10/96		462	518		7.47	10.9	321	297	270	16	0.1
12019C	14906323ADBB3	7	12	-98.68074564	47.70575185	9/6/01	1.3	525	542		7.85		333	294	280	49	0.1
12019C	14906323ADBB3	7	12	-98.68074564	47.70575185	90/9/6	2.11	477	499	8.43	7.4			309	228	9	0.1
12020A	14906314DACD1	212	217	-98.67972132	47.71653647	9/1/87	41.57	3070	2990		8.13	12	1910	1870	75		32
12020A	14906314DACD1	212	217	-98.67972132	47.71653647	10/23/91	45.36	2310	2270	8.62	8.19	9	1430	1450	49	0	32
12020A	14906314DACD1	212	217	-98.67972132	47.71653647	9/11/96		1858	2230		8.01	8.3	1410	1370	40	0	34
12020A	14906314DACD1	212	217	-98.67972132	47.71653647	9/2/06	35.37	2100	2270	7.1	8.22			1410	40	0	37.3
12020B	14906314DACD2	151	156	-98.67972132	47.71653647	9/1/87	34.94	1460	1400		8.21	12	903	915	52		19
12020B	14906314DACD2	151	156	-98.67972132	47.71653647	10/23/91	39.35	1384	1420	8.41	8.01	9	924	923	50	0	20
12020B	14906314DACD2	151	156	-98.67972132	47.71653647	9/11/96		1173	1430		7.94	8.4	904	885	44	0	20
12020B	14906314DACD2	151	156	-98.67972132	47.71653647	9/2/06	31.04	1383	1460	7.29	8.14			905	42	0	23.7
12020C	14906314DACD3	38	43	-98.6796115	47.71665814	9/1/87	23.53	580	572		8.09	12	323	362	280		0.5
12020C	14906314DACD3	38	43	-98.6796115	47.71665814	10/23/91	29.58	567	569	8.04	7.5	9	357	350	270	0	0.4
12020C	14906314DACD3	38	43	-98.6796115	47.71665814	9/10/96		499	572		7.56	7.7	343	328	270	0	0.4
12020C	14906314DACD3	38	43	-98.6796115	47.71665814	9/6/01	23.15	585	596		7.89		349	330	280	2	0.4
12020C	14906314DACD3	38	43	-98.6796115	47.71665814	9/2/06	24.32	550	579	7.05	7.77			359	252	0	0.33
12021A	14906313BAAB1	96	101	-98.66521977	47.73016393	9/1/87	10.14	3710	3450		8	12	1510	1540	230	0	13
12021A	14906313BAAB1	96	101	-98.66521977	47.73016393	10/23/91	11.04	4440	4520	8.03	7.68	9	2440	2560	400	0	18
12021A	14906313BAAB1	96	101	-98.66521977	47.73016393	9/11/96		3060	4680		7.66	7.9	2580	2580	400	0	18
12021A	14906313BAAB1	96	101	-98.66521977	47.73016393	9/6/01	6.22	3980	4940		7.79		2560	2620	440	0	19
12021A	14906313BAAB1	96	101	-98.66521977	47.73016393	90/9/6	6.25	4260	4560	8.66	7.94			2830	378	0	21.8
12022	14906327DDDC2	158	163	-98.70573941	47.68694066	9/1/87	22.52	241	385		6.8	13	150	207	110	0.1	4
12022	14906327DDDC2	158	163	-98.70573941	47.68694066	11/19/91	102.53	638	674	7.53	7.53	7		423	190	7	40
12022	14906327DDDC2	158	163	-98.70573941	47.68694066	9/11/96		725	676		7.83	7.7	482	434	200	7	40

		6												0			
		l op_ Screen	Bottom _Screen				Water Level	Cond.	Lab_ Cond.			Field Temp	TDS Det.	TDS Calc.	Hardness		
Well No.	Location	Feet	Feet	Longitude	Latitude	Date Sampled	Feet bls	μS/cm	μS/cm	Field pH	Lab_ pH_	°C	mg/L	mg/L	mg/L		SAR
12023A	14906336DDBC1	131	136	-98.65819588	47.67442052	9/2/87	10.36	720	742		8.06	11	456	474	110		5.4
12023A	14906336DDBC1	131	136	-98.65819588	47.67442052	10/22/91	15.84	748	766	8.18	7.57	9	483	482	66		6.1
12023A	14906336DDBC1	131	136	-98.65819588	47.67442052	9/11/96		613	724		7.69	L.T	457	439	100		5.7
12023A	14906336DDBC1	131	136	-98.65819588	47.67442052	9/2/06	12.9	723	758	6.78	8.01			470	94		6.19
12023B	14906336DDBC2	83	88	-98.65819588	47.67442052	9/2/87	10.63	620	617		8.12	10	382	394	200		1.9
12023B	14906336DDBC2	83	88	-98.65819588	47.67442052	10/22/91	14.28	598	622	7.83	7.34	9	371	381	210		1.6
12023B	14906336DDBC2	83	88	-98.65819588	47.67442052	9/11/96		509	612		7.61	7.4	390	364	210		1.6
12023B	14906336DDBC2	83	88	-98.65819588	47.67442052	9/2/06	11.4	596	632	6.58	7.82			392	195		1.66
12023C	14906336DDBC3	46	51	-98.65819588	47.67442052	9/2/87	14.84	540	540		7.86	10	342	336	280		0.2
12023C	14906336DDBC3	46	51	-98.65819588	47.67442052	10/22/91	18.41	548	572	2	7.34	7	346	349	270		0.4
12023C	14906336DDBC3	46	51	-98.65819588	47.67442052	9/10/96		465	541		7.39	7.9	318	316	280		0.3
12023C	14906336DDBC3	46	51	-98.65819588	47.67442052	9/6/01	14.85	531	578		7.94		324	313	290		0.2
12023C	14906336DDBC3	46	51	-98.65819588	47.67442052	9/2/06	15.87	549	582	6.97	7.37			361	261		0.24
12024B	14806301CBBC2	151	156	-98.65030232	47.6653726	9/2/87	43.81	590	607		8.11	11	357	379	150		2.7
12024B	14806301CBBC2	151	156	-98.65030232	47.6653726	10/23/91	47.58	583	614	8.03	7.54	9	375	386	140		2.9
12024B	14806301CBBC2	151	156	-98.65030232	47.6653726	9/11/96		509	594		7.72	8.1	383	359	140		3
12024B	14806301CBBC2	151	156	-98.65030232	47.6653726	9/2/06	44.21	587	619	7.18	7.99			384	125		3.35
12025	14906326DCA	38	43	-98.68057616	47.69021308	9/1/87	16.32	975	973		7.86	11	610	647	370	7	1.9
12025	14906326DCA	38	43	-98.68057616	47.69021308	10/24/91	20.12	966	1050	7.87	7.41	7	671	688	400	10	1.8
12025	14906326DCA	38	43	-98.68057616	47.69021308	9/12/96		880	1140		7.65	7.9	748	740	460	46	1.7
12025	14906326DCA	38	43	-98.68057616	47.69021308	9/6/01	13.57	992	1150		7.63		703	869	420	ŝ	1.9
12025	14906326DCA	38	43	-98.68057616	47.69021308	9/9/6	13.28	1087	1160	7.21	7.54			719	393	0	2.26
12026A	14906334BBB1	251	256	-98.71776161	47.6863879	9/1/87	25		913		LLL		578	577	210	0	3.6
12026A	14906334BBB1	251	256	-98.71776161	47.6863879	11/19/91	28.4	595	632	7.05	7.26	7		384	180	0	1.9
12026A	14906334BBB1	251	256	-98.71776161	47.6863879	9/12/96		491	581		7.66	8	372	340	190	0	1.6
12026A	14906334BBB1	251	256	-98.71776161	47.6863879	9/9/6	20.12	557	580	8.06	8.17			360	169	0	1.76
12026B	14906334BBB2	27	32	-98.71776161	47.6863879	9/1/87	21.46	670	635		8.06	Π	380	405	290	44	0.7
12026B	14906334BBB2	27	32	-98.71776161	47.6863879	1 0/24/9 1	25.95	566	584	7.95	7.32	9	372	368	270	35	0.5
12026B	14906334BBB2	27	32	-98.71776161	47.6863879	10/22/92			565		6.68		380	354	270	39	0.4
12026B	14906334BBB2	27	32	-98.71776161	47.6863879	9/12/96		486	597		7.74	7.4	373	357	290	36	0.5
12026B	14906334BBB2	27	32	-98.71776161	47.6863879	9/9/9	18.33	596	630	7.89	7.53			391	282	22	0.28

			Top_ Screen	Bottom_ Screen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
Da Well No. Sam	Date Sampled	Location	Feet	Feet	mg/L	mg/L	, mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
12011B 9/1	9/1/87	14906335ABBD2	45	50	29	68	25	9.6	93	0.2	422	0	120	8.5	1.8
12011B 10/2	10/24/91	14906335ABBD2	45	50	27	68	26	9.9	94	0.3	432	0	130	10	5.5
12011B 9/1	9/10/96	14906335ABBD2	45	50		80	29	10	66	0.2	459	0	170	11	0.1
12011B 9/6	9/6/01	14906335ABBD2	45	50		79	29	9.3	67	0.2	455	0	160	9.4	0.1
12011B 9/6	9/9/6	14906335ABBD2	45	50		62.9	24.9	8.16	88.1	0.182	413	$\overline{\vee}$	129	7.18	<0.0>
12012 9/6	90/9/6	14906327DDDC1	164	169		49	14.2	7.45	68	0.233	305	$\overline{\vee}$	92.7	12.6	<0.0>
12013B 9/1	9/1/87	14906336BBDA2	22	27	31	59	22	7.5	47	0.3	358	0	43	8	-
12013B 10/2	10/24/91	14906336BBDA2	22	27	30	60	19	7.7	49	0.3	358	0	42	8.9	0.2
12013B 9/1	9/11/96	14906336BBDA2	22	27		99	19	7.6	45	0.3	370	0	47	8.2	0.4
12013B 9/6	90/9/6	14906336BBDA2	22	27		72.9	22.6	7.47	53.8	0.211	390	$\overline{\vee}$	93.1	7.66	<0.0>
12014B 9/2	9/2/87	14906336AACB2	181	186	31	63	13	9.8	140	0.2	452	0	110	32	2.7
12014B 10/2	10/22/91	14906336AACB2	181	186	28	62	13	6	140	0.1	457	0	110	30	0.8
12014B 9/1	9/11/96	14906336AACB2	181	186		64	13	9.5	140	0.2	467	0	110	33	0.2
12014B 9/5	9/2/06	14906336AACB2	181	186		54.8	12.2	7.89	146	0.099	461	$\overline{\nabla}$	107	31.6	0.09
12014C 9/2	9/2/87	14906336AACB3	64	69	32	110	30	7.4	11	0.2	401	0	57	ŝ	0.4
12014C 10/2	10/22/91	14906336AACB3	64	69	29	120	32	7.4	11	0.1	486	0	55	5	0
12014C 9/1	9/11/96	14906336AACB3	64	69		110	29	6.5	6	0.2	472	0	50	5.2	0.1
12014C 9/5	9/5/06	14906336AACB3	64	69		92.2	28.2	6.27	9.3	0.13	441	$\overline{\nabla}$	44.9	5.5	<0.0>
12014D 9/2	9/2/87	14906336AACB4	24	29	29	79	23	3.5	5.5	0.2	305	0	29	2.9	3.2
12014D 10/2	10/22/91	14906336AACB4	24	29	26	78	23	5.6	9	0.1	329	0	36	9	10
12014D 9/1	9/10/96	14906336AACB4	24	29		82	23	2.8	4	0.2	342	0	27	4.1	12
	9/6/01	14906336AACB4	24	29		91	26	3	5.5	0.1	352	0	29	2.8	15
12014D 9/5	9/5/06	14906336AACB4	24	29		79.2	25.3	3.49	5.4	0.1	364	$\overline{\nabla}$	33.2	3.8	14.2
12015B 9/1	9/1/87	14906231ABBC2	162	167	31	45	12	9.1	64	0.3	321	0	43	4	2.8
12015B 10/2	10/23/91	14906231ABBC2	162	167	29	42	12	6	65	0.3	325	0	36	4.4	0
12015B 9/1	9/11/96	14906231ABBC2	162	167		42	11	8.9	61	0.3	332	0	37	4.2	0.1
12015B 0/5	0/2/06	CODD 4 1 CC2001 1	167	167			7 1 1	0 53	1 07			2	100		000

(5
(C
	set,
;	well
C	WS-I
, ,	the
	trom
-	ples
	sam
	9. General cations and anions for water samples from the WS-1 well set, CU
•	anions 1
	and
·	cations
(General
¢	e y.

S.	
CGS.	
'S-1 well set, CGS	
well set	
-	
-SW	
≯	
the	
General cations and anions for water samples from the W ⁴	
Ъ	
les	
du	
sar	
ter	
vai	
rv	
\mathbf{fo}	
ns	
iio	
at	
s and anions for water samples	
JS	
.ē	
cat	
eneral c	
Jei	
-G	
<u> </u>	
(;	
on	
ં	
6	
ble	

			Top_ Screen	Bottom_ Screen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
Well No.	Date Sampled	Location	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
12015C	10/23/91	14906231ABBC3	78	83	32	63	18	6.2	5.5	0.2	290	0	19	3	3.6
12015C	9/11/96	14906231ABBC3	78	83		69	18	5.2	4.5	0.2	300	0	21	2.5	0.1
12015C	9/6/01	14906231ABBC3	78	83		68	18	5.5	6.5	0.2	300	0	19	0	0.6
12015C	9/2/06	14906231ABBC3	78	83		54.7	17	5.53	6.2	0.14	286	$\overline{\vee}$	18.1	1.31	0.49
12017A	9/1/87	14906325DBBC1	263	268	30	19	4.5	7.5	240	0.4	444	0	100	66	0.6
12017A	10/24/91	14906325DBBC1	263	268	27	18	4.5	8	250	0.4	454	0	100	96	0
12017A	9/11/96	14906325DBBC1	263	268		18	4.5	7.4	250	0.4	458	0	110	67	1.2
12017A	9/2/06	14906325DBBC1	263	268		15	4.1	6.24	272	0.358	447	$\overline{\vee}$	106	98.5	0.13
12017B	9/2/87	14906325DBBC2	78	83	22	26	7.5	14	160	0.5	376	0	150	4.1	3.1
12017B	10/24/91	14906325DBBC2	78	83	26	25	7.5	7.9	130	0.5	416	0	45	7.5	5.6
12017B	9/11/96	14906325DBBC2	78	83		29	8.5	8.3	120	0.5	418	0	53	8.4	0.9
12017B	9/2/06	14906325DBBC2	78	83		27.2	8.9	7.31	118	0.359	380	$\overline{\nabla}$	39.9	2.4	0.09
12017C	9/2/87	14906325DBBC3	51	56	31	72	20	5.1	9	0.3	314	0	25	1	0.4
12017C	10/24/91	14906325DBBC3	51	56	24	62	17	3.9	6.5	0.2	264	0	23	4.8	2.4
12017C	9/10/96	14906325DBBC3	51	56		99	19	4.3	5	0.2	293	0	26	3.7	0.6
12017C	9/2/06	14906325DBBC3	51	56		63.3	19.1	5.08	6.3	0.13	309	$\overline{\vee}$	28.6	1.6	<0.0>
12017D	9/2/87	14906325DBBC4	23	28	32	72	19	5.2	5.5	0.2	319	0	19	1.3	-
12017D	10/24/91	14906325DBBC4	23	28	32	70	19	4.9	7	0.2	316	0	18	4	б
12017D	9/10/96	14906325DBBC4	23	28		74	19	4.3	9	0.2	325	0	20	2.9	0.1
12017D	9/6/01	14906325DBBC4	23	28		74	20	2	8	0.2	324	0	22	0	0.1
12017D	9/5/06	14906325DBBC4	23	28		63.2	18.4	4.69	7.8	0.202	309	$\overline{\nabla}$	22.9	1.58	<0.0>
12019A	9/1/87	14906323ADBB1	218	223	30	41	10	6.9	76	0.2	322		19	21	2.9
12019A	10/23/91	14906323ADBB1	218	223	28	4	Ξ	6.3	67	0.2	331	0	23	16	4.3
12019A	9/11/96	14906323ADBB1	218	223		41	9.5	6.5	70	0.2	337	0	23	18	0.2
12019A	90/9/6	14906323ADBB1	218	223		38	9.6	5.9	77.3	0.17	331	$\overline{\vee}$	22.2	21.2	0.44
12019B	9/1/87	14906323ADBB2	32	37	28	74	21	3.6	6.5	0.2	298		40	1.6	0.4
12019B	10/23/91	14906323ADBB2	32	37	26	72	21	3.3	8	0.2	304	0	45	3.9	0.7
12019B	9/10/96	14906323ADBB2	32	37		LT	22	3.1	9	0.1	310	0	53	1.7	0.4
12019B	9/9/06	14906323 A D B B 2	37	27		64.1	0.01	, 11 11	5 0	0 148	000	Ţ			

CGS.
well set,
WS-1
from the
les
General cations and anions for water samp
s for we
anions
ons and
ral cati
Gene
(cont.).
ble 9 (

Well No. Date	Top_ Screen	Bottom_ Screen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
9/1/87 14906323ADBB3 9/1/87 14906323ADBB3 9/10/96 14906323ADBB3 9/10/96 14906323ADBB3 9/6/01 14906323ADBB3 9/6/06 14906314DACD1 9/1/87 14906314DACD1 9/1/96 14906314DACD1 9/1/96 14906314DACD1 9/1/96 14906314DACD1 9/1/87 14906314DACD2 9/1/96 14906314DACD3 9/1/87 14906314DACD3 9/1/87 14906314DACD3 9/1/96 14906314DACD3 9/1/96 14906314DACD3 9/1/96 14906314DACD3 9/1/96 14906314DACD3 9/1/96 14906314DACD3 9/1/96 14906314DACD3 </th <th>Feet</th> <th>Feet</th> <th>mg/L</th>	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
9/10/96 9/6/01 9/6/06 9/6/06 9/1/87 9/1/87 9/1/87 10/23/91 9/1/87 10/23/91 9/1/87 10/23/91 9/1/96 9/5/06 9/5/06 9/5/06 9/5/06 9/1/96 9/1/96 9/1/96	7	12	38	LL	18	2.3	4	0.2	287		16	1	3.4
9/10/96 9/6/01 9/6/06 9/1/87 10/23/91 9/1/87 10/23/91 9/1/87 10/23/91 9/1/87 10/23/91 9/1/87 10/23/91 9/1/96 9/1/96 9/1/96	7	12	27	82	20	1.2	3.5	0.2	331	0	6.6	3.4	24
9/6/01 9/6/06 9/1/87 9/1/87 9/1/87 9/1/87 9/1/87 9/1/87 9/1/87 9/1/87 9/1/87 10/23/91 9/1/87 10/23/91 9/1/96 9/1/96	7	12		80	18	1.4	3.5	0.1	315	0	19	2.7	14
9/6/06 9/1/87 9/1/87 9/1/96 9/5/06 9/5/06 9/5/06 9/1/87 10/23/91 9/1/87 10/23/91 9/1/87 10/23/91 9/1/96 9/1/96 9/1/96	7	12		78	21	1.3	5	0.2	284	0	37	0	10
9/1/87 10/23/91 9/11/96 9/5/06 9/5/06 9/5/06 9/5/06 9/1/87 10/23/91 9/5/06 9/5/06 9/5/06 9/5/06 9/1/96	7	12		62.2	17.7	1.62	3.5	0.139	269	$\overline{\vee}$	21.9	1.64	14.7
10/23/91 9/1/96 9/5/06 9/5/06 9/5/06 9/5/06 9/1/87 10/23/91 9/1/87 9/5/06 9/1/87 10/23/91 9/1/96 9/1/96	212	217	31	20	9	12	640	0.5	752		430	360	9.0
9/11/96 9/5/06 9/5/06 9/5/06 9/5/06 9/1/87 9/1/87 9/5/06 9/5/06 9/1/87 10/23/91 9/1/96 9/11/96	212	217	30	13	4	9.5	510	0.6	772	0	340	160	3.7
9/5/06 9/1/87 9/1/87 9/5/06 9/5/06 9/1/87 9/6/01 9/5/06 9/1/87 10/23/91 9/1/87 10/23/91	212	217		9.3	4	10	490	0.7	782	0	330	140	2.3
9/1/87 10/23/91 9/11/96 9/5/06 9/11/87 10/23/91 9/5/06 9/5/06 9/11/96 9/11/96	212	217		10	3.6	7.95	542	0.66	761	$\overline{\vee}$	331	145	<0.0>
10/23/91 9/11/96 9/5/06 9/1/87 9/10/96 9/5/06 9/5/06 9/5/06 9/5/06 9/1/97 10/23/91 9/11/96	151	156	31	14	4	8.4	310	0.7	629		200	20	0.5
9/11/96 9/5/06 9/1/87 9/1/87 9/10/96 9/5/06 9/5/06 9/5/06 9/1/87 10/23/91 9/11/96	151	156	29	15	ŝ	7.9	320	0.6	671	0	190	23	1.8
9/5/06 9/1/87 9/1/87 9/10/96 9/5/06 9/5/06 9/1/87 10/23/91 9/11/96	151	156		11	4	6	310	0.6	693	0	190	19	0.2
9/1/87 10/23/91 9/10/96 9/5/06 9/5/06 9/11/87 11/23/91 9/11/96	151	156		11.6	3.1	7.01	352	0.649	664	$\overline{\vee}$	190	18.2	<0.0>
10/23/91 9/10/96 9/5/06 9/5/06 9/1/87 10/23/91 9/11/96	38	43	32	73	23	6.8	18	0.2	341		35	3.9	2.4
9/10/96 9/5/06 9/5/06 9/1/87 10/23/91 9/11/96	38	43	29	70	23	5.8	15	0.2	335	0	35	5.6	1.4
9/6/01 9/5/06 9/1/87 10/23/91 9/11/96	38	43		73	23	5.5	15	0.2	353	0	31	4.5	1.8
9/5/06 9/1/87 10/23/91 9/11/96	38	43		74	23	4.9	16	0.3	338	0	32	9.7	2.7
9/1/87 10/23/91 9/11/96	38	43		64.4	22	5.21	12.1	0.19	318	$\overline{\vee}$	22.6	1.4	3.14
10/23/91 9/11/96	96	101	25	64	18	17	470	0.4	633	0	140	490	5.5
9/11/96	96	101	26	110	30	20	820	0.3	755	0	79	1100	0.1
01/2/10	96	101		110	30	25	830	0.3	782	0	LT	1100	17
10/0/6	96	101		120	33	25	006	0.3	765	0	67	1100	0.2
12021A 9/6/06 14906313BAAB1	96	101		104	28.6	21.8	974	0.32	730	$\overline{\vee}$	88.5	1070	0.09
12022 9/1/87 14906327DDDC2	158	163	10	29	8.5	14	2.5	0.1	161	0	61	1.8	-
12022 11/19/91 14906327DDDC2	158	163	28	53	15	9.2	64	0.3	299	0	89	15	1.2
12022 9/11/96 14906327DDDC2	158	163		57	15	8.6	65	0.3	308	0	94	41	0.2

SS
CGS
\sim
šet
<u> </u>
/e]
5
VS-1 we
WS
from the
Ш
from th
les
d
General cations and anions for water samp
H
ate
A
or
sf
on
-Ĕ
la
and
SI
or
ati
<u> </u>
ra
ne
e P
\cup
Ē.
jn
ૅ
6
е
0

			Top_ Screen	Bottom_ Screen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
	Date_ Sampled	Location	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
12023A	9/2/87	14906336DDBC1	131	136	31	30	~	7.5	130	0.5	399	0	49	18	5
12023A	10/22/91	14906336DDBC1	131	136	27	28	7	6.9	140	0.3	413	0	48	20	0
12023A	9/11/96	14906336DDBC1	131	136		29	7	6.9	130	0.3	403	0	47	18	0.6
	9/2/06	14906336DDBC1	131	136		26.1	7	5.94	138	0.3	408	$\overline{\vee}$	44.5	17.5	<0.0>
12023B	9/2/87	14906336DDBC2	83	88	32	55	15	7.6	61	0.3	353	0	38	9.4	0.4
12023B	10/22/91	14906336DDBC2	83	88	29	56	16	7.6	52	0.2	353	0	35	9.2	0.4
12023B	9/11/96	14906336DDBC2	83	88		59	16	7.3	52	0.2	360	0	41	6.6	0.1
12023B	9/2/06	14906336DDBC2	83	88		52.5	15.5	6.56	53.2	0.196	347	$\overline{\vee}$	37.1	8.3	<0.0>
12023C	9/2/87	14906336DDBC3	46	51	30	77	22	4.4	8	0.2	329	0	28	3.3	0.5
12023C	10/22/91	14906336DDBC3	46	51	27	72	21	5.6	16	0.2	339	0	30	5.5	3.7
12023C	9/10/96	14906336DDBC3	46	51		75	22	4.1	11	0.2	345	0	27	5.3	0.1
12023C	9/6/01	14906336DDBC3	46	51		78	23	2.9	8.5	0.2	355	0	20	4.5	0.1
12023C	9/2/06	14906336DDBC3	46	51		68.1	22.1	4.39	8.9	0.15	347	$\overline{\vee}$	25.5	3.9	<0.0>
12024B	9/2/87	14806301CBBC2	151	156	30	40	11	7.9	75	0.3	339	0	40	4.8	1.7
12024B	10/23/91	14806301CBBC2	151	156	30	37	11	9.1	80	0.3	341	0	42	7.3	0
12024B	9/11/96	14806301CBBC2	151	156		38	11	7.5	82	0.2	344	0	44	6.7	0.1
12024B	9/2/06	14806301CBBC2	151	156		32.7	10.6	7.03	86.4	0.22	339	$\overline{\vee}$	41.9	5.4	<0.0>
12025	9/1/87	14906326DCA	38	43	28	71	46	12	83	0.3	444	0	170	14	2
12025	10/24/91	14906326DCA	38	43	27	73	53	14	82	0.3	476	0	190	14	0
12025	9/12/96	14906326DCA	38	43		87	58	14	83	0.2	500	0	230	20	0.4
12025	9/6/01	14906326DCA	38	43		80	54	13	60	0.2	511	0	190	17	0.2
12025	90/9/6	14906326DCA	38	43		71.6	52.1	12.8	103	0.176	567	$\overline{\nabla}$	154	16.3	0.09
12026A	9/1/87	14906334BBB1	251	256	27	47	23	14	120	0.5	428	0	110	23	-
12026A	11/19/91	14906334BBB1	251	256	30	49	15	T.T	59	0.5	328	0	47	13	0
12026A	9/12/96	14906334BBB1	251	256		52	14	7.2	50	0.5	318	0	48	10	0.3
12026A	9/9/6	14906334BBB1	251	256		45.6	13.4	6.14	52.7	0.451	305	$\overline{\vee}$	44.7	8	<0.0>
12026B	9/1/87	14906334BBB2	27	32	27	74	25	4.7	28	0.2	298	0	89	8.5	-
12026B	10/24/91	14906334BBB2	27	32	25	71	23	3.6	18	0.2	289	0	72	8	5.1
12026B	10/22/92	14906334BBB2	27	32	25	70	23	3.1	16	0.1	281	0	99	5.6	7.6
12026B	9/12/96	14906334BBB2	27	32		75	74	35	18	00	205	¢			ŗ
1 JUJ 6D						2	1	, j	01	7.0	cnc	0	60	0.0	1/

			Top_ Screen	Bottom Screen				Field_ Cond.	Lab_ Cond.			Field Temp	TDS Det.	TDS Calc.	Hardness	NCH		
Well No.	Site No.	Location	Feet	Feet	Longitude	Latitude	Date Sampled	μS/cm	μS/cm	Field pH	Lab_ PH_	°C	mg/L	mg/L	mg/L	mg/L	SAR	NA %
13084	12	14806302BABC1	69	74	-98.66510688	47.67110223	8/26/93	653	645	7.8	7.54	7	408	421	100	0	4.8	68
13084	12	14806302BABC1	69	74	-98.66510688	47.67110223	9/9/6	655	686	7.5	8.28			425	107	0	4.55	68.7
13085	12	14806302BABC2	12	17	-98.66510688	47.67110223	8/26/93	746	744	7.56	7.59	~	461	484	420	50	0.2	
13085	12	14806302BABC2	12	17	-98.66510688	47.67110223	9/9/9/6	831	878	8.17	7.58			544	442	114	0.27	5.9
13086	٢	14806302ACA1	97	102	-98.65665915	47.66852272	10/22/92	623	614	6.42	7.03	8	369	384	290	0	9.0	
13086	٢	14806302ACA1	97	102	-98.65665915	47.66852272	9/3/96	524	586		7.52	8.5	377	348	280	0	0.6	
13086	٢	14806302ACA1	76	102	-98.65665915	47.66852272	9/5/01	547	626		7.36		366	350	280	0	0.6	
13086	Г	14806302ACA1	67	102	-98.65665915	47.66852272	9/11/06	367	377	7.9	7.42			234	196	0	0.09	3.2
13087	٢	14806302ACA2	18	23	-98.65665915	47.66852272	10/22/92	464	360	6.6	6.86	10	214	222	190	-	0.1	
13087	٢	14806302ACA2	18	23	-98.65665915	47.66852272	9/3/96	337	363		7.58	7.7	235	201	200	0	0.1	
13087	٢	14806302ACA2	18	23	-98.65665915	47.66852272	9/5/01	347	362		7.65		219	194	180	2	0.1	
13087	٢	14806302ACA2	18	23	-98.65665915	47.66852272	9/11/06	593	617	8.01	7.4			383	276	0	0.58	14.8
13088	6	14906313DAA1	95	100	-98.66220371	47.72232642	8/25/93	1299	1330	8.13	8.07	6	855	904	49	0	19	
13088	6	14906313DAA1	95	100	-98.66220371	47.72232642	9/13/06	1006	1060	8.49	7.93			657	74	0	10.3	85.6
13089	6	14906313DAA2	30	35	-98.66220371	47.72232642	8/25/93	776	618	7.69	7.69	11	392	387	330	21	0.2	
13089	6	14906313DAA2	30	35	-98.66220371	47.72232642	9/13/06	555	581	9.02	7.3			360	302	23	0.13	
13090	8	14906219DBD1	95	100	-98.64120628	47.70405205	8/25/93	673	648	7.55	7.51	10	416	410	310	1	0.4	
13090	8	14906219DBD1	95	100	-98.64120628	47.70405205	9/13/06	682	510	8.32	7.55			316	258	10	0.12	
13106	~ ~	14906219DBD3	43	48	-98.64120628	47.70405205	8/25/93	1109	494	6.87	7.66	10	310	326	250	0	0.2	
13106	×	14906219DBD3	43	48	-98.64120628	47.70405205	9/13/06	595	624	9.65	7.42			387	289	0	0.38	9.6
13092	10	14906312CAC1	105	110	-98.66985835	47.73482973	8/25/93	867	898	7.23	7.8	11	573	575	140	0	5.5	`
13092	21	14906312CAC1	c01	110	-98.66985853 	41.13482913	9/13/06	56/	88/	8.93	8/./			489	125	0	4.79	68.1

Table 10. Water Chemical Parameters for water samples from the WS-2 well set, CGS.

CGS.
ell set,
-2 w
WS.
from the
fror
ter samples
or wai
Parameters fo
Chemical
Water
0 (cont.).
able 1

			Top_ Screen	Bottom _Screen				Field_ Cond.	Lab_ Cond.			Field Temp	TDS Det.	TDS Calc.	Hardness	NCH		
Well No.	Site No.	Location	Feet	Feet	Longitude	Latitude	Date Sampled	μS/cm	μS/cm	Field pH	Lab_ PH	°C	mg/L	mg/L	mg/L	mg/L	SAR	% NA
13093	10	14906312CAC2	45	50	-98.66985835	47.73482973	8/25/93	581	572	6.35	7.6	12	354	348	290	9	0.3	6
13093	10	14906312CAC2	45	50	-98.66985835	47.73482973	9/13/06	563	586	8.1	7.17			363	283	4	0.3	8.2
13094	20	14906314AAB	17	22	-98.680243	47.730444	8/25/93	633	646	7.06	7.5	Π	387	401	340	~	0.3	L
13094	20	14906314AAB	17	22	-98.680243	47.730444	90/9/6	647	680	7.63	7.5			422	351	33	0.17	4.4
13095	17	14806304ABA1	39.67	44.67	-98.70000214	47.67220701	8/24/93	656	551	7.35	7.56	10	357	353	210	0	1.2	28
13096	17	14806304ABA2	25	30	-98.70000214	47.67220701	8/26/93	718	735	7.47	7.62	Π	469	472	310	3	1.1	24
13097	5	14906336ACA1	41	48	-98.66113372	47.68172516	10/22/92	543	501	6.65	7.02	10	297	307	210	0	0.7	18
13097	5	14906336ACA1	41	48	-98.66113372	47.68172516	9/3/96	427	483		7.46	7.6	311	280	210	0	0.7	18
13097	5	14906336ACA1	41	48	-98.66113372	47.68172516	9/4/01	472	519		7.52		300	291	210	0	0.8	22
13097	5	14906336ACA1	41	48	-98.66113372	47.68172516	9/12/06	491	505	8.02	7.24			313	195	0	0.87	23.6
13098	5	14906336ACA2	21	27	-98.66113372	47.68172516	10/22/92	491	469	6.63	689	10	276	284	230	0	0.2	
13098	5	14906336ACA2	21	27	-98.66113372	47.68172516	9/3/96	425	457		7.5	7.2	288	258	230	0	0.2	9
13098	5	14906336ACA2	21	27	-98.66113372	47.68172516	9/4/01	455	499		7.49		286	263	240	0	0.2	7
13098	5	14906336ACA2	21	27	-98.66113372	47.68172516	9/12/06	485	500	8.9	7.29			310	248	0	0.18	5.4
13098	5	14906336ACA2	21	27	-98.66113372	47.68172516	9/12/06	485	501	8.9	7.32			311	251	0	0.18	5.3
13099	13	14906335BCBA1	39.5	43.5	-98.69500484	47.68365693	8/24/93	728	748	7.08	7.42	13	477	468	330	15	1	20
13099	13	14906335BCBA1	39.5	43.5	-98.69500484	47.68365693	90/9/6	701	741	6.94	7.59			459	354	44	0.47	11.1
13100	13	14906335BCBA2	23	28	-98.69500484	47.68365693	8/24/93	629	634	٢	7.32	14	392	410	320	22	0.5	Ξ
13100	13	14906335BCBA2	23	28	-98.69500484	47.68365693	9/9/6	660	669	7.57	7.38			433	337	35	0.39	9.5
13101	9	14906325CDC1	110	115	-98.66851649	47.68746005	10/22/92	1041	1110		6.92	10	733	745	310	110	3	4
13101	9	14906325CDC1	110	115	-98.66851649	47.68746005	9/2/96	890	1080		7.57	14.6	756	722	310	100	ŝ	45
13101	9	14906325CDC1	110	115	-98.66851649	47.68746005	9/5/01	1072	1160		7.36		740	716	310	110	ŝ	4
13101	9	14906325CDC2	110	115	-98.66851649	47.68746005	9/11/06	1117	1180	7.66	7.19			732	318	118	2.83	44.1

Table 10 (cont.). Water Chemical Parameters for water samples from the WS-2 well set, CGS.

Top_ Screen	Bottom Screen				Field_ Cond.	Lab_ Cond.			Field Temp	TDS Det.	TDS Calc.	Hardness	NCH		
- Feet		Longitude	Latitude	DateSampled	µS/cm	μS/cm	Field pH	Lab_ DH	°C	mg/L	mg/L	mg/L	mg/L	SAR	% NA
30	I	-98.66851649	47.68746005	10/22/92	579	574	6.58	6.98	10	349	345	300	2	0.3	7
30	_	-98.66851649	47.68746005	9/2/96	471	555		7.66	12.4	347	318	290	0	0.3	7
3	0	-98.66851649	47.68746005	9/5/01	614	642		7.39		363	357	320	0	0.3	7
30	_	-98.66851649	47.68746005	9/11/06	608	628	7.64	7.35			389	320	S	0.25	6.5
144	-+	-98.60948722	47.68746434	10/21/92	958	959	7.26	7.24	8	629	631	110	0	7.5	76
144		-98.60948722	47.68746434	9/2/96	794	924		7.58	9.4	629	599	120	0	7.1	75
144		-98.60948722	47.68746434	9/4/01	916	966		7.59		622	602	120	0	7.1	75
144		-98.60948722	47.68746434	9/12/06	922	973	7.75	7.23			603	128	0	6.3	73.5
61		-98.60948722	47.68746434	10/21/92	661	636	7.07	7.05	8	386	406	280	0	0.7	17
61		-98.60948722	47.68746434	9/4/96	515	611		7.51	9.1	394	361	270	0	0.7	16
61		-98.60948722	47.68746434	9/4/01	619	653		7.26		390	370	280	0	0.7	17
61		-98.60948722	47.68746434	9/12/06	596	619	8.14	7.24			384	269	0	0.59	15.2
55		-98.61142796	47.69146637	10/21/92	608	628	7	6.78	10	395	403	320	20	0.3	7
55		-98.61142796	47.69146637	9/4/96	527	605		7.48	8.5	393	356	300	0	0.3	7
55		-98.61142796	47.69146637	9/4/01	600	656		7.41		400	365	310	11	0.3	7
5	Ś	-98.61142796	47.69146637	9/11/06	628	640	7.4	7.23			397	316	18	0.26	6.8

	;			Top_ Screen	Top_ Bottom Screen Screen Silica Calcium Magnesium Potassium Sodium Fluor	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
Well No.	Site No.	Date Sampled	Location	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
13084	12	8/26/93	14806302BABC1	69	74	29	27	8.5	6.2	110	0.3	399	0	26	12	4.5
13084	12	9/9/6	14806302BABC1	69	74		29	8.3	5.58	108	0.286	396	2	27.1	9.28	<0.0>
13085	12	8/26/93	14806302BABC2	12	17	26	110	35	3.2	9.5	0.1	450	0	65	7.1	5.7
13085	12	9/9/6	14806302BABC2	12	17		117	36.3	3.46	12.9	0.054	399	$\overline{\nabla}$	61.5	14.1	73.9
13086	7	10/22/92	14806302ACA1	76	102	25	83	21	5.1	23	0.2	371	0	37	3.8	1.1
13086	2	9/3/96	14806302ACA1	76	102		78	20	5.4	23	0.2	369	0	37	0.5	0.4
13086	7	9/5/01	14806302ACA1	76	102		78	20	5.3	24	0.2	370	0	37	2	0.2
13086	2	9/11/06	14806302ACA1	76	102		55.5	13.8	1.82	\Diamond	0.091	240	$\overline{\vee}$	1.98	0.97	0.97
13087	7	10/22/92	14806302ACA2	18	23	26	53	15	1.6	2.5	0.1	236	0	4.5	2.2	0.8
13087	2	9/3/96	14806302ACA2	18	23		55	15	1.6	2	0.1	246	0	4.5	0.2	0.5
13087	2	9/5/01	14806302ACA2	18	23		51	14	1.7	3.5	0	223	0	9.1	4.3	0.3
13087	2	9/11/06	14806302ACA2	18	23		78.5	19.4	5.42	22.2	0.165	359	$\overline{\vee}$	37	2.69	0.27
13088	6	8/25/93	14906313DAA1	95	100	59	13	4	8.9	300	0.7	716	0	150	8.4	S
13088	6	9/13/06	14906313DAA1	95	100		19.6	6.1	5.98	203	0.58	563	$\overline{\vee}$	92.4	5.17	1.64
13089	6	8/25/93	14906313DAA2	30	35	28	83	31	4.5	6	0.2	383	0	35	6.2	1.2
13089	6	9/13/06	14906313DAA2	30	35		77	26.7	3.95	5.2	0.153	339	$\overline{\vee}$	27.1	4.28	3.45
13090	8	8/25/93	14906219DBD1	95	100	31	89	21	13	16	0.2	375	0	45	3.7	5.6
13090	∞	9/13/06	14906219DBD1	95	100		74	17.7	5.87	4.6	0.201	301	$\overline{\vee}$	19.4	1.49	1.99
13106 13106	∞ ∞	10/21/92 9/4/96	14906219DBD3 14906219DBD3	43 43	48 48	40	69 85.3	18 18.3	7.8 11.2	8 14.7	0.2 0.223	311 353	0	23 41.5	4.7 1.7	$1.1 \\ 0.93$
13092 13092	10 10	8/25/93 9/13/06	14906312CAC1 14906312CAC1	105 105	110 110	28	38 34.6	11 9.3	9.9 16.91	150 123	0.4 0.38	453 412	0 7	79 58.9	30 12.6	5.4 1.77

Table	; 11 (cont.).	Table 11 (cont.). General cations		anions	for w	vater sa	and anions for water samples from the WS-2 well set, CGS	im the V	VS-2 w	ell set,	CGS.					
	1				BottomScreen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	ate Sulfate		Chloride	Nitrate
Well No.	Site No.	Date Sampled	Location	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L
13093	10	8/25/93	14906312CAC2	45	50	26	78	23	5.1	13	0.2	346		0		2.7	1.3
13093	10	9/13/06	14906312CAC2	45	50		<i>T.T</i>	21.6	5.51	11.7	0.212	339	$\overline{\vee}$	30	36.5	2.21	1.24
13094	20	8/25/93	14906314AAB	17	22	29	88	30	3.9	12	0.2	409		0	24	7.6	2.3
13094	20	9/9/6	14906314AAB	17	22		93.1	28.8	3.8	7.4	0.223	387	$\overline{\vee}$	37	34.7	86.8	60.0>
13095	17	8/24/93	14806304ABA1	39.67	44.67	28	57	16	L	39	0.2	311		0	41	6.7	4
13096	17	8/26/93	14806304ABA2	25	30	26	81	25	4.6	46	0.1	369		0	94	11	1
13097	5	10/22/92	14906336ACA1	41	48	25	60	15	6.7	23	0.2	302		0	23	2.6	1.8
13097	5	9/3/96	14906336ACA1	41	48		60	15	6.4	22	0.2	305		0	26	0.2	0.1
13097	5	9/4/01	14906336ACA1	41	48		58	15	6.4	28	0.2	311		0	30	0	0.3
13097	5	9/12/06	14906336ACA1	41	48		56.2	13.2	6.63	27.8	0.228	296	$\overline{\lor}$	73	25.5	2.22	<0.09
13098	5	10/22/92	14906336ACA2	21	27	24	67	16	5.3	∞	0.2	288		0	17	3.5	0
13098	5	9/3/96	14906336ACA2	21	27		65	16	3.8	7	0.2	300		0	16	0	0.2
13098	5	9/4/01	14906336ACA2	21	27		69	17	4	8.5	0.2	296		0	17	0	0.1
13098	5	9/12/06	14906336ACA2	21	27		71.6	16.7	4.47	6.5	0.179	307	$\overline{\vee}$	1	12.8	1.72	<0.09
13098	5	9/12/06	14906336ACA2	21	27		72	17.3	4.22	6.5	0.176	306	$\overline{\lor}$	1	12.7	1.76	<0.0>
13099	13	8/24/93	14906335BCBA1	39.5	43.5	6.5	83	30	5.7	40	0.1	385		0 1	100	7.8	1.5
13099	13	90/9/6	14906335BCBA1	39.5	43.5		90.8	30.8	3.93	20.4	0.127	376	$\overline{\lor}$	8	81.1	5.59	<0.09
13100	13	8/24/93	14906335BCBA2	23	28	26	84	27	4.7	19	0.2	364		0	60	7.7	6.0
13100	13	90/9/6	14906335BCBA2	23	28		88.7	27.9	4.1	16.4	0.126	367	$\overline{\vee}$	6	68.6	5.6	<0.0>
13101	9	10/22/92	14906325CDC1	110	115	25	94	19	13	120	0.4	250		0	300	46	2.2
13101	9	9/2/6	14906325CDC1	110	115		91	19	11	120	0.4	246		0 3	310	43	5
13101	9	9/5/01	14906325CDC1	110	115		94	19	12	120	0.3	245		0 3	300	48	0.2
13101	9	9/11/06	14906325CDC2	110	115		96.6	18.5	10.3	116	0.354	242	<1	3	321	54.7	

Table	11 (c	ont.). C	Table 11 (cont.). General cations		l anions	s for v	vater sa	and anions for water samples from the WS-2 well set, CGS	om the V	VS-2 w	ell set,	CGS.				
				Top_ Screen	Bottom_ Screen	Silica	Calcium	Magnesium	Potassium	Sodium	Fluoride	Bicarbonate	Carbonate	Sulfate	Chloride	Nitrate
	Site							0								
Well No.	No.		Location	Feet	Feet	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
13102	9	10/22/92	14906325CDC2	25	30	25	<i>LL</i>	25	4.3	11	0.2	359	0	22	3.1	0.1
13102	9	9/2/96	14906325CDC2	25	30		75	24	4.3	10	0.2	366	0	23	1.2	0.1
13102	9	9/5/01	14906325CDC2	25	30		84	27	4.5	12	0.2	398	0	28	4.5	0.1
13102	9	9/11/06	14906325CDC1	25	30		86.1	25.4	4.59	10.3	0.187	383	$\overline{\vee}$	24.3	3.44	0.09
13103	Ч	10/21/92	14906228CCC1	139	144	25	32	∞	8.8	180	0.3	482	0	130	6.1	2.9
13103	1	9/2/6	14906228CCC1	139	144		34	8	7.4	180	0.3	481	0	130		0.3
13103	Ч	9/4/01	14906228CCC1	139	144		35	8	7.1	180	0.4	480	0	130		0.2
13103	Ч	9/12/06	14906228CCC1	139	144		37.6	8.3	6.87	164	0.316	464	$\overline{\vee}$	128	3.49	0.09
13104	-	10/21/92	14906228CCC2	56	61	30	78	20	10	27	0.2	372	0	49	3.5	4.3
13104	-	9/2/6	14906228CCC2	56	61		76	19	9.7	25	0.2	376	0	45	0.3	0.2
13104	1	9/4/01	14906228CCC2	56	61		78	20	10	27	0.2	380	0	47	0	0.3
13104	-	9/12/06	14906228CCC2	56	61		77.5	18.3	9.53	22.3	0.212	348	$\overline{\vee}$	42.2	1.66	0.35
13105	2	10/21/92	14906229DAD	50	55	33	88	24	7.3	12	0.2	365	0	54		2
13105	7	9/4/96	14906229DAD	50	55		84	22	7.8	11	0.2	368	0	49	0.2	0.2
13105	7	9/4/01	14906229DAD	50	55		88	23	8	12	0.2	370	0	51	0	0.1
13105	7	9/12/06	14906229DAD	50	55		06	22.2	8.23	10.6	0.221	362	$\overline{\vee}$	47.8	1.73	<0.0>

I

RESULTS FOR 2006 SAMPLING AND ASSESSMENT

General Chemistry and Trace Elements in CGS Ground Water

Two well sets were constructed on the CGS facility. The first well set, labeled WS-1, was constructed using solvent-weld glue, and suitable for water samples used to determine general chemistry and some trace elements. The second well set, labeled WS-2, was designed specifically to target CGS land uses, including munitions and explosives residues, herbicides, insecticides, and petroleum product residues. Both well sets are described in the METHODS section of this report.

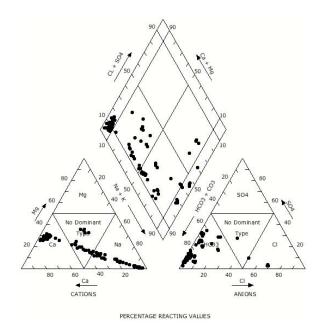


Figure 6. Piper diagram showing cation and anion distributions of the WS-1 wells.

General Chemistry in WS-1 and WS-2 Wells

Well parameters and general chemistry for the WS-1 wells are on Tables 8 and 9, respectively. Well parameters and general chemistry for the WS-2 wells are on Tables 10 and 11, respectively. Water from all wells of both the WS-1 (Fig. 6) and WS-2 (Fig. 7) well sets is predominantly of calcium and sodium bicarbonate types, with some percentage gradation between the two dominant cations. There are a few exceptions with respect to anion chemistry. Well 12021A of the WS-1 set is chloridic. It is located near a

wetland near the northern border of the CGS lands and is screened at 96 to 101 feet bls. This well contains the only predominantly chloridic water identified in CGS wells. Well 12021A is screened only 23 feet above the Pierre shale (at 124 feet). Its chemistry is likely controlled by diffusion from the pore-water of the shale, enhanced somewhat by evaporative draw from the overlying wetland. Another exceptional water source is Well 13101 of the WS-2 well set. This well is the deepest (110 to 115 feet screened interval) of the well nest placed at Site 6, in a wetland near the southeast shore of Lake Coe. Its chemistry is predominantly of the calcium-sodium sulfate type.

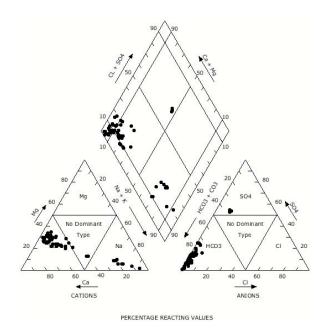


Figure 7. Piper diagram showing cation and anion distributions of the WS-2 wells.

Nitrate in WS-1 and WS-2 Wells

The EPA-MCL for nitrate (as NO_3^{-}) is 44 mg/L (or 10 mg/L for nitrate as N). One survey (Burkhardt and Kolpin, 1993) has indicated that ground-water unaffected by human activities usually has concentrations less than 13 mg/L (3 mg/L as N). For this report all concentrations will be reported as nitrate (NO_3^{-}) rather than nitrate-N.

Nitrate-N above the EPA-MCL has been reported to vary from 0 to 25% of reported drinking-water wells in surveys conducted in the Northern Great Plains of the United States and Canada (Harker and others, 1997). These percentages have been

confirmed in annual reports of the North Dakota Department of Health during the 1990s (Bartelson, 1993-2006). Nitrate is frequently found to be stratified in North Dakota aquifers, with high concentrations near the surface and low concentrations within a few feet of the surface (Mayer 1992, Korom and others 2005, Casey and others 2002, Schuh and others 1997, Schuh and others 2006). This has been found to occur under numerous agricultural systems, including numerous irrigated crops, dryland hay, wheat and soybeans, and hay and pasture systems (which have little applied N, but often leguminous plants which fix nitrogen, and, in the case of pastures, animal manure.) Summer fallow has also found to be a common source of nitrate-N (Bauder and others, 1993).

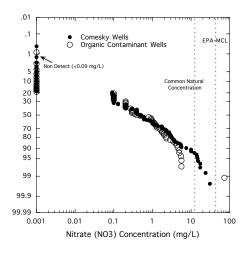


Figure 8. Probability distribution of nitrate concentrations in WS-1 and WS-2 wells from 1987 through 2006.

By contrast, nitrate concentrations for both the WS-1 (Table 9) and the WS-2 (Table 11) wells are low. The distribution of nitrate-N in well-water samples is shown on Figure 8. Results are for all samples collected from 1987 through 2006. Thirty (30) % of the samples are non detects, 70% are less than 1 mg/L, all of the WS-2 and 95% of the WS-1 well samples are below the common natural background concentration of 13 mg/L, and all but one measurement are below the EPA-MCL.

The single sample above the EPA-MCL (73.9 mg/L. Table 11) is for the shallow well (SI 7 to 12 feet) at the Pinkerton Farm site (Site 12 of WS-1). This site is located in a pasture near a wetland. During almost all sampling events the pasture was being actively grazed and manure deposits were common near the wells. The source of the nitrate was most likely cattle manure and urine, although nitrate could also be released from soil organic matter during periods of wetland recession, which would increase local

aeration and cause mineralization of the carbon-nitrogen pool. The deeper well in the same nest indicated no nitrate detections in 2006.

Although the measured concentration was almost double the EPA-MCL, similar stratified concentrations in shallow wells are common under almost all agricultural uses including pasture and summer fallow. A shallow stratified concentration does not indicate that the aquifer is contaminated, and should not in itself be of concern from the standpoint of land management.

Wells of the WS-1 set having highest nitrate concentrations (Table 9) include 12019C (SI 7 to 12 feet bls) which initially was 3.4 mg/L, increased to 24 mg/L, and then declined to 14.7 mg/L. Similar to the Site 12 well discussed above, these detections were in a shallow well in a pasture near a wetland. Well 12014D had a maximum concentration of 15 mg/L. This well was screened near the water table (SI 24 to 29 feet bls) near a cattle loading dock, and adjacent to a wetland. Finally, slightly elevated nitrate concentrations were measured at Well 12026B. The well was screened near the water table (SI 24 to 29 feet bls) in a pasture.

The temporal distribution of nitrate concentrations is also important. Most wells, including deep wells, began with low but detectable concentrations shortly after drilling and then gradually declined. The cause of early detections was most likely the introduction of nitrate and organic matter during the process of drilling, which requires the circulation of drilling fluid, and therefore tends to carry with it organic materials from near the surface. The gradual decline in nitrate would occur through dilution, and frequently through denitrification, either using introduced organic matter or reduced iron or sulfide as an electron donor (Korom and others 2005). The detectable concentrations in the distribution shown on Figure 8 are disproportionately higher for early sample times than they are for the most recent samplings (Tables 9 and 11). More recent nitrate concentrations tend to be lower than initial measured values.

In conclusion, nitrate concentrations in ground water of the CGS facility are generally low. Where they are slightly elevated, it is almost always under active pasture, and it is usually near a wetland. Sources are most likely cattle manure and urine. While comparatively high locally, these detections are all below levels of toxicological concern and within levels common to good management, and should not be of concern from a management or regulatory standpoint. Overall nitrate concentrations are lower now than they were at early times following the drilling of the wells. Nitrate from topsoil was likely introduced during drilling, and is gradually being cleared from the deeper wells through denitrification and diffusion. There is no evidence of a ground-water nitrate problem caused by CGS use or land management practices. Minor and Trace Element Concentrations in WS-1 and WS-2 Wells

Results for minor and trace elements for WS-1 and WS-2 wells are shown on Tables 12 and 13 (pp 55 to 61). Minor and trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), Lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickle (Ni), Selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), and zinc (Zn). Of these, barium and lead might be expected to affect ground water as residues of munitions and explosives training on the firing and demolition ranges. Other metals, used as alloys, might be detected from microscopic shavings of metals in lubricating oils improperly disposed of, or through accidents.

For both well sets, none of the trace elements, with the exception of arsenic (discussed separately) were detected at concentrations of toxicological concern, or displayed trends of increasing concentrations. Lead and mercury concentrations, specifically, were below detection levels in almost all samples.

These data indicate that current CGS management practices are adequately protecting ground and surface waters. There are management factors, however, that could change this. Because of the sensitivity of many trace elements to pH with respect to mobilization, particular care should be taken to avoid practices that radically increase or decrease pH. Lead, for example, would tend to become more mobile at a lower pH. Acidification of soil in the firing range areas could be caused by additions of large quantities of ammonium fertilizer or urea, or through addition of elemental sulfur. While there is no reason to believe that these materials would be added, there should be a general awareness of the importance of maintaining the soil and geo-chemical stability of the environment in which potentially toxic trace elements are heavily used.

Arsenic Concentrations in CGS Waters

Camp Grafton (South Unit) is located within what Erickson and Barnes (2005a,b) call the "footprint" of the Northwest Provenance of the late Wisconsinan glacial drift. Erickson and Barnes (2005a) have shown that public water supplies within this "footprint" have a higher (greater than 12%) incidence of arsenic concentrations above the U.S. Environmental Protection Agency (USEPA) Maximum allowable Contaminant Level (MCL) of 10 μ g/L, compared with about 2.5% for public water supplies tested outside of the footprint. Arsenic concentrations are highly variable in CGS ground water and surface waters, and range from about 2 μ g/L to as high as 70 μ g/L. They vary spatially (both depth and location) and temporally, decreasing or increasing on some measurements sites. Highest concentrations have been in Lake Coe (exceeding 20 μ g/L), South Washington Lake (as high as 70 μ g/L), and in the wells of Sites 1 and 2 (well set WS-2) east of the GCEM ranges, in the Colvin Creek watershed.

Arsenic is near sulfur on the periodic table, and is among the oxyanion forming elements (including As, Se, Sb, Mo, V, Cr, U, and Re) (Smedley and Kinniburgh 2002). It is reduced at an oxidation-reduction state slightly above sulfur, but below iron and manganese. Reduced arsenic is present in many of the high-organic Cretaceous shales common to the northern Great Plains, particularly those containing pyrite, where it is found in arseno-pyrite. Background arsenic concentrations in glacial soils formed through weathering and oxidation of shale detritus from Wisconsinan till have been reviewed by Erickson and Barnes (2005a), and have been found to be in the range of about 2 to $10 \mu g/L$.

Several environmental and geochemical factors control, and ultimately, affect the mobility of arsenic. These include (1) pH, (2) oxidation state, (3) the presence of iron, manganese, and other metal-oxide minerals, and (4) the presence of carbonate, phosphate, and silicate anions. When reduced arsenic-containing minerals are exposed and oxidized they release arsenic into solution as oxides of As(III) (reduced) and As(V) (oxidized). As(V) is most common in field oxidation states, and its most common oxyanion (arsenate) strongly adsorbs on the surface of iron oxides. Thus, although oxidation may release arsenic from its mineral reservoir in weathered shales and glacial drift, it also tends to release and oxidize iron. This, in turn, removes arsenic from solution. When reducing conditions occur (reducing environments are common in buried sediments or till containing organic matter or minerals containing reduced sulfur) iron and manganese oxides reduce and mobilize, removing adsorption surfaces and releasing arsenic into solution.

At high pH values (greater than 8.5) arsenic desorbs from iron-oxide surfaces. Smedly and Kinniburgh (2002) have stated that "Desorption at high pH is the most likely mechanism for the development of groundwater-As problems under oxidizing conditions and would account for the observed positive correlation of As concentrations with increasing pH." Competition for sorption surfaces from other strongly sorbed anions, including carbonate, phosphate and silicate ions, can also enhance the release of arsenate into solution.

Conditions cited for high-arsenic environments include ground-water sources formed in fluvial deltaic environments which have substantial organic matter, contributing to reducing conditions, and/or high pH conditions, and/or competing anions, and slow ground-water movement which delays flushing of mobilized arsenic from porewater.

The Cherry Lake aquifer is a glacio-fluvial deposit, and the littoral areas of CGS would tend to have substantial organic matter. It also directly overlies a high-organic Cretaceous shale of the Pierre Formation. Some members of the Pierre Formation have reduced sulfur in the form of pyrite (Schuh and others 2006), and have been shown to

contain arsenic as well. While reducing conditions likely occur within the some strata of the Cherry-Lake aquifer, the relatively short time of deposition and weathering (less than 15 thousand years since deposition) and the rate of movement of water through the aquifer are likely sufficient to prevent the dangerously large concentrations found in some parts of the world. Concentrations are, nonetheless, substantial in some parts of the aquifer.

Well No.	Location	Top_ Screen	Bottom_	Date Sampled	в	Fe	Mn	Se	Pb	Hg	As	Li	Mo	Sr	Cd ,	Al Be	e Cr	ïZ	Cu	Ba	Zn	Cd	Ag	\mathbf{Sb}	П
					mg/L	mg/L	mg/L	µg/L	µg/L	μg/L	μg/L	µg/L µ	μg/L μ	μg/L μ	µg/Г µ.	μg/L μg/L	.T μg/L	L µg/L	J'gn	, μg/L	, µg/L	µg/L	µg/L	μg/L	µg/L
12011B	14906335ABBD2	45	50	9/1/87	0.3	0.76	0.29	0	0	0	22	79		410											
12011B	14906335ABBD2	45	50	10/24/91	0.24	0.37	0.34	0	0	0.1	16	80	4	450						47	6	0.1			
12011B	14906335ABBD2	45	50	9/10/96		1.2	0.29	0	0	0	20	80		460						4					
12011B	14906335ABBD2	45	50	9/6/01		-	0.27	3	2	0	24	100	4	470						100					
12011B	14906335ABBD2	45	50	9/9/6	0.299	1.03	0.241	$\overline{\vee}$	$\overline{\vee}$		25.9				V	<50 <1	~	4.15	5 1.35	5 42.9) 13		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
12012	14906327DDDC1	164	169	90/9/6	0.396	<0.01	1.09	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$				V	<50 <1	~	4.45	5 1.28	8 26.6	5 19.8		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
12013B	14906336BBDA2	22	27	9/1/87	0.23	0.01	0.11	0	0	0	20	48		380											
12013B	14906336BBDA2	22	27	10/24/91	0.19	0.01	0.34	0	0	0.1	12			400						62	6	0.1			
12013B	14906336BBDA2	22	27	9/11/96		0.03	0.36	0	0	0	22		10	360						46					
12013B	14906336BBDA2	22	27	9/9/6	0.25	0.051	0.392	$\overline{\vee}$	$\overline{\vee}$		22.6				V	<50 <1	1	6.01	1 1.2	72.5	5 7.17		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
12014B	14906336AACB2	181	186	9/2/87	0.5	0.03	1.1	-	0	0	-	120	6	480											
12014B	14906336AACB2	181	186	10/22/91	0.48	0.03	-	0	0	0	-	100	s.	500						62	7	0			
12014B	14906336AACB2	181	186	9/11/96		0.02	1.1	0	0	0	0	110	8	430						77					
12014B	14906336AACB2	181	186	9/2/06	0.577	<0.01	0.94	$\overline{\vee}$	1.58		2.01				∨ ⊽	<50 <1	1 1.23	3 5.2	2.53	3 57.5	31.1		$\overline{\vee}$	$\overline{\vee}$	1.57
12014C	14906336AACB3	64	69	9/2/87	0.06	0.18	0.81	-	0	0.1	13	30		420											
12014C	14906336AACB3	64	69	10/22/91	0.04	0.23	0.61	0	0	0	11	30		460						21	13	0			
12014C	14906336AACB3	64	69	9/11/96		0.37	0.6	0	0	0	8	30	4	370						260					
12014C	14906336AACB3	64	69	9/5/06	0.084	0.358	0.548	$\overline{\vee}$	1.52		12.4			-	∨ ⊽	<50 <1	1 1.26	6 5.72	2 1.46	6 180	46.2		$\overline{\vee}$	$\overline{\vee}$	1.55
12014D	14906336AACB4	24	29	9/2/87	0.03	0.02	0.03	-	0	0		14	с. С	220											
12014D	14906336AACB4	24	29	10/22/91	0.03	0.01	0.02	0	0	0	0	10	_	250						<i>LT</i>	18	0.1			
12014D	14906336AACB4	24	29	9/10/96		0.01	0.02	0	0	0	0	20		220						90					
12014D	14906336AACB4	24	29	9/6/01		0.08	0.04	ю	5	0	2	100	5	220						100					
12014D	14906336AACB4	24	29	9/5/06	0.061	0.013	0.034	$\overline{\vee}$	1.53		$\overline{\vee}$				∨ ⊽	<50 <1	1 1.08	8 5.72	2 1.96	6 92.3	3 15.8		$\overline{\vee}$	$\overline{\vee}$	1.55
12015B	14906231ABBC2	162	167	9/1/87	0.28	0.04	0.27	0	-	0	42			330											
12015B	14906231ABBC2	162	167	10/23/91	0.26	0.02	0.2	0	0	0	1	80	18	390						47	10	0			
12015B	14906231ABBC2	162	167	9/11/96		0.15	0.21	0	0	0	47			320						47					
12015B	14906231ABBC2	162	167	9/2/06	0.326	0.169	0.22	$\overline{\vee}$	\sim		54				<1 <	<50 <1	1 <1	2.55	5 1.16	6 47.9	12.7		\sim	\sim	\sim

ble 1	Table 12 (cont.).	D	Dissolved minor an	ed mi	nor a	Ч	trace element concentrations in the WS-1 well set.	lem	ent co	oncei	ntrati	ions	in th	e WS	S-1 v	vell s	set.									
Well No.	Location	Top_ Screen	Bottom_ Screen	Date_ Sampled	l B	Fe	Mn	Se	Чd	Hg	As	Li	Мо	Sr	Cd	AI	Be	Cr	ż	Cu	Ba	Zn	Cd	Ag Sb	H q	_
					mg/L	mg/L	, mg/L	μg/L	, μg/L	μg/L	hg/L	μg/L	hg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L μ	μg/L μ	μg/L μ	μg/L μg/L	/L µg/L	T
12015C	14906231ABBC3	78	83	10/23/91				0	0		10	20	4	350							160	9	0			
12015C	14906231ABBC3	78	83	9/11/96	5	0.3	0.64	0	0	0	10	20	-	290							120					
12015C	14906231ABBC3	78	83	9/6/01	-	0.08	0.46	ŝ	7	0	Π	100	3	300							120					
12015C	14906231ABBC3	78	83	9/2/06	5 0.052	0.068	8 0.435	5	$\overline{\vee}$		11.2				$\overline{\vee}$	<50	$\overline{\vee}$	$\overline{\vee}$	3.81	$\overline{\vee}$	121 1	15.1		$\overline{\sim}$	1	-
12017A	14906325DBBC1	263	268	9/1/87	7 0.65	0.01	0.24	0	0	0	5	66	200	170												
12017A	14906325DBBC1	263	268	10/24/91					-	0.1	7	100	4	200							26	14	0			
12017A	14906325DBBC1	263	268	9/11/96		0.02	0.28	0	0	0	4	100	20	190							24					
12017A	14906325DBBC1	263	268	9/2/06	5 0.826	5 <0.01	1 0.253	3 1.83	$\overline{\sim}$		4.7				$\overline{\vee}$	<50	$\overline{\vee}$	1.03	1.82	3.45	25.7 7	7.35		$\overline{\sim}$	L	-
12017B	14906325DBBC2	78	83	9/2/87	7 0.55	0.01	0.15	0	0	0	13	87	300	270												
12017B	14906325DBBC2	78	83	10/24/91	1 0.47	0.01	0.11	0	0	0.1	19	80	12	260							38	=	0.4			
12017B	14906325DBBC2	78	83	9/11/96	5	0.15	0.13	0	0	0	25	70	15	270							35					
12017B	14906325DBBC2	78	83	9/2/06	5 0.465	5 0.152	2 0.137	7 <1	$\overline{\vee}$		45.5				$\overline{\vee}$	<50	$\overline{\vee}$	$\overline{\vee}$	1.5	1.63	44.6 7	7.46		\sim	- -	_
12017C	14906325DBBC3	51	56	9/2/87	0.06	0.09	0.5	0	0	0.3	9	21	4	270												
12017C	14906325DBBC3	51	56	10/24/91	1 0.03	0	0.03	0	0	0.1	ę	20	2	260							85	6	0			
12017C	14906325DBBC3	51	56	9/10/96	\$	0.08	0.25	0	0	0	3	20	2	260							120					
12017C	14906325DBBC3	51	56	9/5/06	5 0.065	5 0.077	7 0.423	~	$\overline{\vee}$		6.23				$\overline{\vee}$	<50	$\overline{\vee}$	$\overline{\vee}$	2.78	$\overline{\vee}$	105 7	7.71		⊡ ⊡	□	_
12017D	14906325DBBC4	23	28	9/2/87	7 0.07	1.1	0.93	0	0	0	∞	21	4	290												
12017D	14906325DBBC4	23	28	10/24/91	1 0.04	1.8	0.74	0	0	0.1	7	20	-	320							150	9	0			
12017D	14906325DBBC4	23	28	9/10/96	5	1.8	0.69	0	0	0	ŝ	20	0	300							190					
12017D	14906325DBBC4	23	28	9/6/01	_	2	0.61	ŝ	2	0	9	100	3	280							130					
12017D	14906325DBBC4	23	28	9/2/06	690.0	1.25	0.543	~	$\overline{\vee}$		5.26				$\overline{\vee}$	<50	$\overline{\vee}$	$\overline{\vee}$	3.28	$\overline{\vee}$	127 1	11.6		$\overline{\nabla}$	□	_
12019A	14906323ADBB1	218	223	9/1/87	7 0.15	0.09	0.43	-			5	45	6	400												
12019A	14906323ADBB1	218	223	10/23/91	1 0.14	0.11	0.41	0	0	0	3	50	٢	450							170	5	0.1			
12019A	14906323ADBB1	218	223	9/11/96	\$	0.12	0.42	0	0	0	3	40	4	380							120					
12019A	14906323ADBB1	218	223	90/9/6	5 0.214	t 0.039	9 0.392	7	$\overline{\vee}$		3.77				$\overline{\vee}$	<50	$\overline{\vee}$	$\overline{\vee}$	4.28	5.04	165	129		 	1	-
12019B	14906323ADBB2	32	37	9/1/87	7 0.04	0.21	0.44	1		0.1	ŝ	17	-	230												
12019B	14906323ADBB2	32	37	10/23/91	1 0.05	0.05	0.35	-	-	0.1	7	20	-	260							170	7	0			
12019B	14906323ADBB2	32	37	9/10/96	5	0.25	0.4	0	0	0	0	20	0	250							180					1

With Time Time Discolute Discolute <th>DIC</th> <th>1 auic 12 (cuiil.).</th> <th>ר</th> <th>10221</th> <th>UISSUIVEN IIIIIUI AIIU</th> <th>л 1<u>7</u>1</th> <th></th> <th></th> <th></th> <th>)</th> <th></th>	DIC	1 auic 12 (cuiil.).	ר	10221	UISSUIVEN IIIIIUI AIIU	л 1 <u>7</u> 1)													
model model <th< th=""><th>No.</th><th>Location</th><th>Top_ Screen</th><th>Bottom_ Screen</th><th>Date Sampled</th><th></th><th>Fe</th><th>Mn</th><th>Se</th><th>Pb</th><th>Hg</th><th>As</th><th>Li</th><th>Мо</th><th>Sr</th><th>Cd</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Π</th></th<>	No.	Location	Top_ Screen	Bottom_ Screen	Date Sampled		Fe	Mn	Se	Pb	Hg	As	Li	Мо	Sr	Cd							Π
Observability 1 <						mg/L	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L								
Modelizability 7 12 9003 0 1	Ŋ	14906323ADBB3	7	12	9/1/87	0.05	0.11	0.33	7		0.1	-	8		170								
00003330083 1 0 <th< td=""><td>S</td><td>14906323ADBB3</td><td>7</td><td>12</td><td>10/23/91</td><td>0.03</td><td>0</td><td>0.05</td><td>3</td><td>1</td><td>0.1</td><td>-</td><td>7</td><td>1</td><td>190</td><td></td><td></td><td></td><td>S</td><td></td><td></td><td>_</td><td></td></th<>	S	14906323ADBB3	7	12	10/23/91	0.03	0	0.05	3	1	0.1	-	7	1	190				S			_	
000633A0BB37129000<	ç	14906323ADBB3	7	12	9/10/96		1.7	1.3	-	0	0	0	10	0	200				-	60			
000633AD1083 7 12 9066 0066 026 03 03	ç	14906323ADBB3	7	12	9/6/01		0.84	0.45	3	7	0	7	100	3	180					30			
Holicitation 12 17 108 13	S	14906323ADBB3	7	12	9/9/6	0.061	-	0.289	1.54	$\overline{\vee}$		$\overline{\vee}$					<50					$\overline{\vee}$	$\overline{\vee}$
906314DACD1 212 0123 2 010 01 0	Ā	14906314DACD1	212	217	9/1/87	3.4	0.03	0.39		-		4	180	~	280								
Jonglathaction 212 217 9106 212 210 010 017 22 23 43<	V(14906314DACD1	212	217	10/23/91	2	0.02	0.16	0	0	0	9	140	9	230				1			_	
900614DACD1 21 7 956 20 01 12 23 406 18 21 70 18 345 41 1 900614DACD2 15 16 01/3 1 01 02 1 <td>V(</td> <td>14906314DACD1</td> <td>212</td> <td>217</td> <td>9/11/96</td> <td></td> <td>0.01</td> <td>0.17</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>130</td> <td>47</td> <td>190</td> <td></td> <td></td> <td></td> <td>1</td> <td>2</td> <td></td> <td></td> <td></td>	V(14906314DACD1	212	217	9/11/96		0.01	0.17	0	0	0	9	130	47	190				1	2			
90611DACD2 13 013 11 010 02 1 1 0 02 1 1 0 02 1 2 2 2 2 1 490611DACD2 15 105 013 13 02 017 0 0 4 10 0 90 20 <t< td=""><td>¥(</td><td>14906314DACD1</td><td>212</td><td>217</td><td>9/2/06</td><td>2.22</td><td><0.01</td><td>0.172</td><td>2.52</td><td>$\overline{\vee}$</td><td></td><td>9.33</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ŝ</td><td>$\overline{\vee}$</td><td>$\overline{\vee}$</td></t<>	¥(14906314DACD1	212	217	9/2/06	2.22	<0.01	0.172	2.52	$\overline{\vee}$		9.33									ŝ	$\overline{\vee}$	$\overline{\vee}$
190614DACD 11 15 023 13 02 01 01 0 0 10	B	14906314DACD2	151	156	9/1/87	1.1	0.01	0.22	-	1		4	120	200	160								
190631DACD2 15 911.96 011.96 018 01 012 013	В	14906314DACD2	151	156	10/23/91	1.3	0.02	0.17	0	0	0	4	110	10	190				7			_	
1906314DACD2 15 9506 147 011 017 12 480 13 246 145 134 <th<< td=""><td>в</td><td>14906314DACD2</td><td>151</td><td>156</td><td>9/11/6</td><td></td><td>0.05</td><td>0.18</td><td>0</td><td>0</td><td>0</td><td>4</td><td>110</td><td>69</td><td>170</td><td></td><td></td><td></td><td>7</td><td>0</td><td></td><td></td><td></td></th<<>	в	14906314DACD2	151	156	9/11/6		0.05	0.18	0	0	0	4	110	69	170				7	0			
14006314DACD3 38 43 9/187 0.06 0.01 0.06 0.01 0.06 0.01 0.06 0.01 0.06 0.01 0.02 2 2 9 14006314DACD3 38 43 10/2391 0.05 0.08 0.07 2 0 1 230 4 230 4 230 4 230 4 230 4 330 4 330 4 330 4 330 4 330 4 330 4 330 4 330 4 330 4 330 4 2 2 0 1 1 0 1 4 2 2 0 1 1 1 1 1 1 1 1 1 2 1	В	14906314DACD2	151	156	9/2/06	1.47	0.011	0.174	$\overline{\vee}$	$\overline{\vee}$		4.89									4	$\overline{\nabla}$	$\overline{\vee}$
14906314DACD3 38 43 002391 007 07 0 0 6 3 3 3 4 102 0 10	ç	14906314DACD3	38	43	9/1/87	0.06	0.01	0.06				14	29	5	290								
14906314DACD3 38 43 9/10% 009 0.07 2 0 1 100 4 280 91 14906314DACD3 38 43 9/601 0.07 0.07 6 2 0 11 100 4 280 100 14906313BAAB1 96 101 9/187 12 0.02 6 2 0 1 100 100 14906313BAAB1 96 101 9/187 12 0.02 0.22 0 0 1 20 5 349 <1	J	14906314DACD3	38	43	10/23/91	0.05	0.08	0.07	0	0	0	8	30	4	330				×			-	
14906314DACD3 38 43 9601 002 002 602 6 2 0 1 100 100 14906314DACD3 38 43 9/506 007 601 0041 3.79 <1	U	14906314DACD3	38	43	9/10/96		0.09	0.07	2	0	0	9	30	7	280				6	-			
14906313BAABI 36 10 9/187 12 00.1 0.041 3.79 <1 9.84 <1 50 <1 73.8 3.49 <1 <1 <1 14906313BAABI 96 101 9/187 12 0.02 0.22 0 0 12 41 6 10 239 15 0.1 19 14906313BAABI 96 101 9/1/96 0.3 0.44 4 0 25 250 18 980 16 160 16 160 16 160 16 160 160 16	C	14906314DACD3	38	43	9/6/01		0.02	0.02	9	7	0	11	100	4	280				Ξ	00			
14906313BAABI 96 101 9/187 12 0.02 0.22 0 0 1 24 160 16 510 14906313BAABI 96 101 10/2391 24 0.03 0.44 4 0 0 25 230 18 980 14906313BAABI 96 101 9/196 0.43 0.42 0 0 25 230 18 980 14906313BAABI 96 101 9/106 0.35 0.42 0 0 36 240 19 890 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 140 160	C	14906314DACD3	38	43	9/2/06	0.079		0.041	3.79	$\overline{\vee}$		9.84					<50				61	$\overline{\nabla}$	$\overline{\vee}$
14906313BAAB1 96 101 1023/91 24 0.03 0.44 4 0 0 25 250 18 980 230 15 0.1 14906313BAAB1 96 101 9/1/96 0.43 0.42 0 0 36 240 19 890 160 17 160 170 101 <	¥	14906313BAAB1	96	101	9/1/87	1.2	0.02	0.22	0	0	0.1	24	160	16	510								
14906313BAAB1 96 101 9/11/96 0.43 0.42 0 36 240 19 890 160 14906313BAAB1 96 101 9/601 0.05 0.39 16 2 0 38 240 15 960 170 14906313BAAB1 96 101 9/601 0.05 0.34 24.7 <1	A	14906313BAAB1	96	101	10/23/91	2.4	0.03	0.44	4	0	0	25	250	18	980				5			1	
14906313BAABI 96 101 9/6/01 0.05 0.39 16 2 0 38 240 15 960 170 14906313BAABI 96 101 9/6/06 32 0.705 0.348 24.7 <1	V	14906313BAAB1	96	101	9/11/96		0.43	0.42	0	0	0	36	240	19	890				-	60			
14906313BAABI 96 10 9/6/06 32 0.705 0.348 24.7 <1 49.5 <1 <50 <1 i.47 5.39 13.7 241 22.2 <1 <1 14906373DDDC2 158 163 9/1/87 0.07 0.15 0.24 2 0 0.40 1 <	V	14906313BAAB1	96	101	6/6/01		0.05	0.39	16	2	0	38	240	15	096				-	70			
14906327DDDC2 158 163 9/1/87 0.07 0.15 0.24 2 0 0.1 7 5 0 140 14906327DDDC2 158 163 11/1991 0.31 0.01 1.1 1 0 0 1 80 9 390 14906327DDDC2 158 163 9/11/96 0.02 1.1 0 0 0 1 80 13 320	V	14906313BAAB1	96	101	9/9/6	3.2	0.705	0.348	24.7	$\overline{\vee}$		49.5									7	$\overline{\vee}$	$\overline{\vee}$
14906327DDDC2 158 163 11/19/91 0.31 0.01 1.1 1 0 0 1 80 9 390 14906327DDDC2 158 163 9/11/96 0.02 1.1 0 0 0 1 80 13 320 16	2	14906327DDDC2	158	163	9/1/87	0.07	0.15	0.24	2	0	0.1	7	S	0	140								
14966327DDDC2 158 163 9/11/96 0.02 1.1 0 0 0 1 80 13 320	5	14906327DDDC2	158	163	11/19/91	0.31	0.01	1.1	-	0	0	-	80	6	390				3			4	
	2	14906327DDDC2	158	163	9/11/96		0.02	1.1	0	0	0	1	80	13	320				1	6			

Dissolved minor and trace element concentrations in the WS-1 well set. Table 12 (cont.).

Table 12 (cont.). Dissolved minor and Top_Bottom_Date_	Top_	Dissolv	N	ed mir	nor an		trace element concentrations in the WD-1 Well Set	men			1 4110		niie	~	Me	ill se			1						i
Screen	Screen Sampled B Fe Mn mg/L mg/L mg/L mg/L	Screen Sampled B Fe Mn mg/L mg/L mg/L mg/L	B Fe Mn mg/L mg/L mg/L	Fe Mn mg/L mg/L	Mn mg/L		Se µg/l		Рb µg/L	Нg µg/L	As µg/L	Li N µg/L µ	Мо и Лаци	Sr Cd µg/L µg/L		Al Be µg/L µg/L	e Cr /L μg/L	L μg/L	Cu µg/L	Ba µg/L	Zn µg/L	Cd µg/L	Ag µg/L	Sb µg/L	Tl µg/L
14906336DDBC2 83 88 9/2/87 0.22 0.01 1.4 0	83 88 9/2/87 0.22 0.01 1.4	9/2/87 0.22 0.01 1.4	0.22 0.01 1.4	0.01 1.4	1.4		0		0	0	1	. 89	20 3	340											
83 88	83 88 10/22/91 0.16 0.02 1.3	10/22/91 0.16 0.02 1.3	0.16 0.02 1.3	0.02 1.3	1.3		0	_	0	0	-	09	14 4	400						99	9	0			
83 88 9/11/96 0.01 1.3	83 88 9/11/96 0.01 1.3	9/11/96 0.01 1.3	0.01 1.3	1.3	1.3		Ŭ	0	0	0	-	60	14 3	350						60					
14906336DDBC2 83 88 9/5/06 0.22 <0.01 1.19	83 88 9/5/06 0.22 <0.01 1.19	9/5/06 0.22 <0.01 1.19	0.22 <0.01 1.19	<0.01 1.19	1.19			$\overline{\vee}$	1.53		1.71			$\overline{\vee}$		<50 <1	1 1.17	7 6.03	3 1.2	62.9	13.7		$\overline{\vee}$	$\overline{\vee}$	1.55
14906336DDBC3 46 51 9/2/87 0.08 0.4 0.32	46 51 9/2/87 0.08 0.4	9/2/87 0.08 0.4	0.08 0.4	0.4		0.32		0	0	0	5	23	5	240											
14906336DDBC3 46 51 10/22/91 0.05 0.31 0.3	46 51 10/22/91 0.05 0.31	51 10/22/91 0.05 0.31	0.05 0.31	0.31		0.3		0	0	0	6	30	4	340											
14906336DDBC3 46 51 9/10/96 0.55 0.31	46 51 9/10/96 0.55	51 9/10/96 0.55	0.55			0.31		0	0	0	5	20	1	260						110					
46 51	46 51 9/6/01 0.62	51 9/6/01 0.62	0.62			0.27		З	2	0	4	100	2	240						120					
14906336DDBC3 46 51 9/5/06 0.077 0.531 0.265	46 51 9/5/06 0.077 0.531	51 9/5/06 0.077 0.531	0.077 0.531	0.531		0.265		$\overline{\vee}$	1.53		5.78			$\overline{\vee}$		<50 <1	1 1.05	5 4.07	~	133	6.71		$\overline{\vee}$	$\overline{\vee}$	1.55
14806301CBBC2 151 156 9/2/87 0.27 0.01 0.79	151 156 9/2/87 0.27 0.01	9/2/87 0.27 0.01	0.27 0.01	0.01		0.79		0	0	0	1	84	10 3	330											
14806301CBBC2 151 156 10/23/91 0.3 0.02 0.68	151 156 10/23/91 0.3 0.02	10/23/91 0.3 0.02	0.3 0.02	0.02		0.68		0	0	0	0	90	6 3	380						58	9	0			
14806301CBBC2 151 156 9/11/96 0.04 0.79	151 156 9/11/96 0.04	9/11/96 0.04	0.04			0.79		0	0	0	0	80	10 3	300						59					
14806301CBBC2 151 156 9/5/06 0.348 <0.01 0.677	151 156 <i>9/5/</i> 06 0.348 <0.01	9/5/06 0.348 <0.01	0.348 <0.01	<0.01		0.677		$\overline{\nabla}$	$\overline{\vee}$		1.24			~		<50 <1	1	3.09	1.25	53.9	Ξ		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
14906326DCA 38 43 9/1/87 0.26 0.61 0.34	43 9/1/87 0.26 0.61	9/1/87 0.26 0.61	0.26 0.61	0.61		0.34		0	0	0.1	15	82	6	460											
38 43 1	43 10/24/91 0.21 0.49	10/24/91 0.21 0.49	0.21 0.49	0.49		0.28		0	0	0.1	13	80	3 5	510						51	14	0			
38 43 9/12/96 1.4	43 9/12/96 1.4	43 9/12/96 1.4	1.4			0.31		0	0	0.1	19	80		510						38					
38 43 9/6/01 1.1	43 9/6/01 1.1	43 9/6/01 1.1	1.1	1.1		0.3		ŝ	7	0	19	100	5 5	500											
14906326DCA 38 43 9/6/06 0.313 1.06 0.291	43 9/6/06 0.313 1.06	9/6/06 0.313 1.06	0.313 1.06	1.06		0.291		1.54	$\overline{\vee}$		19			$\overline{\nabla}$		<50 <1		5.82	2.02	52.9	25.4		$\overline{\lor}$	$\overline{\lor}$	$\overline{\vee}$
14906334BBB1 251 256 9/1/87 0.28 0.03 0.68	256 9/1/87 0.28 0.03	9/1/87 0.28 0.03	0.28 0.03	0.03		0.68		0	0	0	5	94	12 3	320											
256 11/19/91 0.2 0.01	256 11/19/91 0.2 0.01	11/19/91 0.2 0.01	0.2 0.01	0.01		0.73		-	0	0	4		_	390						60	24	0.8			
14906334BBB1 251 256 9/12/96 0.07 0.72	256 9/12/96 0.07	9/12/96 0.07	0.07			0.72		0	0	0.1	3	50	9 3	310						36					
14906334BBBI 251 256 9/6/06 0.25 0.039 0.707	256 9/6/06 0.25 0.039	9/6/06 0.25 0.039	0.25 0.039	0.039		0.707		$\overline{\vee}$	$\overline{\vee}$		2.9			$\overline{\vee}$		<50 <1	~	4.05	5 1.31	51.1	30.5		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
14906334BBB2 27 32 9/1/87 0.1 0.01 0.34	32 9/1/87 0.1 0.01	9/1/87 0.1 0.01	0.1 0.01	0.01		0.34		0	0	0	1	30	0 1	170											
14906334BBB2 27 32 10/24/91 0.05 0.01 0.04	32 10/24/91 0.05 0.01	32 10/24/91 0.05 0.01	0.05 0.01	0.01		0.04		2	0	0.1	_	20	0 1	170						39	5	0.1			
27 32 10/22/92 0 0.02	32 10/22/92 0 0.02	32 10/22/92 0 0.02	0 0.02	0.02		0.01																			
27 32 9/12/96 0.01	32 9/12/96 0.01	32 9/12/96 0.01	0.01	0.01		0.33		-	0	0	-	20	0 1	160						33					
14906334BBB2 27 32 9/6/06 0.086 <0.01 0.028	32 9/6/06 0.086 <0.01	9/6/06 0.086 <0.01	0.086 <0.01	<0.01		0.028		2.48	$\overline{\nabla}$		1.55			\sim		<50 <1	1	6.34	[∨	35.8	7.57		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$

	l											
	E	L µg/L	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\nabla}$
	Sb	L µg/L	$\overline{\nabla}$	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
	Ag	, μg/L	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
	Cd	, μg/L	_	~	0	0	0	10		_	-	
	Zn	µg/L	5.81	3.98	2.28		4.72	22.6	5.5	8.51	25.4	3.22
	Ba	µg/L	60.4	86.6	150 160 66.2	170	100	30	94.1	102	93.3	27.3
	Cu	µg/L	1.85	1.32	$\overline{\vee}$		1.8	4.59	3.02	$\overline{\vee}$	1.07	3.71
	Ni	µg/L	1.83	6.22	3.59		7.45	2.28	5.67	5.81	6.87	2.59
	Cr	µg/L	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$	$\overline{\vee}$	1.28	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
	Be	µg/L	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
	R	µg/L	<50	<50	<50	2	<50	<50	<50	<50	<50	<50
. •	Cd	µg/L	0 7	0 7	$\overline{\vee}$		$\overline{\vee}$	0 7	0 7	0 7	0 7	0 7
ll set	Sr	µg/L	250	200	430 350 350	160 110	68	170	280	500	360	340
[we]	Mo	µg/L	9	0	6 7 v	0 0	6	28	7	9	4	17
VS-2	Li	µg/L	70	20	40 40 100	3 0	100	120	10	50	20	110
the V	As	µg/L	1 1.25	2 3.95	7 0 0 7	- 7 -	4 ⊥	10 21.9	2 1.33	51 11.9	6 65.5	14 21.1
s in 1	Hg	µg/L	0	0	0 0 0.1	0 0	0	0	0	0	0	0
tion	Pb	µg/L	0 7	- 7	0 0 0 √	00	0 7	0 7	0 7	0 7	0 ~	0 7
entra	Se	µg/L	0 7	0 1.09	0 0 € 7	00	$\sim \Delta$	0 7	0 1.71	0 7	0 ~	0 7
conce	Mn	mg/L	0.39 0.45	0.04 0.011	1.3 1.3 1.3 0.362	0.37 0.28	0.28	0.07 0.052	0.02 <0.01	0.56 0.42	0.71 0.492	0.28 0.051
nent (Fe	mg/L	0.12 0.103	0.02 <0.01	0.02 0.03 0.09 0.197	0.23 0.47	0.26 0.047	0.04 0.043	0.02 0.032	0.18 0.07	0.04 0.069	0.18 0.04
e elen	В	mg/L	0.22 0.266	0.04 <0.050	0.12 <0.050	0.03	0.126	1.7 1.1	0.05 0.062	0.04 <0.050	0.09 0.106	0.05
d trac	Date Sampled		8/26/93 9/6/06	8/26/93 9/6/06	10/22/92 9/3/96 9/5/01 9/11/06	10/22/92 9/3/96	9/5/01 9/11/06	8/25/93 9/13/06	8/25/93 9/13/06	8/25/93 9/13/06	8/25/93 9/13/06	8/25/93 9/13/06
nor an	Bottom_ Screen		74 74	17 17	102 102 102	23	23 23	100	35 35	100	48 48	110 110
ved mi	Top_ Screen		69	12	97 97 97	18	18 18	95 95	30 30	95 95	43 43	105 105
Dissolved minor and trace element concentrations in the WS-2 well set.	Location		14806302BABC1 14806302BABC1	14806302BABC2 14806302BABC2	14806302ACA1 14806302ACA1 14806302ACA1 14806302ACA1	14806302ACA2 14806302ACA2 14806302ACA2	14806302ACA2 14806302ACA2	14906313DAA1 14906313DAA1	14906313DAA2 14906313DAA2	14906219DBD1 14906219DBD1	14906219DBD3 14906219DBD3	14906312CAC1 14906312CAC1
13.	e t = S		12	12 12	~ ~ ~ ~ ~	\sim	~ ~	6 6	6 6	∞ ∞	∞ ∞	10
Table 13.	Well No.		13084 13084	13085 13085	13086 13086 13086 13086	13087 13087	13087 13087	13088 13088	13089 13089	13090 13090	13106 13106	13092 13092

10 14906312CAC2 45 50 10 14906312CAC2 45 50 20 14906314AAB 17 22 17 14806304ABA1 39.67 44.67 17 14806304ABA2 25 14906336ACA1 41 5 14906336ACA1 41 48 5 5 14906336ACA2 21 27 27 6 14906335BCBA1 39.5 43.5 27 13 14906335BCBA1 39.5 23 28 13	Date_ Sampled	В	Fe	Mn	Se	Pb	Hg	As	Li	Mo	Sr	Cd	AI I	Be Cr	ī	Cu	Ba	Zn	Cd	Ag	Sb	П
10 14906312CAC2 45 50 10 14906312CAC2 45 50 20 14906314AAB 17 22 5 14906336ACAI 41 48 5 14906336ACAI 21 27 5 14906336ACAI 21 27 5 14906336ACAI 21 27 6 149063356CBAI 39.5 43.5 13 149063356CBAI 39.5 <td< th=""><th></th><th>mg/L</th><th>mg/L</th><th>mg/L</th><th>μg/L</th><th>µg/L</th><th>hg/L</th><th>ug/L</th><th>hg/L</th><th>µg/L µ</th><th>и "Д/Bи</th><th>нg/L н</th><th>иg/L и</th><th>ug/L µg/L</th><th>L µg/L</th><th>J/Bri</th><th>T/Bri</th><th>L µg/L</th><th>J/gri</th><th>hg/L</th><th>hg/L</th><th>µg/L</th></td<>		mg/L	mg/L	mg/L	μg/L	µg/L	hg/L	ug/L	hg/L	µg/L µ	и "Д/Bи	нg/L н	иg/L и	ug/L µg/L	L µg/L	J/Bri	T/Bri	L µg/L	J/gri	hg/L	hg/L	µg/L
20 14906314AAB 17 22 20 14906314AAB 17 22 17 14806304ABA1 39.67 44.67 17 14806304ABA1 39.67 44.67 17 14806304ABA1 39.67 44.67 5 14906336ACA1 41 48 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 23 6 14906335CDC1 110 115 <td>8/25/93 9/13/06</td> <td>0.73</td> <td>0.14 0.23</td> <td>0.48 0.388</td> <td>0 1.4</td> <td>0 7</td> <td>0</td> <td>5 6.94</td> <td>30</td> <td></td> <td>320</td> <td></td> <td></td> <td></td> <td>6.93</td> <td></td> <td></td> <td></td> <td></td> <td>$\overline{\vee}$</td> <td>$\overline{\vee}$</td> <td></td>	8/25/93 9/13/06	0.73	0.14 0.23	0.48 0.388	0 1.4	0 7	0	5 6.94	30		320				6.93					$\overline{\vee}$	$\overline{\vee}$	
17 14806304ABA1 39.67 44.67 17 14806304ABA2 25 30 5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906335ACA2 21 27 6 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 23 28 6 14906335CDC1 110 115	8/25/93 9/6/06	0.06 <0.050	1.9 1.82	0.58 0.502	0 7	0 7	0	3 2.5	20	2	280	0 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{\nabla}$	5.41	~	173	3 4.76	2	$\overline{\vee}$	$\overline{\vee}$	
17 14806304ABA2 25 30 5 14906336ACA1 41 48 5 14906336ACA2 21 27 13 14906336ACA2 21 27 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906335CDC1 110 115 6 14906335CDC1 110 115	8/24/93	0.13	0.41	0.19	0	0	0	20	09	6	430	0										
5 14906336ACAI 41 48 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 6 14906336ACA2 21 27 7 31 14906336ACA2 21 27 7 13 14906336ACA2 21 27 7 31 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 23 28 6 14906335BCBA2 23 23 28 6 149063355CDC1 110 115 6 6 149063355CDC1 110 115 6	8/26/93	0.09	0.43	0.68	0	0	0	4	30	4	250	0										
5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906335ACA2 21 27 5 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906335CDC1 110 115 6 14906325CDC1 110 115	10/22/92	0.13	0.12	0.34	0	0	0	26	40	ۍ 4	10								0			
5 14906336ACA1 41 48 5 14906336ACA1 41 48 5 14906336ACA2 21 27 5 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906335CDC1 110 115	9/3/96		0.19	0.34	0	0	0	20	40		350						130	0				
14906336ACA2 21 27 14906336ACA2 21 27 14906336ACA2 21 27 14906336ACA2 21 27 14906335ACA2 21 27 14906335BCBA1 39.5 43.5 14906335BCBA1 39.5 43.5 14906335BCBA2 23 28 14906335BCBA1 110 115 14906335CDC1 110 115 14906325CDC1 110 115	9/4/01 9/12/06	0.223	0.24	0.3 0.299	3 1.02	√ 7	0	22 19.5	100	5 3	370	V	<50 <	$\overline{\nabla}$	3.99	3.02	100 2 63	3.24	.	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 6 14906336ACA2 21 27 13 14906336ACA2 21 27 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906355CDC1 110 115 6 14906355CDC1 110 115	10/22/92	0.05	0.61	0.66	0	0	0	13	20		20								0			
5 14906336ACA2 21 27 5 14906336ACA2 21 27 5 14906336ACA2 21 27 13 14906335ACA2 21 27 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	9/3/96		0.92	0.61	0	0	0	Ξ	20	2	260						27	~				
5 14906336ACA2 21 27 5 14906336ACA2 21 27 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	9/4/01		0.49	0.71	3	7	0	Ξ	100		60						120	~				
5 14906336ACA2 21 27 13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	9/12/06	0.051	0.592	0.754	$\overline{\vee}$	$\overline{\vee}$		11.3			·	⊽ V	<50 <	2	4.97	7		4 2.5		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
13 14906335BCBA1 39.5 43.5 13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	9/12/06	<0.050	0.997	0.648	$\overline{\vee}$	$\overline{\vee}$		11.5			v	·	<50 <						-	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
13 14906335BCBA1 39.5 43.5 13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335BCBC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	8/24/93	2.3	0.18	0.5	0	0	0	7	40	1 2	280	0										
13 14906335BCBA2 23 28 13 14906335BCBA2 23 28 6 14906335BCBA2 23 28 6 14906335CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115	9/9/6	0.062	0.595	0.481	$\overline{\vee}$	$\overline{\vee}$		4.94			·	v ⊽	<50 <	∠	5.2	1.1	118	8 4.6		$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
13 14906335BCBA2 23 28 6 14906325CDC1 110 115 10	8/24/93	0.08	0.71	0.79	0	0	0	10	20	e G	330	0										
6 14906325CDC1 110 115 10 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6 14906325CDC1 110 115 6	9/9/6	0.065	0.834	0.57	$\overline{\vee}$	$\overline{\vee}$		11.3				V	<50 <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.82	2	104	4 4.65	10	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$
6 14906325CDC1 110 115 6 14906325CDC1 110 115 6	10/22/92	0.47	0.04	1.5	0	0	0	4	130		80								0			
6 14906325CDC1 110 115 6	9/2/96		0.02	1.8	0	0	0	-	120	2	470											
0 ···· 0	9/5/01		0.07	1.8	3	2	0	3	120		540						100	0				
14906325CDC2 110 115	9/11/06	0.622	0.033	1.89	4.27	\sim		2.55			Ŷ	~	<50 <	<1 <1	7.01	1 2.76	6 25.7	7 6.68	~	\sim	\sim	\sim

Dissolved minor and trace element concentrations in the WS-2 well set. Table 13 (cont.).

/ed minor and trace element concentrations in the WS-2 well set.
Dissolved
Table 13 (cont.).

Mo Sr Cd µg/L µg/L µg/L									Date	Π		Bottom	Top Bottom	Top Bottom
101	As Li	Hg	Pb	Se	=	uM 1	Fe Mn	Fe	B Fe	Fe	B Fe	Sampled B Fe	Screen Sampled B Fe	Screen Screen Sampled B Fe
5 380					-	.46		0.27	0.06 0.27	0.27	0.06 0.27	10/22/92 0.06 0.27	30 10/22/92 0.06 0.27	25 30 10/22/92 0.06 0.27
0 300	6 20	0				.42			0.23		0.23	9/5/96 0.23	30 9/5/96 0.23	25 30 9/5/96 0.23
4 350						4			0.31		0.31	9/5/01 0.31	30 9/5/01 0.31	25 30 9/5/01 0.31
$\overline{\vee}$	6.2		$\overline{\vee}$	⊽		4.	351 0.49	0.351	0.07 0.351	0.351	0.07 0.351	9/11/06 0.07 0.351	30 9/11/06 0.07 0.351	25 30 9/11/06 0.07 0.351
21 300			0			5		0.06	0.58 0.06	0.06	0.58 0.06	10/21/92 0.58 0.06	144 10/21/92 0.58 0.06	139 144 10/21/92 0.58 0.06
19 220	4 90		0			9.0		0.06 0.6	0.06		0.06	9/5/96 0.06	144 9/5/96 0.06	139 144 9/5/96 0.06
	6 100	0	2	3		5.	21 0.59	0.21 0.5	0.21		0.21	9/4/01 0.21	144 9/4/01 0.21	139 144 9/4/01 0.21
$\overline{\nabla}$	3.69		$\overline{\vee}$	5		.61	.178 0.618	0.178	0.695 0.178	0.178	0.695 0.178	9/12/06 0.695 0.178	144 9/12/06 0.695 0.178	139 144 9/12/06 0.695 0.178
		0	0	0		0.4		0.3	0.15 0.3	0.3	0.15 0.3	10/21/92 0.15 0.3	61 10/21/92 0.15 0.3	56 61 10/21/92 0.15 0.3
6 440	47 60	0	0	0		č			0.47		0.47	0.47	61 9/4/96 0.47	56 61 9/4/96 0.47
9 470	62 100	0	2	3		37		0.38 0.37	0.38		0.38	9/4/01 0.38	61 9/4/01 0.38	56 61 9/4/01 0.38
~	58.7		$\overline{\vee}$	⊽		.352	321 0.352	0.321	0.139 0.321	0.321	0.139 0.321	9/12/06 0.139 0.321	61 9/12/06 0.139 0.321	56 61 9/12/06 0.139 0.321
	25 40					.52		0.1	0.11 0.1	0.1	0.11 0.1	10/21/92 0.11 0.1	55 10/21/92 0.11 0.1	14906229DAD 50 55 10/21/92 0.11 0.1
3 410		0	0			1.52	.13 0.52		0.13		0.13	9/4/96 0.13	55 9/4/96 0.13	14906229DAD 50 55 9/4/96 0.13
5 430	28 100			3		0.5		0.18 0.5	0.18		0.18	9/4/01 0.18	55 9/4/01 0.18	50 55 9/4/01 0.18
	30.3		$\overline{\vee}$	V		.53	.17 0.538	0.17	0.063 0.17	0.17	0.063 0.17	9/11/06 0.063 0.17	55 9/11/06 0.063 0.17	50 55 9/11/06 0.063 0.17

Arsenic Concentration in WS-1 Wells

Arsenic concentrations are predominantly above 10 mg/L in seven out of 26 wells (27%), and seven sites (one well per site) out of 14 well nest sites (50%). These exceed the average of 12% cited by Erickson and Barnes (2005a) for the Northern Provenance of the Wisconsinan glacial drift. Arsenic concentrations for 1987 through 2006 are shown on Table 12.

Table 14, below, summarizes some of the properties characterizing high-arsenic wells on CGS lands. Generally, they tend to be screened at greater depths which may be an indicator of lower oxidation state, or alternately proximity to the shale. They tend to have a high SAR, which may indicate local acidification from pyrite weathering, or conversely may be caused by proximity to the underlying shale. All but one of the wells had elevated iron concentrations. Soluble iron is usually reduced iron, thus indicating conditions conducive to dissolution of iron oxides. Usually iron concentrations are in the range of hundredths of a part per million. High arsenic ground-water tends to have an order of magnitude higher iron concentration. In some of the cases, temporal trends of increasing arsenic follow trends of increasing iron, further indicating likely loss of sorption surfaces caused by reduction of iron oxides. Dissolved arsenic vs. dissolved ferrous iron trends for five wells are shown on Fig. 9. Arsenic is strongly correlated with only three degrees of freedom.

Table 14. Summary of selected well construction and chemical
parameters in high arsenic wells of the WS-1 well set. (-) not
present; (+) present and moderately expressed; (++) present and
strongly expressed.

Well	SI	>Fe	pН	SAR>1
	Feet			
12011B	45-50	++	8.02-8.45	+
12013B	22-27	-	7.96-7.57	+
12014C	64-69	++	7.41-6.26	-
12015B	162-167	+	6.97-8.44	+
12017B	78-83	+	7.21-8.16	++
12020C	96-101	+	8.03-8.66	++
12025	38-43	++	7.22-7.87	+

Well Site 12025, located at 149-063-26DCA, (SI 38 to 43 feet) exhibits temporal trends indicating possible initial pyrite oxidation; including decreasing pH (7.87 to 7.21), increasing sulfate, rising bicarbonate indicating mobilization of carbonates through acid weathering, and increasing calcium and magnesium - followed by a decrease. The later decrease corresponds to increasing sodium, indicative of possible calcium and magnesium adsorption and release of sodium through cation exchange following oxidation and acid weathering. The increasing EC and TDS are likely caused by the acid weathering processes and cation exchange, as described. Increasing arsenic and iron indicate later reducing conditions, with mobilization of iron (loss of iron oxide surfaces) and release of arsenic from those surfaces. There is a corresponding increase in selenium. The arsenic is above EPA-MCL throughout the measured period. The combined evidence indicates that an initial oxidizing event may have occurred, possibly during drilling, followed by a gradual resumption of reducing conditions.

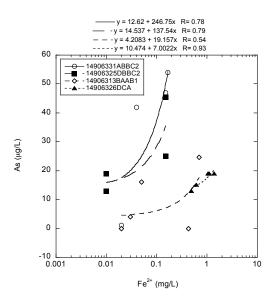


Figure 9. Dissolved arsenic concentration vs. dissolved ferrous iron for selected WS-1 wells.

Well-Site 12017B, located at 149-063-25DBBC, (SI 78 to 83 feet), exhibited increases of both iron and arsenic. While pH decreased, EC, TDS, calcium, sulfate, and sodium also decreased, indicating that local oxidation of pyrite and acid weathering are unlikely causes for arsenic mobilization. Chloride increased slightly, indicating possible influx of solute from the underlying Pierre shale. Nitrate was initially high and then decreased, indicating likely dispersion or denitrification of nitrate contaminants from drilling. While iron reduction requires slightly more reducing conditions than nitrate,

denitrification still supports the likelihood of an oxidation state conducive to the reduction of iron and the subsequent release of sorbed arsenic.

Well Site 12021A, located at 149-063-13BAAB, (SI 96 to 101 feet) exhibited substantial increases in both arsenic and iron. There were large accompanying increases in EC and TDS, but no increased sulfate or bicarbonate. Chloride was the main increasing anion, indicating likely influx from the underlying shale. pH increased to 8.66, high enough to promote arsenic mobilization. Arsenic concentrations are also strongly correlated with dissolved iron, indicating release from iron sorption surfaces as reducing conditions reoccurred after the disturbance of drilling.

Well Site 12011B, located ad 149-063-35ABBD, (SI 45 to 50 feet) exhibited an initial decrease in arsenic followed by an increase. This was accompanied by a small increase and then decrease in calcium; a small increase, and then decrease in bicarbonate; a decrease in pH, and no change in chloride. These trends indicate arsenic trends were likely caused by initial disturbance and oxidation caused by well drilling, followed by eventual resumption of reducing conditions. The is no evidence of bedrock water influence.

Well Site 12013B, located at 149-063-36BBDA, (SI 22 to 27 feet) indicates arsenic and other chemical trends similar to 12011B.

Arsenic Concentrations in WS-2 Wells

Arsenic concentrations from WS-2 wells for 1991 through 2006 are shown on Table 13. Of 22 wells on 12 sites, ten wells (on seven sites) have arsenic concentrations most frequently above 10 μ g/L. Eight of the wells have concentrations above 20 μ g/L at least part of the time. Three of the wells exceeded 50 µg/L. Highest arsenic concentrations were in both of the wells in Buck Hollow (Site 8), the deep well of the engineering training site (Site 9), the deepest wells at North Twin Lake (Site 17, now non-functional), and north of the Demolitions Range (Site 5). East of CGS, in the Colvin Creek subbasin, wells screened at about 50 to 60 feet depths on both Sites 1 and 2 had very high (2 to 5 times the EPA-MCL) arsenic concentrations. Of these wells, six had elevated iron and two had elevated manganese. Several well samples had very high field pH values in 2006. These, however, are suspicious. They were all measured on September 12 and 13; they differ by a large margin from previous measurements; there are no measured carbonates at pH values approaching 9; and they differ by a large margin from lab pH values. Field pH measurements made on these days should be interpreted with care. Overall the strongest correlations appear to be with reduced iron and manganese.

Summary of General and Trace Elements in CGS Wells

In Summary, about 35% of the wells have predominant historical arsenic concentrations above the EPA-MCL. These are high in comparison with predominant concentrations in the Northwest Provenance of the Wisconsinan glacial drift. Sources and processes affecting arsenic appear to vary. The most consistent causes for increasing arsenic appear to be reducing conditions and the mobilization of iron with subsequent loss of sorption sites. In others, elevated arsenic appears to be related to close proximity of the shale. The Colvin Creek subbasin appears to have common high arsenic concentrations in ground water at about 50 to 60 feet bls. Arsenic concentrations in ground-water on CGS are natural, and there is no evidence of increasing arsenic caused by use or management.

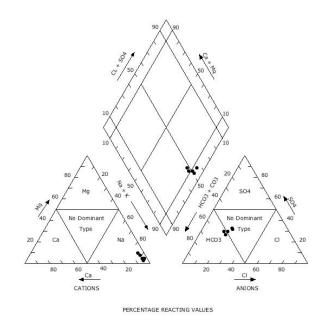


Figure 10. Piper diagram showing cation and anion distributions of Lake Coe.

General Chemistry and Trace Elements in Surface Waters

Five surface water sources have been sampled since 1987. These are: 1. Lake Coe, 2. South Washington Lake, 3. A reservoir west of the Emerson Murray Range, 4. A spring northwest of the Engineering Training Site, and (5) A spring near the livestock loading site south of Hwy 15.

ЕТ	Location Mg/L	Water Body	Longitude	Latitude	Date Sampled	MP El. ft. amsl	Field EC μS/cm	Lab EC μS/cm	Field pH	Lab pH	Field T. °C	TDS Det. mg/L	TDS Calc. mg/L	Hardness mg/L	NCH	ALK	SAR	% Sodium
4	14806231C(CBA)	Reservoir	-98.62314	47.59089	10/22/92	0	331	293	7.25	6.73	10	175	164	130	0		0.1	5
4	14806231C	Reservoir	-98.62314	47.59089	9/4/96	0	224	222		7.32	20.2	155	120	100	0		0.1	4
4	14806231C	Reservoir	-98.62314	47.59089	9/5/01	0	303	315		7.44		190	163	140	0		0.2	7
4	14806231C	Reservoir	-98.62314	47.59089	9/12/06	0	290	299	8.16	7.62			185	131	0	152	0.19	7.5
3	14806302DA	S. Spring	-98.65239	47.66452	9/11/86	0	540	517		8.19	13	344	316	270	12		0.1	4
3	14806302DA	S. Spring	-98.65239	47.66452	10/22/92	0	502	501	6.8	721	6	313	309	260	23		0.2	5
3	14806302DA	S. Spring	-98.65239	47.66452	9/4/96	0	424	499		7.93	13.3	332	287	270	0		0.1	4
3	14806302DA	S. Spring	-98.65239	47.66452	9/5/01	0	469	515		7.8		301	281	270	4		0.2	5
	14806302DA	S. Spring	-98.65239	47.66452	9/12/06	0	483	503	8.13	7.72			312	263	13	250	0.11	3.2
16	14906313BD	N. Spring	-98.66742	47.72489	9/11/86	0	620	607		8.14	14	397	374	300	-		0.4	Ξ
16	14906313BDA	N. Spring	-98.666	47.72583	8/25/93	0	660	643	7.22	7.01	18	404	411	350	0		0.3	8
16	14906313BDA	N. Spring	-98.666	47.72583	9/2/96	0	483	567		7.84	16.3	366	334	290	0		0.3	6
16	14906313BDA	N. Spring	-98.666	47.72583	9/11/01	0	400	393		7.23		213	221	200	0		0.2	~
16	14906313BDA	N. Spring	-98.666	47.72583	9/13/06	0	616	668	8.88	8.02			414	332	0	353	0.43	10.4
Ξ	14906314CA	SW Lake	-98.68882	47.72128	9/11/86	1472	5400	5160		9.71	15	3660	3410	280	0		26	77
Ξ	14906314DBB	SW Lake	-98.68479	47.72215	8/24/93	1472	3720	3430	9.05	9.28	26	2340	2370	190	0		20	75
Ξ	14906314CA	SW Lake	-98.68882	47.72128	9/12/01	1472	1730	1780		8.91		953	1020	260	0		6.2	59
Ξ	14906314CA	SW Lake	-98.68882	47.72128	9/12/06	1472	1809	1860	6	9.05			1150	303	0	637	6.64	65.5
14	14906326DA	Lake Coe	-98.67792	47.69234	9/11/86	1492	0009	5860		9.19	15	4120	3850	200	0		40	87
15	14906327CA	Lake Coe	-98.71004	47.69241	9/11/86	1492	6400	6260		9.31	14	4440	4220	200	0		43	88
14	14906326ADD	Lake Coe	-98.67663	47.69492	8/24/93	1492	3950	4250	9.2	9.33	27	2820	2910	190	0		28	85
15	14906327DDB	Lake Coe	-98.70069	47.68959	8/24/93	1492	6430	6570	9.46	9.48	26	4570	4740	190	0		47	88
14	14906326ADD	Lake Coe	-98.67663	47.69492	9/5/01	1492	2700	3160		9.2		1930	1910	180	0		20	83

Table 15. Chemical parameters for water samples from surface water at CGS.

ble 16. C	Table 16. General cations and anions for water samples from surface water at CGS	ions and	anions f	or water	samples	from su	Irface w	ater at Co	GS.				
Location	1 Water Body	Date Sampled	Calcium mg/L	Magnesium mg/L	Potassium mg/L	Sodium mg/L	Flouride mg/L	Bicarbonate mg/L	Carbonate mg/L	Sulfate mg/L	Chloride mg/L	Nitrate mg/L	Silica mg/L
14806231C	C Reservoir	10/22/92	36	9.5	18	3.5	0.1	182	0	0.8	2.8	0.6	3
14806231C	IC Reservoir	9/4/96	26	8.5	8.8	2	0.1	145	0	2.9	0	0.8	
14806231C	C Reservoir	9/5/01	33	14	11	5	0.1	193	0	4.1	0	0.5	
14806231C	C Reservoir	9/12/06	25.3	16.4	10.8	4.9	0.172	186	$\overline{\vee}$	0.89	2.07	<0.09	
14806302DA	DA S. Spring	9/11/86	72	21	2.2	5.5	0.1	310	0	27	2.6	0	33
14806302DA	DA S. Spring	10/22/92	71	21	4	9	0.2	294	0	34	2.7	0	25
14806302DA	DA S. Spring	9/4/96	74	21	3.5	5.5	0.2	337	0	16	0.3	0.3	
14806302DA		9/5/01	73	21	3	9	0.2	323	0	18	0	0.1	
14806302DA	DA S. Spring	9/12/06	73.4	19.4	2.61	4	0.166	304	$\overline{\vee}$	18.5	0.88	<0.09	
14906313BD	BD N. Spring	9/11/86	79	25	L	17	0.2	365	0	31	4.3	0.3	30
14906313BDA	DA N. Spring	8/25/93	60	30	4.8	15	0.2	428	0	22	2.9	0	34
14906313BDA	DA N. Spring	9/2/96	76	25	6.4	13	0.3	366	0	32	0.9	0.2	
14906313BDA	DA N. Spring	9/11/01	50	17	8.3	8	0.1	271	0	3.3	0	0.2	
14906313BDA	DA N. Spring	9/13/06	86.2	28.2	6.54	17.8	0.264	430	$\overline{\nabla}$	24.1	0.61	<0.09	
14906314CA	CA SW Lake	9/11/86	15	60	280	1000	0.1	737	400	930	360	1	1.4
14906314DBB	DBB SW Lake	8/24/93	20	35	200	630	0.1	778	100	710	260	1.1	32
14906314CA	CA SW Lake	9/12/01	30	45	68	230	0.1	582	50	220	91		
14906314CA	CA SW Lake	9/12/06	24.2	59	87.8	266	0.117	574	100	222	103	<0.09	
14906326DA	A Lake Coe	9/11/86	15	40	160	1300	0.1	1230	200	980	540	-	7.9
14906327CA	A Lake Coe	9/11/86	15	40	180	1400	0.2	1210	300	1100	580	0.1	2.2
14906326ADD	DD Lake Coe	8/24/93	20	33	120	006	0.1	1060	200	730	370	2	9.7
14906327DDB	DB Lake Coe	8/24/93	20	35	200	1500	0.1	1510	400	1200	630	0	9.4
14906326ADD	DD Lake Coe	9/5/01	17	33	81	620	0.2	773	100	470	210	0.1	
14906326ADD	DD Lake Coe	9/12/06	21.4	39.8	72.8	604	0.2	793	121	454	258	<0.09	

s – F	Location	Water	Date Sampled																					
н		Body	-	В	Fe	Mn	Se	Pb	Hg	As	Li	Mo	Sr	Cd A	Al B	Be (Cr Ni	ii Cu	u Ba	I Zn	Ag	g Ag	e Sb	F
				mg/L	mg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L µ	µg/L µg	µg/L µg/L		µg/L µg/L	/L µg/L	L µg/L	L µg/L	L µg/L	. μg/L	-	L µg/L
4	14806231C	Reservoir	10/22/92	0.02	0.12	0.01	0	0	0	2	10	0		0										0.02
4	14806231C	Reservoir	9/4/96		0.09	0.14	0	0	0	4	5	0	110						93					
4	14806231C	Reservoir	9/5/01		0.12	0.25	б	7	0	5	100	2	94											
4	14806231C	Reservoir	9/12/06	<0.050	0.043	0.017	$\overline{\vee}$	$\overline{\vee}$		3.91			¥		<50 <1	1	1 4.26	26 <1	1 51	$\overline{\vee}$	$\overline{\vee}$	1	~	<0.050
ŝ	14806302DA	S. Spring	9/11/86	0.03	0.02	0.04	-	-	010	_	21	-	200											0.03
б	14806302DA	S. Spring	10/22/92	0.03	0.06	0.03	C	0	0	2	20	C		0										0.03
б	14806302DA	S. Spring	9/4/96		0.05	0.29	0	0	0	. –	20		200						82					
3	14806302DA	S. Spring	9/5/01		0.1	0.17	3	7	0.1	7	100		190											
Э	14806302DA	S. Spring	9/12/06	<0.050	0.063	0.151	$\overline{\vee}$	$\overline{\vee}$		1.6				√.	<50 <1	1	1 5.05	05 <1	1 71.1	1 1.41	- -	1	~	<0.050
16	14906313BD	N. Spring	9/11/86	0.06	0.03	0.13	0	_	0.1	7	39	_	320											0.06
16	14906313BDA	N. Spring	8/25/93	0.07	0.09	-	0	0	0	7	40	0		0										0.07
16	14906313BDA	N. Spring	9/2/96		0.04	0.17	0	0	0	ŝ	30		280						16					
16	14906313BDA	N. Spring	9/11/01		0.3	0.43	3	7	0	4	100	7	120											
16	14906313BDA	N. Spring	9/13/06	0.109	0.065	0.154	$\overline{\vee}$	$\overline{\vee}$		3.66				√.	<50 <1		<1 6.68	58 <1	1 97.5	5 1.78	8	~	~	0.109
11	14906314CA	SW Lake	9/11/86	2.7	0.04		7	7	0.2	52	410	_	100											2.
Π	14906314DBB	SW Lake	8/24/93	0.06	0.03	0.01	0	0	0	71	240	4		0										0.06
11	14906314CA	SW Lake	9/12/01		7	0.45	ŝ	320	0	30	120	ŝ	130											
11	14906314CA	SW Lake	9/12/06	0.882	0.049	<0.01	6.31	$\overline{\vee}$		16.7			Ŧ	√.	<50 <1	~	1 2.09	9 433	3 42.1	1 1.46	6 <1	~	~	0.882
14	14906326DA	Lake Coe	9/11/86	3.7	0.14	0.01	6	6	0	17	290	6	200											3.7
15	14906327CA	Lake Coe	9/11/86	4.8	0.18	0.01	7	7	0.2	19	310	7	200											4.8
14	14906326ADD	Lake Coe	8/24/93	3.8	0.05	0.01	0	0	0	10	230	4	180	0										З.
15	14906327DDB	Lake Coe	8/24/93	1.5	0.13	0.01	0	-	0.1	24	320	~		0										Ι.
14	14906326ADD	Lake Coe	9/5/01		0.15	0.03	8	2	0	16	150	5	150											
14	14906326ADD	Lake Coe	9/12/06	2.05	0.074	0.015	11.2	\sim		19.3			×	v V	<50 <1	1 <1	1 2.12	12 8.26	6 62.3	3 1.54	4 <1	1 <1	□	2.05

Table 17. Trace elements for water samples from surface water at CGS.

Lake Coe General Chemistry

The water of Lake Coe is saline (Tables 15 and 16, pp. 65 to 68), having an EC varying from 2,000 uS/cm to 6,400 μ S/cm. The water chemistry of Lake Coe is predominantly of the sodium bicarbonate type (Figure 10, p. 65). Predominant bicarbonate anionic composition is augmented with dissolved sulfate and chloride. Predominant chloride sources in eastern North Dakota groundwater are in the underlying Cretaceous shales, and concentrations generally increase with depth and proximity to shale bedrock. Chloride concentrations in CGS wells are generally low, but increase with depth. Wells near Lake Coe (See Site 6, Table 11) increase in chloride with depth. Chloride sodium from underlying shale are likely concentrated in the lake through evaporation. Sodium adsorption ratios (SAR) are very high.

The pH, usually greater than 9, is high enough to mobilize the carbonate ion. High pH in the lake is likely caused by photosynthesis, which consumes bicarbonate and releases oxygen (Bouwer and Rice 1989, Schuh 1990). The high pH would cause precipitation of calcium and magnesium carbonates. Precipitation would cause cloudy water and sedimentation of carbonates on the lake bottom. In the presence of excess carbonate and bicarbonate ion, this likely accounts for the very low calcium and magnesium concentrations in solution, and their difference from nearby graound waters. All samples and data were collected in summer, and some changes in lake chemistry occur because of seasonal effects on photosynthetic activities. It is possible that some calcium and magnesium carbonate dissolution may occur during winter.

Trends in Lake Coe since 1987 have been toward lower EC and fresher water. EC values have decreased from approx. 6,000 μ S/cm in 1987 to about half in 2006. These have been caused by dilution from increasing runoff and shallow ground-water seepage which resulted from large rains and the generally wet climate period in the 1990s. While sodium concentration has decreased, calcium and magnesium have remained approximately the same. This has caused a decrease in sodium adsorption ration (SAR) from 47 to approx. 18. SAR can decrease due to dilution alone, since the formula:

$$SAR = \frac{\left[Na^{+}\right]}{\sqrt{\frac{\left(\left[Ca^{2+}\right] + \left[Mg^{2+}\right]\right)}{2}}}$$
(1)

causes smaller decreases in the denominator than in the numerator, for a proportional decrease in concentration.

Nitrate Concentrations in Lake Coe

Nitrate concentrations (Table 16) in Lake Coe are low, all below EPA-MCL. Neighboring wells indicate that ground-water sources have little nitrate. Surface-water sources (runoff from manure) are present, but nitrate is likely consumed quickly by aquatic plants and algae.

Trace Elements in Lake Coe

All trace elements, with the exception of arsenic, are low, and below levels of toxicological concern (Table 17). There is no evidence of significant or increasing lead, barium or mercury concentrations from upstream training activities on the munitions and explosives ranges.

Arsenic in Lake Coe

Arsenic concentrations in Lake Coe (Table 17) are relatively high, ranging from 10 to 26 μ g/L, and usually above 16 μ g/L. Two potential causes are discernible. First, ferrous iron concentrations are relatively high (about an order of magnitude higher than in most ground-water samples). This may indicate that iron oxides are being reduced in the lake bottom sediments. This would release adsorbed arsenic. In addition, arsenic is commonly released from iron oxide surfaces at pH values above 8.5 (Smedly and Kinniburgh, 2002). Thus, it is speculated that high organic matter on the lake bottom and high pH resulting from algal photosynthesis may be causing conditions conducive to arsenic release. It may also explain why arsenic is higher in lake water than in surrounding wells. If photosynthetic controls on pH are important factors, then there may be some seasonal variation in arsenic concentrations; i.e. arsenic concentrations may be lower in winter. This, however, has not been tested. Arsenic concentrations in Lake Coe are entirely controlled by natural sources and processes and are not related to camp activities.

Summary of General and Trace Elements in Lake Coe

There is no evidence of degradation in Lake Coe caused by CGS management and activities.

South Washington Lake

South Washington Lake General Chemistry

The water of South Washington Lake is similar to Lake Coe in many respects. It is saline and a sodium bicarbonate type (Figure 11). Electrical conductivities in 1987 were about 5,400 μ S/cm, but freshened considerably to about 1,800 μ S/cm over the next 20 years (Table 15). This was caused by runoff and ground-water seepage during a wet-

climate period which began in 1993. A decrease in SAR, similar to Lake Coe, also occurs. However, a slight increase in calcium and magnesium concentrations may indicate an increased contribution from ground-water seepage from higher ground-water levels. As with Lake Coe, relatively high sodium and chloride are likely caused by proximity to the underlying shale sources, and to evaporative concentration.

pH is high, usually above 9. The pH is high enough to mobilize the carbonate ion. High pH was likely caused by algae through consumption of bicarbonate and release of oxygen during photosynthesis. Precipitation of calcium and magnesium with the carbonate ion likely accounts for the overall relatively low calcium and magnesium concentrations. As with Lake Coe, pH effects would tend to be seasonal and would depend on other factors, such as nutrients, affecting algae. Fluctuations in calcium and magnesium may be influenced by these factors.

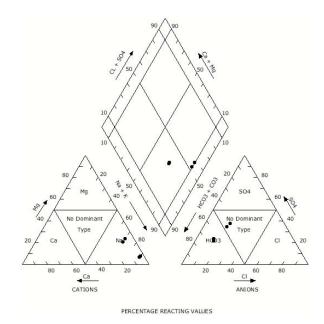


Figure 11. Piper diagram showing cation and anion distributions of South Washington Lake.

Nitrate Concentrations in South Washington Lake

As with Lake Coe, nitrate was low for all measurements (Table 16). This despite evidence of ample cattle manure along the shoreline during the early (1987 to 1993) measurement period. South Washington Lake has much visible algae in mid summer, which likely assimilates nitrogen entering the lake. The algae effect is further indicated by high pH (usually above 9) discussed above.

Trace elements in South Washington Lake

All measured trace elements (Table 17, with the exception of arsenic, are below levels of toxicological concern, and exhibit no indications of changes induced by management.

Arsenic in South Washington Lake

Arsenic concentrations in South Washington Lake were initially among the highest on the CGS facility, measured at 52 μ g/L in 1986 and 71 μ g/L in 1993. They declined throughout the 1990s and were as low as 16.7 μ g/L in 2006 (Table 17). There is no apparent correlation with the iron concentrations or trends. There is some fluctuation, and a general decrease in pH, beginning at 9.71 and ending with 8.91 and 9.05 measurements. The most probable cause of decreasing arsenic is simply dilution with fresher waters during the wet period of the 1990s, with some possible synergistic effect from decreasing pH. Arsenic concentrations appear to fluctuate, and may be expected to increase again during drier climatic periods with evaporative concentration of salts in the lake water.

Summary of General and Trace Elements in South Washington Lake

There is no evidence of degradation in South Washington Lake caused by CGS management and activities.

North and South Springs

North and South Springs General Chemistry

The North Spring is located northwest of the Engineering Training Site. The South Spring is located south of the livestock loading station approx. 1.5 miles south of Hwy 15, near WS-1 Well No. 12024. Exact sample locations varied somewhat, with the first and last being sampled at the stone structure through which the spring flows, and other samples collected in the littoral area around the spring. All water samples are a calcium-bicarbonate type (Table 15, 16). TDS and EC within the range common for well samples, which would be expected (Table 15).

North and South Springs Nitrate Concentrations

Nitrate concentrations are barely detectable (Table 16).

North and South Springs Trace Elements

Trace element concentrations are all below levels of toxicological concern, and exhibit no discernable upward trends (Table 17).

North and South Springs Arsenic

Arsenic concentrations are all below 4 μ g/L, and below EPA-MCL (Table 17).

Summary of General and Trace Elements in North and South Springs

There is no evidence of degradation of the general or trace element chemistry of spring water from natural causes of use and management of the CGS facility.

Reservoir

A reservoir is located west of the GCEM ranges and serves as a cattle watering station.

Reservoir General Chemistry

Water chemistry indicates that it is a mixture of ground water and surface runoff. It is calcium bicarbonatte type, but has about half the conductivity and TDS of nearby ground water (Tables 15 and 16). SAR is very low (Table 15).

Reservoir Nitrate Concentrations

Nitrate, chloride and sulfate are very low (Table 16). There is ample cattle manure around the reservoir, which would serve as a nitrate and sulfate source. Concentrations in the reservoir are likely limited and controlled by aquatic plants and algae.

Reservoir Trace Elements

Trace element concentrations in the reservoir are low (Table 17). The reservoir would be expected to collect runoff from the GCEM ranges, and might serve as a collection basin for trace metals, including lead. No concentration of lead is acceptable for tap water. However, action levels of 15 μ g/L have been set for remediation. In 2001 lead concentrations briefly reached 2 μ g/L. But as of 2006 lead was non-detectable in the reservoir. There are no indications of trace elements at concentrations of concern in the reservoir.

Reservoir Arsenic

Arsenic concentrations have varied from 2 to 5 $\mu g/L$ in the reservoir. These are all below EPA-MCL.

Summary of General and Trace Elements in the Reservoir

There is no evidence of degradation of the general or trace element chemistry of reservoir water from natural causes of use and management of the CGS facility.

Munitions and Explosives Residues

In 2006 munitions and explosives residue analyses were determined for eight wells and two surface-water sources on six sites (Table 18). The wells included: Site 1, west of the GEM ranges; Site 5, in the lowland area west of the GEM ranges and north of the demolitions range; Site 6, in the lowland area between the demolitions range and on the southern edge of Lake Coe, down-gradient of Site 5; and Site 7, in the lowland area due west of the MRF range and south of the demolitions range (Fig. 5). Surface-water sites sampled included: Site 4, the reservoir west of and downslope from the GCEM ranges; and Site 3, the spring southwest of the MRF range and south of the cattle loading station (Fig.5).

There were no detections of any of the target analytes in any of the samples or sample duplicates in the munitions and explosives groups. There was insufficient sample for all determinations on the shallow well of Site 7 (Well 13087), and Method 8260B was not performed on this well. Benzene and toluene, determined using Method 8260B, was duplicated in the speciation of GRO (gasoline range organics). Benzene was detected at $3.3 \mu g/L$ and toluene was detected at $6.6 \mu g/L$.

Table 18. Sample sites, and well and surface-water identifiers for munitions and explosives residue samples. FB = field blank, R = Reservoir, SS = South Spring, SSD = South Spring Duplicate.

Site No.	7	7	5	5	6	6	6	1	1	1	4	3	3
Well No.	13086	13087	13097	13098	13101	13102	13102D	13103	13104	FB	R	SS	SSD
EPA METHOD #													
8260B	+	-	+	+	+	+	-	-	-	+	+	+	+
8270C	+	+	+	+	+	+	+	+	+	+	+	+	+
8330	+	+	+	+	+	+	+	-	-	+	+	+	+
8332	+	+	+	+	+	+	+	-	-	+	+	+	+

The EPA- Maximum Contaminant Level (MCL) for benzene is 5 μ g/L and the MCL for toluene is 1 mg/L (1,000 μ g/L). Benzene is a part of the ring structure of a wide range of organic compounds. Toluene is a major component of many explosives, including DNT and TNT. The detection of these two species in shallow ground-water in proximity to the demolitions range indicates that some small portions of explosives residues are reaching local ground water. The benzene concentration is only slightly below the MCL, which indicates that concentrations are reaching levels of concern. On the other hand, there were no detections of benzene or toluene deeper on the same site,

which indicates that contamination is shallow. Follow-up samples should be collected at this site to see if detections are consistent, or if they were only temporary.

As previously discussed under "trace elements," there is no evidence of elevated lead (from munitions), barium (from barium nitrate), or zinc and cadmium (from flares and other pyrotechnical devices).

Sample results should be sufficiently reliable to ascertain that there is no evidence of substantial concentrations of munitions and explosives residues in ground water of the CGS facility.

Munitions and Explosives Data Quality Control

Munitions and explosives residue samples for all four listed procedures were obtained using "clean-clean" procedures described, were stored in coolers in the field, and were refrigerated at 4° C within two hours of sampling. They were transported overnight on ice, and were refrigerated at 4° C immediately upon being received. Data Chem Laboratory quality control assessment (Appendix C), however, indicated that some of the samples were extracted one to two days after the 7-day holding time. A detailed evaluation of sample handling from receiving to extraction was requested on February 23 (Appendix A-4), and received on March 1 (Appendix A-5). According to Kevin Griffiths of DataChem affected samples were as follows:

"The samples being analyzed for Volatiles by method 8260 were all analyzed within their holding time. The effected methods were SVOC's by 8270, Explosives by 8330 and PETN/NG by 8332. All of the samples were stored in a cooler at 4[°]C and never exceeded the temperature requirement."

In comment, Mr. Griffiths offered that any bias from late extraction would be toward lower concentrations rather than higher, but would not likely be significant for one to two additional days.

I agree with Mr. Griffith's assessment for the following reasons. The primary elements affecting breakdown in a subsurface environment are: (1) the microbial pool, which is generally associated with grain matrix and organic matter or, in the case of autotrophs, mineral species; (2) temperature, which governs rates of chemical and microbial reaction; and (3) the chemical environment, including pH and dissolved nutrients. Removal from the field context should decrease microbial contact. Ambient ground-water temperatures are normally between 10° and 11° C, so that storage at 4° C should slow degradation of organic solute compared with field conditions. Conversely, exposure to light can enhance degradation of some chemicals, but the water is contained in dark (amber) bottles.

Field processes causing contamination would also possibly influence storage effects. Contamination from a previous discrete incident would be dependent on the rate of breakdown and would be more dependent on temperature than on storage time. For reasons explained in the previous paragraph, I would not expect degradation rates in storage to exceed those in the field. Rate controlled contamination caused by ongoing influx exceeding rates of degradation would be affected by time of non replenishment following sampling, as well as the rate of breakdown. The summer of 2006 was dry, and there were no precipitation events in the two weeks preceding sampling. It is unlikely that detections in samples in this environment would result from ongoing replenishment of contaminants.

Well No.	Site No.	SI	GRO	Benzene	Toluene	Ethyl	Xylenes
			(mg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)
13087	7	18-23	< 0.2	3.3	6.8	<1	<3
13088	9	95-100	< 0.2	<1	<1	<1	<3
13089	9	30-35	< 0.2	<1	<1	<1	<3
13089-D	9	30-35	< 0.2	<1	<1	<1	<3
13092	10	105-110	< 0.2	<1	<1	<1	<3
13093	10	45-50	< 0.2	<1	<1	<1	<3
13098	5	21-27	< 0.2	<1	<1	<1	<3
FB	5	21-27	< 0.2	<1	<1	<1	<3
13100	13	23-28	< 0.2	<1	<1	<1	<3
13103	1	139-144	< 0.2	<1	<1	<1	<3
13104	1	56-61	< 0.2	<1	<1	<1	<3
13106	8	43-48	< 0.2	<1	<1	<1	<3
North Spring	16	0	< 0.2	<1	<1	<1	<3
S. Wash. L.	11	0	< 0.2	<1	<1	<1	<3
S. Wash. LD	11	0	< 0.2	<1	<1	<1	<3
Reservoir	4	0	< 0.2	<1	<1	<1	<3
L. Coe	14	0	< 0.2	<1	<1	<1	<3
TB		0	< 0.2	<1	<1	<1	<3

Table 19. Results of water sample analysis for gasoline-range organics (GRO) and BTEX.

Petroleum Residues

Gasoline-range organics (GRO) and BTEX were analyzed for 12 wells on eight well sites, and for three surface-water sites. Use areas selected were the Engineering Training Site (Site 9 and the North Spring), the demolitions range area (Sites 5 and 7), and potential bivouac sites (Sites 8, 10 and 13 and the border of Lake Coe). The reservoir west of the EMR and wells east of the EMR were also sampled. Results are shown on Table 19.

The only detections were the solvents benzene and toluene in the shallow well of Site 7, located near to, and south of, the demolitions range. These solvents were most likely derived from explosives rather than from vehicle petroleum use. They were discussed above under the Munitions and Explosives section.

Well No.	Site No.	SI	2,4-D	Picloram	Bromoxynil	Malathion	Prometone
			$(\mu g/L)$	(µg/L))	(µg/L)	(µg/L)	(µg/L)
13085	12	12-17	<0.3	<0.3	<0.1	-	-
13087	7	18-23	<0.3	<0.3	<0.1	-	-
13089	9	30-35	<0.3	<0.3	<0.1	<0.5	-
13089-D	9	30-35	-	-	-	< 0.5	_
13093	10	45-50	<0.3	<0.3	<0.1	<0.5	-
13094	5	21-27	<0.3	<0.3	<0.1	<0.5	-
13098	5	21-27	-	-	-	-	<0.5
FB			< 0.3	< 0.3	<0.1	<0.5	-
13100	13	23-28	< 0.3	< 0.3	<0.1	_	<0.5
13103	1	139-144	-	-	-	-	<0.5
13104	1	56-61	-	-	-	-	<0.5
13106	8	43-48	<0.3	<0.3	<0.1	<0.5	-
North Spring	16	0	<0.3	2.3	<0.1	< 0.5	< 0.5
S. Wash. L.	11	0	<0.3	<0.3	<0.1	<0.5	<0.5
S. Wash. LD	11	0	<0.3	<0.3	<0.1	<0.5	-
Reservoir	4	0	-	-	-	-	< 0.5
L. Coe	14	0	<0.3	< 0.3	<0.1	-	-

Table 20. Results of water sample analysis for herbicides and insecticides used on CGS.

Pesticide Residues

Pesticides used on the CGS facility include:

(1) Malathion, an insecticide used for mosquito control in bivouac areas;

(2) Bromoxynil, 2,4-D and picloram, herbicides used for broadleaf weed control, and particularly leafy-spurge control; and

(3) Prometone, a broad spectrum herbicide used for killing weeds near buildings and stationary equipment.

Results for the 2006 sampling are on Table 20.

In past samples, the only detections were of picloram, which was detected consistently at concentrations of 0.1 to 0.2 μ g/L in Lake Coe and South Washington Lake during the 1990s. Beginning in the 2001 picloram was no longer detected in either of the Lakes.

In the 2006 sampling picloram was detected in the North Spring sample. There were no detections in Lake Coe or South Washington Lake, or in any of the other surface waters or wells sampled. It is considered likely that the picloram contacted the spring water directly after discharge above ground rather than through infiltration to ground water before discharge. The picloram concentration in the North Spring sample was 1/2,000 of the EPA-MCL of 500 µg/L, and represents no health or regulatory concern.

In 2006 there were no detections of bromoxynil, 2,4-D, malathion or prometone in any of the ground water or surface water samples.

SUMMARY AND CONCLUSIONS

Ground water of the Cherry Lake aquifer and surface water (Lake Coe, South Washington Lake, two springs and a reservoir) on the CGS reservation have been monitored for general chemistry and trace elements since 1986, and for munitions and explosives residues, petroleum residues, and pesticide residues since 1993. Sample analytes have been targeted to specific use areas of CGS. Comprehensive sampling is conducted at five-year intervals.

General chemistry of the CGS reservation is a calcium bicarbonate type with low TDS in shallow well-water and springs. Deeper ground water and lakes are characterized by higher sodium and sulfate and high TDS, likely through the proximity and influence of the underlying Pierre Shale. There is no indication of increasing salinity or other signs of ground-water quality degradation with respect to general chemistry, that could be attributed to CGS use and management.

Nitrate concentrations on the CGS reservation are highest in shallow ground water (less than 100 feet below land surface), and negligible below that depth. Of all ground-water samples tested during the period of measurement, more than 95% of each well set are below concentrations common to "natural" conditions without anthropogenic influence, and all but one sample are below the EPA-MCL. The one high-concentration detection was in a very shallow well, screened at the water table, in a pasture with a lot of cattle and considerable manure on the surface, and near a wetland. A deeper well on the same site had low nitrate, so nitrate was concentrated and stratified near the surface. These data indicate that there is no evidence of ground-water or surface-water deterioration with respect to nitrate at CGS due to management practices, and that measured ground-water concentrations conform to very high standards with respect to nitrate management.

Trace elements, other than arsenic, have been consistently low in ground water and surface water of the CGS reservation. There was one detection of lead at 2 μ g/L in the reservoir west of the GCEM ranges in 2001. No concentration of lead is acceptable for tap water. However, action levels of 15 μ g/L have been set for remediation. In 2001 lead concentrations briefly reached 2 μ g/L. But as of 2006 lead was non detectable in the reservoir. There are no indications of trace elements at concentrations of concern in the reservoir. There have been no indications of ground-water or surface-water degradation with respect to trace elements at CGS. It is cautioned that many trace metals can be mobilized more effectively at lower pH values, and that any management practice that might cause acidification of the soil might enhance mobilization of trace metals. Acidification processes might include addition of large quantities of elemental sulfur, ammonium or urea. It is difficult to conceive of a reason for applying such chemicals, but the caution is given for the sake of awareness.

Arsenic is common in CGS ground water and surface water. More than 20% of CGS ground-water assays have arsenic concentrations above the EPA-MCL. These percentages are approximately double those of the Northwest Provenance glacial drift of which CGS lands are formed. Arsenic sources are natural, and are likely derived from oxidation of arseno-pyrite in the underlying shale, and in the shale-derived glacial materials. Arsenic tends to be higher in deeper wells, and elevated concentrations appear to be associated with reducing conditions and the mobilization or iron, which removes sorption surfaces that normally sequester arsenic. Highest ground-water arsenic concentrations are in the Colvin Creek subbasin, east of the GCEM ranges.

Arsenic in the two lakes (Lake Coe, and South Washington Lake) are high, and generally above the EPA-MCL. High arsenic concentrations in both lakes appear to be affected to a great degree by high pH, which results from algal photosynthesis. Concentrations in Lake Coe fluctuate within a range of 10 to 26 μ g/L, and usually above 16 μ g/L, and may be governed by fluctuating pH. Highest concentrations of all water sources were in South Washington Lake, which peaked at 71 μ g/L in 1993 (7 times the EPA-MCL), but which declined to as low as 16.7 μ g/L in 2006. The decreasing concentrations are systematic and appear to be affected somewhat by pH changes, and also by dilution from ground water following large rains in the 1990s. They may be expected to rise again during drier climatic periods.

High arsenic in CGS reservation waters are all of natural origin, and precede military use of the reservation. High arsenic concentrations are also found in similar settings near, but off of, the reservation. There are no indications of degradation of surface or ground waters with respect to arsenic, caused by management or use of the reservation.

Two management measures have been undertaken in relation to elevated arsenic: (1) CGS has contracted for treated drinking water rather than use of local wells; and (2) CGS has developed procedures, acceptable to the North Dakota Health Department, for disposal of filtrate (containing concentrated arsenic) following water purification training.

Munitions and explosives residues have been detected in small quantities in well water used to monitor the demolitions and munitions ranges. Acetone, methylene chloride and toluene were detected in several water samples in 2001, but it seemed likely that they were introduced by sample contamination, possibly in the laboratory. In 2006 toluene was again detected in one shallow well, indicating its probable occasional presence in shallow ground water. In 2001 carbon disulfide was detected in several ground-water and surface-water samples and seemed authentic. Benzoic acid was detected in the reservoir and in Lake Coe. Di-n-butylphthalate was detected in one well-

water sample (Site 2 in the Colvin Creek subbasin) and in Lake Coe. Except for benzene and toluene, none of these were detected in the 2006 sampling. In 2006 benzene and toluene were detected in one shallow well south of the demolitions range. Detections were below levels of toxicological concern, and were not present in the deeper well at the same site. Because of repeated detections (2001 and 2006), benzene and toluene are likely authentically periodically present at trace concentrations. The repeated presence of benzene and toluene, and the single detection of other explosives residues, indicate that small amounts are reaching ground water. However, all detections were below EPA-MCL, and most were lower by several orders of magnitude. Most were also detected only once. There is, therefore, evidence of munitions and explosives residues reaching ground water and surface waters sporadically and in very small quantities. There is no evidence of a persistent or growing problem that would likely reach levels of toxicological concern.

Petroleum residues as DRO (diesel-range organics) were first detected in 2001 in ground water at the Engineering Training Site (Site 9), in Buck Hollow (Site 8), and in wells northeast of South Washington Lake. Detections were below lab MDL (minimum detection levels) and were therefore considered "qualitative." They were also several thousand times below levels of toxicological concern. DRO were not sampled in 2006. GRO/BTEX samples indicated no detections in all sample events before 2006. In 2006 there were low-level detections of benzene and toluene in one shallow well. These were attributed to demolitions residues rather than to petroleum spills. There have been indications in any of the sample assays that management and use of the CGS reservation is causing deterioration of ground water or surface water through contamination with petroleum products.

Since 1993 pesticide assays have been performed for various herbicides and insecticides. Picloram, 2,4-D and malathion have been assayed in all years. Dimethoate was assayed only in 1993. Chlorpyrifos was assayed in 2001, and bromoxynil and prometone were assayed in 2001 and 2006. There have been no detections of any of the insecticides (malathion, dimethoate, chlorpyrifos) in any of the sample sets. There have been no detections of 2,4-D and prometone in any of the sample sets. Picloram was detected consistently in South Washington Lake and in Lake Coe at barely detectable concentrations (0.1 to 0.2 μ g/L) during the 1993, 1996 and other supplemental samplings during the 1990s. Beginning in 2001 picloram was no longer detectable in the lakes. Again, in 2006 there were no detections. All concentrations during the 1990s contributed to runoff of picloram into the lakes during that time, and that contemporary influx seems to have decreased. There was one low-level (2.3 μ g/L) detection of picloram in the North Spring water sample, collected in 2006. There was likely caused by

local spraying for leafy spurge. In general, as of 2006 there is no indication of degradation of CGS ground water or surface water due to use or management.

CGS land use and management have not caused any substantial degradation of local water resources during the period of operation to date.

CITATIONS

Bartelson, Norene. 1993-2006. North Dakota Groundwater Monitoring Program (series of annual reports.) North Dakota Department of Health, Division of Water Quality. Bismarck, ND.

Bauder, J.W., K.N. Sinclaiar, and R.F. Lund. 1993. Physiographic and land use characteristics associated with nitrate nitrogen in Montana groundwater. J. Environ. Qual. 22:255-262.

Benson, Robert. 2002 (6/24/02). Subject: Citation. E-mail correspondence from: Benson.Bob@epamail.epa.gov. to: William Schuh <bschuh@state.nd.us.

Bluemle, J.P. 1965. Geology and ground water resources of Eddy and Foster counties, North Dakota: part I. geology. Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

Bouwer, H. and R.C. Rice. 1989. Effect of water depth in groundwater recharge basins on infiltration rate. Irrig. Drain. Eng. Am. Soc. Civ. Eng. 115(4):566-568.

Burkart, M.R. and D.W. Kolpin. 1993. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers. J. Environ. Qual. 33:646-656.

Casey, F.X.M., N. Derby, R.E. Knighton, D.D. Steele and E.C. Stegman. 2002. Initiation of irrigation effects on temporal nitrate leaching. Vadose Zone J. 1:300–309.

Comeskey, A.E. 1989. Hydrogeology of Camp Grafton South, Eddy county, North Dakota. North Dakota Ground-Water Studies #8. North Dakota State Water Commission. Bismarck, ND.

Erickson, M.L, Randal J. Barnes. 2005a. Glacial sediment causing regional-scale elevated arsenic in drinking water. Ground Water 43:6:795-805

Erickson, M.L, Randal J. Barnes. 2005b. Well characteristics influencing arsenic concentrations in ground water. Water Research 39:4029-4039.

Harker, D. B., K. Bolton, L. Townley-Smith, and B. Bristol. 1997. Nonpoint agricultural effects on water quality: a review of documented evidence and expert opinion. PFRA, Prairie Resources Division, Sustainable Development Service, Regina, SK, CA.

Korom, S.F., A.J. Schlag, W.M. Schuh and A.K. Schlag. 2005. In situ mesocosms: denitrification in the Elk Valley aquifer. Ground Water Monitoring and Remediation. 25:1:787-89.

Mayer, G.G. 1992. Denitrification in the Elk Valley aquifer, northeastern North Dakota: Ph.D. Dissertation. Department of Geology and Geological Engineering. University of North Dakota. Grand Forks, ND.

Parker, L.V., A.D. Hewitt, and T.F. Jenkins. 1990. Influence of casing materials on trace-level chemicals in well water. Ground Water Monitoring Review. Spring:146-156.

Parker, Louise. 2001a (10/ 31/ 01). Subject: Munitions contaminants. E-mail correspondence from: Louise.V.Parker@erdc.usace.army.mil; to: bschuh@swc.state.nd.us.

Parker, Louise. 2001b (11/1/01). Subject: Munitions contaminants. E-mail correspondence from: Louise.V.Parker@erdc.usace.army.mil; to: bschuh@swc.state.nd.us.

Sax, N.I. and R.J. Lewis, Sr. (Revised by). 1987. "Hawley's condensed chemical dictionary, Eleventh edition, Van Nostrand Reinhold Company, New York.

Schuh, W.M. 1990. Seasonal variation of clogging of an artificial recharge basin in a northern climate. J. Hydrol. 121:193-215.

Schuh, W.M. 1992. Initial proposal for a water quality monitoring program for the North Dakota National Guard Camp Grafton South facility. Unpublished proposal, submitted 4/26 to Captain David Anderson.

Schuh, W.M. 1994. Planning, construction, and initial sampling results for a water quality monitoring program: Camp Grafton South Military Reservation, Eddy County, North Dakota. Water Resource Investigation No. 27. North Dakota State Water Commission. Bismarck, ND.

Schuh, W.M., D.L. Klinkebiel, J.C. Gardner, and R.F. Meyer. 1997. Tracer and Nitrate movement to groundwater in the Northern Great Plains. J. Environ. Qual. 26:1335-1347.

Schuh, W.M. 1997. Water quality evaluation for the North Dakota National Guard Camp Grafton (South Unit), Eddy County, North Dakota: 1996 sampling. Water Resource Investigation No. 33. North Dakota State Water Commission. Bismarck, ND.

Schuh, W.M. 2002. Water quality evaluation for the North Dakota National Guard Camp Grafton (South Unit), Eddy County, North Dakota: 2001 sampling. Water Resources Investigation No. 37. North Dakota State Water Commission. Bismarck, ND.

Schuh, William M., Bottrell, Simon H., and Scott F. Korom. 2006. Sources and Processes Affecting the Distribution of Dissolved Sulfate in the Elk Valley Aquifer in Grand Forks County, Eastern North Dakota. Water Resources Investigation No. 38. North Dakota State Water Commission. Bismarck, ND. 132 pp.

Shaver, Robert B. 1991. Sample bias in a hydrochemical investigation of the Oakes aquifer, southeastern North Dakota. Water Resources Investigation No. 16. North Dakota State Water Commission. Bismarck, ND.

Smedley, P.L., and D.G. Kinniburgh. 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry. 27:517-568.

Sykes, A.L., R.A.S. McAllister, and J.B. Homolya. 1986. Sorption of organics by monitoring well construction materials. Ground Water Monitoring Review. Fall:44-47.

Trapp, Henry Jr. 1966a. Geology and ground water resources of Eddy and Foster counties, North Dakota: part II. ground water basic data. Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

Trapp, Henry Jr. 1966b. Geology and ground water resources of Eddy and Foster counties, North Dakota: part III. ground water resources. Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

U.S. Army Armament Research, Development, and Engineering Center. 1999. "Encyclopedia of Explosives and Related Items;" U.S. Army Armament Research, Development, and Engineering Center; U.S. Army Research and Development Command; U.S. Army Tank and Automotive Command; Picatinny Arsenal; Dover, New Jersey

U.S. EPA. 1992. RCRA ground-water monitoring: draft technical guidance. G-93-00016 EPA/530-R-93-001 Pb93-139 350.

U.S. EPA. 1994. Methods for evaluating soil and water. EPA-SW-846. Revision 0.

U.S. EPA. 1996a. Drinking water regulations and health advisories. EPA-822-R-96-001.

U.S. EPA. 1996b. Methods for evaluating soil and water. EPA-SW-846. Revision 2.