WATER QUALITY EVALUATION FOR THE NORTH DAKOTA NATIONAL GUARD CAMP GRAFTON (SOUTH UNIT), EDDY COUNTY, NORTH DAKOTA: 2001 SAMPLING

By W. M. Schuh

North Dakota State Water Commission Water Resource Investigation No. 37 Dale L. Frink, State Engineer

Prepared by the North Dakota State Water Commission in cooperation with the North Dakota Army National Guard

ACKNOWLEDGEMENTS

This project was funded by the North Dakota National Guard. Military liaison, including initiation, funding supervision, planning assistance, and inventory of herbicide, pesticide, and munitions and explosives used on the CGS facility were provided by LTC. David Anderson, North Dakota National Guard. Louise Parker, of the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory, provided assistance in interpreting potential sources of detected organic residues from munitions and explosives sources. Dr. Robert Benson (USEPA, Denver) provided assistance in evaluating toxicological significance of detected species that do not have published limits or standards. Field sampling was assisted by Merlyn Skaley of the North Dakota State Water Commission. Arsenic maps were contributed by Michael Hove of the North Dakota State Water Commission. I also thank Bill Gunnerson of the North Dakota Department of Health and Bob Shaver of the North Dakota State Water contributed in reviewing this report.

LIST OF COMMONLY USED ACRONYMS

CGS	Acronym for the "Camp Grafton South Unit" facility
DWEL	Drinking Water Equivalent Level: concentration for a lifetime exposure that is "protective of adverse, non-cancer health effects, that assumes all of the contaminant is from a drinking water source."
CPQL	Combat Pistol Qualification Range
EPA-MCL	The U.S. Environmental Agency Maximum Contaminant Level. Maximum permissible level of contaminant in water which is delivered to any user of a public water system.
EPA-MCL ^N	The proposed new EPA-MCL for arsenic (10 μ g/L), compared with the previous standard of 50 μ g/L.
MDL	Laboratory minimum detection level
MPMG	Multiple Purpose Machine-Gun range
MRF	Modified Record Fire range
MICLIC	Mine Clearing Line Charge
RID	"Fleference Dose": an estimate of daily exposure to the human population that is likely to b e non-deleterious to human health over a lifetime.
USEPA	U.S. Environmental Protection Agency
ZERO	Sighting range

EXECUTIVE SUMMARY

Comesky (1989) identified three layers or sub-units of the Cherry Lake aquifer underlying the Camp Grafton South Unit (labeled CGS). He observed that there was some question as to whether these units were hydraulically connected. Piezometric evidence at some sites near North Twin Lake and Lake Coe indicates that the upper and lower units of the aquifer are not hydraulically connected. At these sites water levels in the shallow aquifer units reflect water levels of the nearby lakes, while the deeper units appear to respond piezometrically to recharge events in the uplands, and flow under artesian pressure following large recharge events.

Background water chemistry was previously discussed in depth (Schuh 1997). In brief summary, water chemistry of the Cherry Lake aquifer underlying CGS is characterized by total dissolved solids varying from less than 200 mg/L, to as high as 5,000 mg/L. Ground water in the Cherry Lake aquifer varies from a calcium-bicarbonate type to a sodium-sulfate type. At some sites chloride concentrations are high (up to 1,000 mg/L). Generally, shallow water is fresher and has less dissolved solids, sodium, and sulfate than deeper aquifer subunits.

Water samples collected from 1986 through September of 2001 indicate some periodic freshening and resalinization of ground water, but there were no major sustained changes in any of the common ions. There is some evidence of long-term freshening of South Washington Lake and of the South spring, likely caused by the wet climate of recent years.

In previous samplings (1993 and 1996) nitrate concentrations were highly variable, with most at a fraction of a mg/L, a median level of 1 mg/L, and a maximum value of 7 mg/L (Schuh 1997). None approached the U.S. Environmental Protection Agency Maximum Contaminant Level (EPA-MCL) of 44 mg/L (as NO₃⁻). Most higher concentrations were in shallow wells, and were likely due to mineralized manure under pasture. Results for 2001 were almost identical as those reported previously, with the exception that three shallow wells in pasture areas had approached or exceeded 25% of an MCL, with what appears to be a slow upward concentration trend. Nitrate stratification characterized by high nitrate in the upper few feet of aquifers is very common in North Dakota, however, and even the higher concentrations of these few samples are well below concentrations commonly measured and expected at similar depths beneath agricultural land. As of 2001, there is no evidence of nitrate contamination at levels of toxicological concern on the CGS facility, nor is there evidence of substantial anthropogenic effect under current management practices.

In 1996 (Schuh 1997) there was no evidence of contamination of ground water with trace elements, including barium, lead, selenium, or mercury. In 1993 (Schuh 1994) cadmium

and zinc were also tested. No evidence of anthropogenic effects were found. Only arsenic was detected at levels of toxicological concern.

Results were similar in 2001, with the exception that elevated lead and zinc were found in South Washington Lake. Because South Washington Lake is far from munitions ranges, and is not commonly used for training exercises, there is no reasonable explanation for this result. It is suspected that the data are spurious, with samples contaminated from other sources in the field or laboratory. This site should be resampled for lead and zinc in 2003 or 2004. Of particular interest is the reservoir at Site 4 (Figure 4) which is located in the drainage basin of the firing ranges, and within a southwest wind-drift exposure from the demolitions ranges. No indications of elevated lead, barium, or other trace metals were found in the reservoir.

In previous samplings arsenic was found to be present in concentrations approaching, or exceeding the EPA-MCL of 50 μ g/L in several wells and surface waters. Causes of high concentrations are natural and non-anthropogenic. Concentrations have varied over time, with largest (sometimes approaching 70 μ g/L) occurring in South Washington Lake.

New EPA standards (MCL < 10 μ g/L) are expected to be promulgated soon. Based on the new standards almost 50% of all sample wells were above the new MCL either in the last 2001 sampling (about 30%) or in previous samplings (about 20%). High arsenic is found in the supply wells of the firing range complex. Highest concentrations have been found in South Washington Lake and to a lesser degree in Lake Coe. High arsenic is natural, and there is no evidence of increasing trends or of an anthropogenic source. Arsenic concentrations in 2001 samples from South Washington Lake and Lake Coe were less than previous years, likely due to freshening and dilution from wet climatic conditions prevailing since 1993. Arsenic concentrations are an ongoing concern on the CGS facility. The National Guard should consider carefully the requirements for drinking water, in consultation with the North Dakota Department of Health. In addition special care should be taken in handling filtrate from training exercises using reverse osmosis equipment, which can be very high in arsenic due to concentration. This too should be managed in consultation with the North Dakota Department of Health.

In previous years a limited number of munitions and explosives residues were monitored in appropriate operational areas using EPA extraction method 8330 (USEPA 1996b). In 2001 a wide range of potential residues were monitored using EPA Methods 8260B, 8270C, 8330, and 8332 (USEPA 1996b). There were detections of acetone, carbon disulfide, methylene chloride, toluene, benzoic acid, and di-n-butylphthalate in several samples. Of these, carbon disulfide was likely present, but concentrations were far below levels of toxicological concern. Benzoic acid and di-n-butylphthalate (using Method 8270C) were likely present, but absence of a trip blank means that contamination in transit cannot be ruled out. Both were at concentrations well below levels of toxicological concern. Acetone, methylene chloride, and toluene were detected at

ES-2

similar concentrations in the trip blank, and methylene chloride was also detected in a laboratory blank, which indicates that these volatile (Method 8260B) extractants were most likely introduced to the samples in the process of handling, transit, or laboratory processing. These too were in concentrations well below levels of toxicological concern. There is no evidence of ground-water contamination from volatile organics at levels of concern under current management. Low concentrations of some residues do not require immediate resampling. All detected analytes, including those with indications of likely contamination in lab or transit, should be resampled for confirmation or deconfirmation in 2006. Sampling methods for volatile compounds (Method 8260B) should be reviewed and redesigned with special measures to avoid aerial contamination, or contamination from on-site cleaning compounds (like acetone), and to avoid storage of bottles in areas near potential sources of contamination.

In each of the sample years herbicides 2,4-D and picloram were evaluated. There have been no detections of 2,4-D, while picloram (used for leafy spurge control) has been consistently detected at low levels (appr. 0.1 to 0.2 μ g/L) in South Washington Lake and Lake Coe. These concentrations are several orders of magnitude below the EPA-MCL for picloram. Picloram samples were collected annually for a four year period, and the trace presence was found to be consistent.

In 2001 water samples for 2,4-D, picloram, and prometon (which is used for vegetation control around buildings) were collected. There were no detections of any of the analytes. The lack of picloram detections (with the same laboratory detection resolution), after years of low level detections, is particularly significant. Decreased picloram detection may be related to changing use or management practices, or it may be related to rising lake waters and dilution, as in the case of decreasing arsenic concentrations. There were no detections of any of the herbicides tested in the 2001 sampling.

In previous sampling years, water samples were analyzed for malathion, chlorpyrifos, and dimethoate. Of these, only chlorpyrifos and malathion are known to have been used on the CGS facility. In 1993 dimethoate was detected in one well near Lake Coe, but later samples failed to confirm presence. Neither chlorpyrifos nor malathion have been detected in any of previous samplings. In 2001 only malathion was tested. There were no detections in wells or surface waters. There has been no evidence of ground-water or surface-water contamination with insecticides in any of the samplings.

In previous samplings years (1993 and 1996) water samples from wells and surfacewaters near appropriate (vehicle staging) use sites were tested for petroleum residues using total petroleum hydrocarbon (TPH) as gasoline and as diesel. There were no detections. In 2001 water samples for gasoline range organics (GRO) and diesel range organics (DRO) indicated trace presence (appr. 0.05 μ g/L) of diesel range organics at Site 9, near the engineering training site, at site 10 in the northernmost site on the CGS facility, and at Site 8, which is in the northeast portion of the camp. These detections are considered qualitative, and are about 10,000 times below the levels of "concern" used by the North Dakota Department of Health. There is no evidence of substantial contamination of ground-water with petroleum residues due to CGS facility use.

In conclusion, as of 2001 there is no evidence of degradation of ground-water or surface-water on the CGS facility through inadequate management practices or any other form of human impact. The waters of the CGS facility do, however, have persistent high levels of arsenic from natural sources that need to be managed carefully with respect to drinking-water use and management of filtrate from training using reverse osmosis units.

South Washington Lake should be resampled for lead and trace metals in 2003 or 2004. The CGS facility should be comprehensively sampled again in 2006.

2001 Recommendations for Action

1. The 2001 sampling has indicated the first non-detections of picloram in Lake Coe and South Washington Lake. Previous recommendations for frequent (every year or every second year) sampling of picloram are now changed to testing for picloram only at the time of major sample sets (next recommended for 2006).

2. Consider the ramifications of the prospective new EPA-MCL for arsenic (10 mg/L) on appropriate use for water supply wells on the firing range complex.

3. During water purification training using reverse osmosis, filtrate should be analyzed for arsenic concentration. If filtrate has high arsenic, care should be taken in disposal. Sufficient filtered water to dilute the filtrate should be returned to the original source to offset the concentrated arsenic. Filtrate disposal methods should be approved by the North Dakota State Department of Health.

4. The use of the well-house area (T149N R63W Section 35A) as a staging area for storage of herbicide and for mixing pesticides should be reviewed for well-protection safety. Overflow from filling tanks may contaminate wells. Also, it is suggested that pesticides be stored away from the well site.

CGS use should be reviewed and sampled again for water quality in 2006.

6. Barbed wire at all well sites should be inspected and repaired .

7. The PVC protective cover for WS-2 well 13103 (Site 1, 149-062-28CCC1) should be extended three or four inches.

8. The elevations of the measuring points (tops) of all wells should be surveyed to the nearest 0.01 foot.

9. South Washington Lake should be resampled for lead and zinc to test whether high concentrations in the 2001 samples were spurious.

10. Sampling, storage, and handling procedures for volatile organic compounds should be reviewed before the next major sampling to assure non-contamination of samples.

TABLE OF CONTENTS

F	age
INTRODUCTION	1
Summary of Results and Recommendations From the 1994 Sampling and Assessment	2
Summary of Results and Recommendations From the 1996 Sampling and Assessment	4
LOCATION AND NUMBERING SYSTEM	6
CLIMATE, GEOLOGY, AND HYDROLOGY	8
Climate	8
Geologic and Hydrologic Setting	8
OBJECTIVES AND PRIORITIES	12
Monitoring Plan Criteria	13
SELECTION OF SAMPLING POINTS AND MONITORING WELLS	13
Well-Set 1 (WS-1)	13
Well-Set 2 (WS-2)	16
Surface Water Sampling Sites	17
PREVIOUS SAMPLING RECOMMENDATIONS	19
CAMP GRAFTON SOUTH USE PATTERNS	20
SAMPLING AND LABORATORY METHODS	24
Major Ion Chemistry and Trace Elements	25
Organic Compounds	26
RESULTS	27
Major Ion Chemistry	27
Nitrate	28
Trace Elements	33
Arsenic	39
Munitions and Explosives	43

TABLE OF CONTENTS

Pesticides	51
Herbicide Contamination	51
Insecticides Contamination	52
Petroleum Residues	53
CONCLUSIONS	55
RECOMMENDATIONS	57
REFERENCES	58

APPENDICES

APPENDIX A. LETTERS OF CORRESPONDENCE (INCLUDING E-MAIL)

Appendix A-1. Letter Of 3/23/2000, LTC David Anderson To W.M. Schuh, Re: Locations, Uses, And Composition Of Munitions And Explosives Used On The Cgs Facility.

Appendix A-2a. E-mail correspondence from Louise Parker, October 31, 2001.

Appendix A-2b. E-mail correspondence from Louise Parker, November 1, 2001.

Appendix A-3. E-mail correspondence from Dr. Robert Benson, June 24, 2002.

APPENDIX B. MUNITIONS AND EXPLOSIVES RESIDUES: Laboratory Results, And Case Narratives (Including Description Of Method, Analysis, Matrix, General Information, Method Summary, Sample Preparation, Holding Times, Dilutions, Quality Control Data, Instrument QC, NCC/NCAR, Confirmation Analyses, And Field And Laboratory Chain Of Custody).

Appendix B-1, EPA Method 8260B

Appendix B-2, EPA Method 8270C

Appendix B-3, EPA Method 8330

Appendix B-4, EPA Method 8332

APPENDIX C: RESIDUES OF HERBICIDES, PESTICIDES, AND PETROLEUM

LIST OF TABLES

Table Number	Page
Table 1.	List of wells and sampling points constructed and sampled from 1992 through 1993. WS-1 designates wells placed by Comesky (1989). WS-2 designates wells placed by Schuh (1994)14
Table 2.	List of wells and sampling points constructed and sampled from 1992 through 1996. WS-1 designates wells placed by Comesky (1989). WS-2 designates wells placed by Schuh (1994)
Table 3.	List of wells and sampling points constructed and sampled in 2001. WS-1 designates wells placed by Comesky (1989). WS-2 designates wells placed by Schuh (1994)
Table 4.	Basic water chemistry for CGS WS-2 Wells (Schuh 1994). Locations of site numbers for designated for WS-2 well sites are shown on map Figures 3, 4, and 5.
Table 5.	Basic water chemistry for CGS WS-1 Wells (Comesky (1989). Locations for designated for WS-1 sites are shown on map Figure 4
Table 6.	Trace elements arsenic (As), mercury (Hg), lithium (Li), lead (Pb), selenium (Se), and strontium (Sr) concentrations for WS-1 wells (Comesky 1989)
Table 7.	Barium (Ba), lithium (Li), Strontium (Sr), and trace elements [arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), selenium (Se), and Zinc (Zn)] concentrations for WS-2 wells (Schuh 1994)
Table 8.	List of analytes for EPA Methods 8260B, 8270C, 8330, and 8332 u sed for 2001 samples at CGS. * indicates partial list of specific target analytes known to be in use
Table 9.	Water sample sites associated with ranges. Demo = Demolition Range, (R) = Reservoir, (S) = Spring, MPMG = Multiple,Use Machine Gun, MRF = Modified Record Fire. Site Locations are shown on Figure 546
Table 10.	EPA Laboratory Method Procedures for known compounds from each designated use area
Table 11.	Sample Sites, Number of Wells Sampled, and Laboratory Procedures for Munitions and Explosives Residues. (W) = Well, (S) = Spring, (L) = Lake. * = Lake Coe47
Table 12.	Summary of organic analytes detected in water samples taken in 2001 for assessment of residues from munitions and explosives on the CGS facility. * indicates "qualitative" detection (above MDL but below lowest calibration concentration)
Table 13.	Summary of GRO and DRO data for well and surface-water samples taken on CGS in September 200154

LIST OF FIGURES

Figure Number	Page
Figure 1.	Location-numbering system used in this report (from U.S. Bureau of Land Management.)
Figure 2.	Location of the Camp Grafton South training facility9
Figure 3.	Schematic diagram of placement of WS-2 sample-well sites and surface-water sampling sites in reelation to moraine subunits, and drainage to the Sheyenne River on the CGS facility , Eddy County, ND10
Figure 4.	Map of ground water and surface-water sampling sites used for monitoring water quality on the Camp Grafton South Military Reservation15
Figure 5.	Sample sites for pesticide samples in relation to bivouac sites; and sample sites for explosives residue samples in relation to training areas involving demolitions and munitions training
Figure 6.	Kriged interpretive maps for the distribution of arsenic in shallow, mid-depth, and deep wells41

INTRODUCTION

In 1992 a water quality monitoring plan for the North Dakota National Guard Camp Grafton South (CGS) facility in Eddy County, North Dakota, was submitted to the North Dakota National Guard (Schuh 1992). The plan was designed to consider existing geologic and hydrologic information, current and future use patterns of the facility, objectives and goals of protection - including the sensitivity of resources to be protected, and the limitations of funding and resources available for implementing the plan. An attempt was also made to consider training objectives and resource conservation in a balanced manner, and to maximize the information obtainable from limited field data.

The initial sampling plan was laid out in two phases. Phase I consisted of selecting appropriate surface-water sites and constructing appropriate observation wells for monitoring munitions and explosives residues, petroleum residues, and pesticide contamination. Phase I also included the collection of water samples for chemical analysis to establish base-line concentrations of contaminants, major ions, trace elements, and selected chemical parameters of each of the selected sites. Phase I was implemented in 1992 and 1993. In 1994 a report was published describing the monitoring well network, the water sample collection plan, and results of the base-line samples taken for each of the potential contaminant groups sampled at CGS. (Schuh 1994). Included in the 1994 publication were:

1. well and sampling locations;

2. well completion information, including lithologies, materials, construction methods, development, and cleaning procedures;

3. sampling procedures, including well purging methods, sampling methods, and sample-handling methods and procedures;

4. baseline data for major ion chemistry and trace elements from each newly constructed sample well;

5. data for water quality and trace elements measured in wells constructed before Phase I; and

6. a brief analysis and interpretation of results.

Phase II consisted of a plan for ongoing periodic assessment of water quality at CGS. The provisions of the initial Phase II plan were designed to be flexible and to allow for modification as understanding of area hydrology and its effect on water quality increases. Sampling and assessment of CGS water quality were to be accomplished through periodic

(three to six year interval) re-evaluation of facility use patterns of CGS and the degree of water contamination (if any) resulting from those use patterns.

Summary of Results and Recommendations From the 1993 Sampling and Assessment

The following conclusions were reached in a previous ground-water quality study at CGS (Schuh 1994). Basic water quality of the Cherry Lake aquifer is of low to average total dissolved solids (TDS < 800), near-neutral pH, and low (<1) to high (appr. 7) sodium adsorption ratio (SAR); although a few sites are brackish (TDS 1,000 to 3,000 mg/L) and have SAR as high as 34. Shallow ground water is usually a calcium bicarbonate type, while deeper aquifer units are frequently a sodium sulfate type. There were no significant detections of lead, mercury, selenium, or cadmium in any of the wells sampled. However, arsenic was present in most samples, and in some of the deeper aquifer units approached and even exceed EPA-Maximum Contaminant Level (EPA-MCL). Natural lakes were very high in TDS (1,000 to 4,000 mg/L), sulfate, chloride, and sodium, with pH above 9 and very high SAR. There were no significant lead, mercury, selenium, or cadmium detections in any of the samples. However, arsenic approached or exceeded EPA-MCL in most samples. Nitrates were low in both surface and ground water. There were no indications of anthropogenic degradation of basic water quality on the reserve.

Of the wells sampled in 1992 and 1993 there was only one pesticide detection. Dimethoate was detected at a level just below the EPA Lifetime Health Advisory Level in one well near Lake Coe. However, dimethoate was never deliberately sprayed on CGS land. The well site of the detection was within the spray drift zone of aerially sprayed picloram during drilling and construction of the well. Dimethoate residual in the picloram spray is a possible source. The dimethoate detection does not indicate a likely case of environmental contamination from routine facility use and care. There were no detections of picloram, malathion, chlorpyrifos, or any other pesticides used on the reserve in any of the well or spring samples.

There were detections of picloram (at low levels) in Lake Coe and South Washington Lake in August of 1993. Because picloram was not detected in 1986, and because of the exceptionally heavy rainfall in 1993 it was suspected that these detections were a result of exceptional runoff. It is unlikely that contaminants entered Lake Coe or South Washington Lake through ground water.

There were no indications of total petroleum hydrocarbons (gasoline or fuel oil) in any of the samples taken from ground water in August of 1993.

There were no detections of munitions and explosives residues (HMX, RDX, Nitrobenzene, tetryl, 1,3-dinitrobenzene, 2,4,6-TNT, 2,4-DNT, and 2,6-DNT) in any of the water samples taken in the fall of 1992.

The following recommendations were offered based on conclusions from the 1994 report (Schuh 1994).

1. South Washington Lake and Lake Coe should be sampled at least once per year to determine if contamination with pesticides during spraying for leafy spurge is causing a serious or long-term problem. This should continue until detection levels remain below detection limits for at least three years. Other surface water samples may also be considered for annual pesticide sampling. Pesticide samples from other designated wells should be taken as planned for the three year resampling schedule laid out in PHASE II of the initial proposal.

2. Well 13102 on Site 6 should be sampled for dimethoate again in early 1994. If any detections are made, the entire site (wells 13101 and 13102) should be sampled at least once per year until no further detections are found.

3. Water samples for analysis of major ions, trace elements, total petroleum hydrocarbons, pesticides, and munitions and explosives residues should be collected again in 1996, and on a three-year rotating schedule as described under Phase II above.

4. All wells drilled in 1992 should be surveyed for measuring point elevation to the nearest 0.01 foot by the North Dakota National Guard.

5. All wells drilled in 1992 should be fitted with locked caps on the 4-inch protective covers by the North Dakota National guard.

6. After the next sampling period (1996), the North Dakota National Guard may wish to consider a comparative analysis and report on trends in water quality from 1986 to 1994.

Summary of Results and Recommendations From the 1996 Sampling and Assessment

In 1996 the use of the CGS facility was again evaluated, and a water-quality sampling plan was designed to monitor potential contamination from current land use practices. In September of 1996 water samples were collected from wells and surface waters at CGS. The 1996 report (Schuh 1996) evaluated progress in accomplishing previous recommendations resulting from the 1994 assessment, apparent water quality status of CGS water resources based on the most recent (1996) sample results, and trends in the chemical composition of water samples collected over the ten-year period from 1986 through 1996.

Results indicated that there was no evidence of significant anthropogenic impact on major ions or trace elements in the Cherry Lake aquifer, or in surface waters. Background water chemistry of the Cherry Lake aquifer varied from low TDS (total dissolved solids) of less than 200 mg/L to brackish water having TDS as high as 5,000 mg/L. Ground water in the Cherry Lake aquifer varied from a calcium-bicarbonate type to a sodium-sulfate type. In some cases, chloride concentrations were as large as 1,000 mg/L. Shallower water was usually freshest, having lowest TDS and sulfate concentrations. Deeply buried aquifer sub-units were characterized by larger dissolved solids, sodium, and sulfate concentrations. Sodium and sulfate appeared to be largest near the top of the Pierre shale bedrock, which unconformably underlies the glacial drift.

Nitrate concentrations in surface waters and ground-water at CGS were below levels of toxicological concern, based on an EPA-MCL of 44 mg/L. Of all water samples collected in 1996, the median nitrate concentration was 1 mg/L. The maximum concentration was 7 mg/L. Most of the higher nitrate concentrations were in shallower wells. Since fertilizer is not used on the CGS Reserve the most probable nitrate source was manure from cattle grazed on the land. Trends in nitrate concentration since 1987 are variable, but from 1991 through 1996 the overall trend was toward lower nitrate concentrations. South Washington Lake has low nitrate concentrations. However, presence of manure along the lake border and strong algal blooms indicate that substantial nitrate influx is likely, and that nitrate is biologically consumed.

Trace elements, including barium, lead, selenium, and mercury were not detected in significant quantities in 1996, nor in previous samplings in 1986, and 1991-1993. Arsenic concentrations were relatively high in waters sampled on CGS. In some wells and in some surface water samples, arsenic concentrations exceed levels of toxicological concern

(EPA-MCL was 50 mg/L). Arsenic concentrations have remained relatively consistent over time, but varied over the area of the facility. Concentrations were at levels of toxicological concern in South Washington Lake. They were high in Lake Coe, and in the area of the CGS supply wells. Concentrations were also high in the area of the M-60 machine-gun range. Arsenic concentrations are almost certainly natural in origin, and have not been caused by anthropogenic activity. However, certain activities that concentrate salts, such as use of reverse osmosis systems or boiling the water, were noted to cause concentration of arsenic. Care was suggested in disposal of reverse osmosis filtrate waters, or in consumptive use of boiled water.

Eleven water samples were collected from 9 sites, including five well sites, one spring (148-063-2DA) and one reservoir (149-062-2DA) for fourteen organic compounds used in munitions and explosives. Samples were collected from watersheds fed by the major munitions and demolition training areas. Results indicated no detections of any of the compounds tested.

Nine water samples were collected from nine sites, including one from South Washington Lake, two from Lake Coe, and six from two wells on each of three sites, for measurement of total petroleum hydrocarbon (TPH) as gasoline and as fuel oil (including diesel fuel). Chosen sites were in watersheds near, or fed by areas used for vehicle staging, such as the Engineering Training Site, or common bivouac areas. Results indicated no detections of TPH as gasoline or fuel oil in any of the water samples.

Fourteen water samples were collected from eight sites for determination of pesticide concentrations. Samples included one from South Washington Lake, two from Lake Coe, one from a spring (149-063-13BDA), and ten samples from two wells on each of five well sites. Sites were chosen in watersheds near or downstream of areas where herbicides (picloram and 2,4-D) are used for leafy spurge control, or insecticide (chlorpyrifos) is used for mosquito control. Samples were tested for chlorpyrifos and picloram. Results indicated no detections of chlorpyrifos in any of the water samples. Picloram was not detected in any of the well samples or in the spring sample. Picloram was detected at low concentration (about 0.1 mg/L) in Lake Coe and South Washington Lake. Annual samples from 1993 through 1996 have indicated that trace concentrations of picloram were consistently present in South Washington Lake and Lake Coe. Concentrations detected are several orders of magnitude below EPA-MCL (500 mg/L).

LOCATION AND NUMBERING SYSTEM

The location and numbering system used in this report is based on the public land classification system used by the U.S. Bureau of Land Management. The system is illustrated in Figure 1. The first number denotes the township north of a base line, the second number denotes the range west of the fifth principal meridian, and the third number denotes the section in which the well or test hole is located. The letters A, B, C, and D designate, respectively, the northeast, northwest, southwest, and southeast quarter section, quarter-quarter section (10-acre tract). For example, well 149-063-4ADD is located in the SE 1/4 SE 1/4 NE 1/4 Sec. 4, T. 149 N., R. 63 W. Consecutive terminal numerals are added if more than one well or test hole is located within a 10 acre tract.

Figure 1. Location-numbering system used in this report (From U.S. Bureau of Land Management.)

CLIMATE, GEOLOGY, AND HYDROLOGY

CGS is located in Eddy County in East Central North Dakota (Figure 2). The facility occupies portions of four townships, Lake Washington (149-063), Colvin (149-062), Paradise (148-062), and Cherry Lake (148-062). CGS lands are approximately bisected by State Highway 15 which runs east-west.

Climate

The Climate of Eddy County North Dakota is continental, having cold winters and hot summers. The onset of cold weather usually begins in early November. The frost usually leaves the soil in mid April. The moisture regime is borderline between semi-arid and sub-humid, with a long term average precipitation of about 48 cm (19 inches).

Geologic and Hydrologic Setting

The general geological setting of Camp Grafton South has been described by Bluemle (1965), and by Comeskey (1989). Local geology and its relation to water resources on the CGS facility and the sampling plan were discussed in detail by Schuh (1994). In general, the surficial geology of the CGS facility consist of uplands which are composed of glacial drift which comprise sub-units of the McHenry End Moraine, and lowlands, or drainage basins, which drain toward the Sheyenne River about five miles north of CGS. A simple schematic of the relationship between moraine uplands and lowland basins is shown on Figure 3.

There are three distinct sub-units of the McHenry End Moraine on the CGS facility (called moraine units 1, 2, and 3 in this report). The largest subunit (moraine unit 1) extends from the southern through the northern boundary on the east side of the facility, and separates the drainage into two principal basins. On the east side, all drainage flows northeastward toward the Sheyenne River through the Colvin Creek basin. On the west side of moraine unit 1, all drainage flows toward the Sheyenne River through the Lake Coe and South Washington Lake basin. The other two sub-units of the McHenry End Moraine on the CGS facility (moraine units 2 and 3) are oriented north to south, and are located entirely in the southern half of the facility. Neither extends north of HWY 15. These two moraine sub-units serve to divide the southern portion of the Lake Coe and South Washington Lake basins. Most drainage through the Lake Coe and South Washington Lake

Figure 2. Location of the Camp Grafton (South Unit) training facility.

Figure 3. Location of WS-2 sample-well sites and surface-water sampling sites in relation to moraine subunits, and direction of ground-water flow at the water table.

LEGEND Lake Sample Reservoir Sample Spring Sample Well Site Planned / Not Implemented Moraine Boundaries

basin originates from the eastern two of these sub basins. Between moraine unit 1 and moraine unit 2 water flows northward to Lake Coe through a series of small lakes and littoral areas. Between moraine unit 2 and moraine unit 3, water flows northward to Lake Coe through North and South Twin Lakes. Drainage from uplands to lowlands occurs through a series of coulees.

The principle ground-water resource underlying the CGS facility is the Cherry Lake aquifer. Trapp (1966b) and Comeskey (1989) described the Cherry Lake aquifer system as composed of two confined units, separated by 20 to 40 feet of glacial till. The top of the deepest (and least aerially extensive) unit is located approximately between 126 and 182 feet below land surface. Both Trapp (1996b) and Comesky (1989) have noted that the two confined units may be hydraulically connected in some areas. However, drilling and exploration to date have not succeeded in documenting where aquifer units are hydraulically connected. There is some recent piezometric evidence that shallower confined aquifer units are not connected to deeper confined units at some locations, notably at Sites 17 near North Twin Lake and Site 6 located in the littoral area southeast of Lake Coe (Fig. 3). At these locations deeper aquifer units were subjected to substantial increases in artesian pressure (to the point of becoming flowing wells) following large rains in 1993. Shallower confined aquifer units at the same location exhibited much smaller increases in piezometric pressure. These observations indicate that some areas of the deeper aquifer unit may be directly connected to recharge areas in the uplands, while being locally insulated from extensive interaction with overlying aquifer units or surface lakes. Conversely, in these examples surficial and shallow confined aquifer components do not appear to be strongly and directly affected by upland recharge, but rather appear to have piezometric responses more characteristic of water levels in nearby lakes.

In addition to the two confined units of the Cherry Lake aquifer, Comesky (1989) identified a surficial unconfined unit. The surficial unit consists of a sand mantle overlying the glacial till confining the lower aquifer units. In many areas, however, this mantle is not saturated. Comesky (1989) also described the presence of some coarse sand and gravel deposits within the glacial drift that are apparently locally isolated and not hydraulically connected with the larger aquifer aquifer units.

Comeskey (1989) has described recharge as occurring through closed depressional areas on the McHenry Moraine. The local flow system from the Moraine is described as occurring easterly and westerly toward the dividing lowlands. Numerous springs flow out from the moraine at lower elevations in coulees and near lowlands and littoral areas.

Springs may be exposures of contacts between surface sands and the underlying till, or they may consist of exposures of deeper buried units.

The lake system has been described as an exposure of the water table, and has been used to describe a general regional flow of the water-table aquifer. Water table maps (Trapp 1966a), which may or may not be related to piezometric levels in the underlying aquifers, indicate that overall regional ground-water flow at the water table is toward the Sheyenne River through the Washington lakes chain, and through the Colvin Creek lowland.

There is a very slight water table gradient southeastward toward the Johnson Lake aquifer, and some water movement may occur in that direction. Flow from Cherry Lake is indicated to be southward toward the Juanita Lake aquifer and the James River. Generally, however, CGS land is too far north to affect the southward drainage system. Also watertable gradients toward the Johnson Lake Aquifer are small. All indications from current information are that most ground water and surface water moves on a regional scale northward to the Sheyenne River through the Lake Coe/Washington Lake chain (and subunits), and through the Colvin Creek basin.

Readers are also referred to Comesky (1989) and Trapp (1966b) for in depth studies of the Cherry Lake aquifer. In addition, Schuh (1994) described the relationship between local geology and hydrology, and land use practices and potential risk of groundwater contamination.

OBJECTIVES AND PRIORITIES

Objectives and priorities for the CGS water quality sampling plan were discussed in detail by Schuh (1994). In brief, priorities in designing the plan were:

Priority 1: protection of ground-water and surface-water exterior to CGS. The primary focus is on detection of contaminants migrating to regional rather than local flow systems, before they can substantially effect the regional resource.

Priority 2: protection of the wildlife, such as migratory waterfowl, that inhabit the lakes and wetlands of CGS.

Priority 3: protection of the local fresh-water supply.

Monitoring Plan Criteria

Factors considered in the water quality monitoring plan included: (1) the nature of local and regional surface drainage; (2) the nature of local and regional ground-water flow; (3) the disposition and use of water by others near the military reservation; (4) the sensitivity of specific water uses on and near the reservation to specific contaminants; and (5) land use patterns on the military reservation. Consideration was also given to the desirability of having all major use areas of the reserve given sample representation.

SELECTION OF SAMPLING POINTS AND MONITORING WELLS

Water samples were collected from three basic sources on CGS. The three sample sources include two sets of sampling and monitoring wells, and a number of surface water sources that include two lakes, two springs, and one reservoir.

Well Set 1 (WS-1)

The first well set (labeled Well Set 1, or WS-1) was installed by Comesky (1989), in mapping the Cherry Lake aquifer on CGS. This well set consists of 25 wells placed in nests of one to four wells at a total of 12 sites. Well placement was non-biased with respect to CGS use patterns, geology, and topography. Wells were placed at approximately evenly spaced intervals along two transects, one north to south, and the other east to west. Well construction was of 2-inch and 1.25-inch polyvinyl chloride (PVC) casing, and joints were bonded using solvent-weld cement containing methyl-ethyl ketone. WS-1 wells are protected from cattle by barbed wire fences, but they do not have a protective cover, nor are they locked and secured. Placement of these wells limits their usefulness for sampling contaminants from targeted land uses. Construction methods and security limitations also limit their usefulness for sampling organic contaminants (Parker et al. 1990, Sykes et al. 1986). However, both construction and placement methods render the WS-1 wells best suited for sampling inorganic constituents. In addition, these wells have the longest sampling record for major ion chemistry (dating to 1987). WS-1 wells are used for ongoing sampling of major ion chemistry and for piezometric readings. They may also be used for supplemental sampling of organic contaminants if needed for investigation of specific problems. Locations of WS-1 wells are summarized on Table 1, and illustrated on Figure 4. Detailed hydrologic setting of well nests, lithologic logs for WS-1 wells,

No. No. W Source all pymos WS-1 12024A 148 63 1 CBBC1 W x x WS-1 12024C 148 63 1 CBBC2 W x x x WS-1 12020A 149 63 14 DACD1 W x x x WS-1 12020D 148 63 14 DACD3 W x x x WS-1 12020D 148 63 23 ADBB1 W x	Woll Set	Site	SWC Well	Township	Range	Section	Location	Water	Mun.	TPH	piclor-	chlor-	Basic	Trace
	wen det	One	No.	N	W			Source			am	pymos	×	Y
	WS-1		12024A	148	63	1	CBBC1	W					x	x
	WS-1		12024B	148	63	1	CBBC2	VV					x	x
	WS-1		12024C	148	63	1	CBBC3	VV					x	x
WS-1 12020B 148 63 14 DACD2 W x	WS-1		12020A	149	63	14	DACDI	VV VA/					x	x
WS-1 12020C 148 63 14 DADD3 W x x x WS-1 12019B 149 63 23 ADBB1 W x x x WS-1 12019C 149 63 23 ADBB3 W x x x WS-1 12017A 149 63 25 DBBC1 W x x x WS-1 12017C 149 63 25 DBBC3 W x x x WS-1 12017C 149 63 25 DBBC3 W x x x WS-1 12017D 149 63 26 DCA W x x x WS-1 12015B 149 63 31 ABBC3 W x <td>WS-1</td> <td></td> <td>12020B</td> <td>148</td> <td>63</td> <td>14</td> <td>DACD2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td>х</td>	WS-1		12020B	148	63	14	DACD2						x	х
WS-1 12019A 149 63 23 ADBE2 W X X X WS-1 12019C 149 63 23 ADBE3 W X X X WS-1 12017A 149 63 25 DBBC2 W X X X WS-1 12017D 149 63 25 DBBC3 W X X X WS-1 12017D 149 63 25 DBBC3 W X X X WS-1 12012 149 63 25 DBC3 W X X X WS-1 12018D 149 63 31 ABBC3 W X X X WS-1 12026A 149 63 36 AACB1 W X X X WS-1 12014A 149 63 36 AACB2 W X X X WS-1 12014D 149 63 36 AACB4 W X X X </td <td>WS-1</td> <td></td> <td>12020C</td> <td>148</td> <td>63</td> <td>14</td> <td>DACD3</td> <td>VV \\/</td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td>х</td>	WS-1		12020C	148	63	14	DACD3	VV \\/					x	х
WS-1 120186 149 63 23 ADBB3 N x x x WS-1 12017A 149 63 25 DBBC1 W x x x WS-1 12017A 149 63 25 DBBC3 W x x x WS-1 12017C 149 63 25 DBBC3 W x x x WS-1 120125 149 63 25 DBBC3 W x x x WS-1 120126 149 63 21 ADBC2 W x x x WS-1 120160 149 63 31 ABBC2 W x x x WS-1 120266 149 63 36 AACB1 W x x x WS-1 120142 149 63 36 AACB2 W x x x WS-1 120142 149 63 36 DDBBC1 W x x <td< td=""><td>WS-1</td><td></td><td>12019A</td><td>149</td><td>63</td><td>23</td><td>ADBBI</td><td>10/</td><td></td><td></td><td></td><td></td><td>x</td><td>x</td></td<>	WS-1		12019A	149	63	23	ADBBI	10/					x	x
	WS-1		12019B	149	63	23	ADDD2						x	×
	WS-1		12019C	149	63	23	AUDD3	10/					х	х
	WS-1		12017A	149	63	25	DBBCI	Ŵ					x	х
WS-1 12017C 149 63 25 DBBB4 N x	WS-1		12017B	149	63	25	DBBC2	W					x	х
	WS-1		12017C	149	63	25	DBBBBA	Ŵ					х	X
	WS-1		12017D	149	63	20	DCA	Ŵ					х	x
	WS-1		12025	149	63	20	DDDC1	W					x	X
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12012	149	63	21	ABBC2	W					х	X
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12015B	149	63	21	ABBC3	ŵ					х	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12015C	149	63	24	BBB1	Ŵ					x	×
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12026A	149	63	24	BBB2	W					X	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12026B	149	63	35	ABBD2	W					x	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12011B	149	63	36	AACB1	W					х	x
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WS-1		12014A	149	62	36	AACB2	W					x	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12014B	149	62	36	AACB3	W					X	×
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12014C	149	63	36	AACB4	W					x	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12014D	149	63	36	DDBBC1	W					x	x
WS-1 12023B 149 63 36 DDBC3 W x x x WS-1 12021A 149 63 36 DDBC3 W x x x x WS-1 12021A 149 63 36 DDBC3 W x x x x WS-2 1 13104 149 62 29 DAD W x	WS-1		12023A	149	63	36	DDBBC2	W					x	x
WS-112023C14963BAAB1WxxxWS-112021A1496228CCC2WxxxxWS-22131051496229DADWxxxxxWS-22131051496229DASxxxxxWS-24Reservoir1496231CRxxxxxWS-25130981496336ACA2WxxxxxxWS-26131021496325CDC2WxxxxxxxWS-2713087148632ACA2WxxxxxxxWS-29130891496313DAA2WxxxxxxWS-210130931496314CACLxxxxxWS-211SW Lake1496335BCBA2WxxxxxxWS-21213085148632BABC2WxxxxxxxWS-213131001496335BCBA2Wxxxxxxx </td <td>WS-1</td> <td></td> <td>120238</td> <td>149</td> <td>63</td> <td>36</td> <td>DDBC3</td> <td>W</td> <td></td> <td></td> <td></td> <td></td> <td>x</td> <td>x</td>	WS-1		120238	149	63	36	DDBC3	W					x	x
WS-1 12021A 149 60 WS-2 1 13104 149 62 28 CCC2 W x <td< td=""><td>WS-1</td><td></td><td>120230</td><td>149</td><td>63</td><td>00</td><td>BAAB1</td><td>W</td><td></td><td></td><td></td><td></td><td>x</td><td>x</td></td<>	WS-1		120230	149	63	00	BAAB1	W					x	x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-1		12021A	149	00								~	v
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WS-2	1	13104	149	62	28	CCC2	W	x		v	¥	Ŷ	x
WS-2 3 Spring 148 63 2 DA S x WS-2 4 Reservoir 149 62 31 C R x x x x WS-2 4 Reservoir 149 63 36 ACA2 W x	W/S-2	2	13105	149	62	29	DAD	W	X		^	^	x	x
WS-2 4 Reservoir 149 62 31 C H x x x x WS-2 5 13098 149 63 36 ACA2 W x	WS-2	3	Spring	148	63	2	DA	S	X				x	x
WS-2 5 13098 149 63 36 ACA2 W X	WS-2	4	Reservoir	149	62	31	С	R	X				x	x
WS-2 6 13102 149 63 25 CDC2 W x	WS-2	5	13098	149	63	36	ACA2	W	X		v	Y	x	x
WS-2 7 13087 148 63 2 ACA2 W X WS-2 8 13091 149 62 19 DBD2 W X <	WS-2	6	13102	149	63	25	CDC2	VV.	X		^	~	x	x
WS-2 8 13091 149 62 19 DBD2 W X	WS-2	7	13087	148	63	2	ACA2	VV	х	v	¥	X	x	×
WS-2 9 13089 149 63 13 DAA2 W X	WS-2	. 8	13091	149	62	19	DBD2	VV		Ŷ	Ŷ	x	x	x
WS-2 10 13093 149 63 12 CAC2 W X	WS-2	9	13089	149	63	13	DAA2	VV VV		Ŷ	x	x	x	x
WS-2 11 S W Lake 149 63 14 CAC L A A X	WS-2	10	13093	149	63	12	CAC2	VV		÷	Ŷ	x	x	×
WS-2 12 13085 148 63 2 BABC2 W x	WS-2	11	S W Lake	149	63	14	CAC			Ŷ	x	X	х	×
WS-2 13 13100 149 63 35 BCBA2 W X	WS-2	12	13085	148	63	2	BABC2	VV VA/		Ŷ	Ŷ	x	х	x
WS-2 14 Lake Coe 149 63 26 ADD L x	WS-2	13	13100	149	63	35	BCBA2	VV		Ŷ	x	x	x	X
WS-2 15 Lake Coe 149 63 27 DDB L A A X	WS-2	14	Lake Coe	9 149	63	26	ADD	L.		Ŷ	Ŷ	x	X	x
WS-2 16 Spring 149 63 13 BDA S x	WS-2	15	Lake Coe	9 149	63	27	DDB	L		^	Ŷ	x	x	x
WS-2 17 13096 148 63 4 ABA2 W x	WS-2	16	Spring	149	63	13	BDA	5			Ŷ	x	x	x
WS-2 18a 149 63 14 BAA 5 x <t< td=""><td>WS-2</td><td>17</td><td>13096</td><td>148</td><td>63</td><td>4</td><td>ABA2</td><td>vv C</td><td></td><td></td><td>Ŷ</td><td>x</td><td>x</td><td>x</td></t<>	WS-2	17	13096	148	63	4	ABA2	vv C			Ŷ	x	x	x
WS-2 18b) 149 63 14 BAA 5 x <	WS-2	18	а	149	63	14	BAA	5			Ŷ	x	х	х
WS-2 18c 149 63 14 BAA 5 x <t< td=""><td>WS-2</td><td>18</td><td>)`</td><td>149</td><td>63</td><td>14</td><td>BAA</td><td>5</td><td></td><td></td><td>x</td><td>X</td><td>x</td><td>х</td></t<>	WS-2	18)`	149	63	14	BAA	5			x	X	x	х
WS-2 19 148 63 11 DUC W x x x x X WS-2 20 13094 149 63 14 AAB W x x x x	WS-2	18	c	149	63	14	BAA	5			x	x	x	х
WS-2 20 13094 149 63 14 AAB W	WS-2	19	1	148	63	11		VV \\/			x	x	x	х
	WS-2	20	13094	149	63	14	AAB	٧V						

Table 1. List and locations of 1993 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. WS-1designates wells placed by Comesky (1989). WS-2 designates wells placed by Schuh (1994).

Figure 4. Location of ground water and surface-water sampling sites used for monitoring water quality on Camp Grafton(South Unit) lands.

and initial water chemistry data from samples collected in 1987 are in Comesky (1989). A list of locations and wells for the 1996 sampling is on Table 2.

Well Set 2 (WS-2)

The second well set (labeled Well Set 2, or WS-2) was installed by Schuh (1994). This set consists of 23 wells constructed at twelve sites in nests of one to three wells per site. WS-2 sites were selected for coverage of drainage areas from areas of specific use within the CGS facility.

The WS-2 wells were placed primarily in the lower reaches of coulees feeding into the Colvin Creek and Lake Coe and South Washington Lake basins and their tributaries. The mouths of coulees were selected for three reasons. (1) The coulees are the major conduits of surface water runoff. For this reason, they are the logical points of concentration for contaminants draining from higher elevations. (2) Coulees are frequently the locations of springs formed where contacts between sand and gravel units and till are exposed along the cuts or walls of the coulees. (3) Coulees also represent local discharge areas from the ground-water flow system, where seepage or closer proximity of the water table to the surface facilitate evaporative water loss. As a result, monitoring points located along coulees should provide the highest probability of early detection of contaminants in both the local and regional flow systems.

In some cases seepage faces are extensive and relatively permanent. In others they may flow only some of the time during wet years, or sporadically following particularly large rainfall events. When such springs are flowing, or when ground water is nearer the surface so that higher evaporation occurs, the flow lines for the local flow system of the moraine will bend toward the coulees. This means that local ground water in the vicinity of springs should tend to receive any contaminant plumes from the upland recharge sites preferentially. Such monitoring points should provide the highest probability of early detection and protection for both the regional ground-water flow system and the lake and littoral areas.

Well placement was also based on specific use of the watershed. Specific targeted uses included weapons and demolitions ranges, vehicle staging areas, bivouac areas, and pest control areas. To accommodate sampling for organic contaminants, well construction consisted of 2-inch PVC casing, with joints fastened using stainless steel screws, rather than solvent weld cement (Parker et al. 1990, Schuh et al. 1997, Sykes et al. 1986). Well annuli above the well-screen were sealed with high solids bentonite. Each well was secured

by a 6-inch PVC protective cover (PC) with concrete at the base, and by a locking aluminum cap.

Placement, construction, and security make WS-2 wells most appropriate for sampling organic contaminants, and site-specific contaminants from munitions, pesticides, and petroleum spills on weapons and demolitions ranges, vehicular staging areas, bivouac sites, and pest control areas. Specific uses and locations for each well set were described in detail by Schuh (1994). A summary of samples collected from each well site in 1996 is shown on Table 2. Piezometric readings are avoided in these wells because of the desirability of avoiding surface contamination. WS-2 wells were sampled after their construction to provide baseline data for major ion chemistry and trace elements. However, they are not routinely used to monitor changes in major ion chemistry on the CGS facility. These samples are collected from WS-1 wells. WS-2 wells may be used for supplementary samples for major ion chemistry if needed for a specific investigative purpose. Locations of WS-2 wells are summarized on Table 2, and illustrated on Figure 4. Detailed hydrologic setting of well nests, lithologic logs for WS-2 wells, and initial water-chemistry data from samples collected in 1992 and 1993 are described in Schuh (1994).

Surface-Water Sampling Sites

There are six surface-water sampling sites. These include two springs, two sampling sites on Lake Coe, one sampling site on South Washington Lake, and one sampling site on a small reservoir located west of the M-60 range. The two spring sites, and the three lake sites were sampled with the WS-1 well set in 1986. The reservoir was added with the 1993 sampling because of its position for collecting runoff from the firing range complex (Area Descriptions R-1-3 through R-1-8 on Fig. 5). Surface-water sampling locations are summarized on Table 2, and shown on Figures 3 and 4.

Well Set	Site	SWC Well No.	Township N	Range W	Section	Location	water source	Mun.	TPH	piclor-	chlor-	Basic	Trace
M/S-1	100	100044	140	<u> </u>		00000					pymos		
WS-1		12024A	148	63	1	CBBC1	W					x	х
WS-1		120240	148	63	4	CBBC2						х	х
WS-1		12020A	149	63	14	DACD1	W					X	x
WS-1		12020B	148	63	14	DACD2	W					x	x
WS-1		12020C	148	63	14	DACD3	Ŵ					x	Ŷ
WS-1		12019A	149	63	23	ADBB1	W					x	x
WS-1		12019B	149	63	23	ADBB2	W					x	x
WS-1		12019C	149	63	23	ADBB3	W					x	x
14/S 1		12017A	149	63	25	DBBC1	W					х	х
WS-1		120176	149	63	25	DBBC2	VV.					X	х
WS-1		12017D	149	63	25	DBBBA	10/					x	x
WS-1		12025	149	63	26	DCA	W					X	x
WS-1		12012	149	63	27	DDDC1	Ŵ					×	x
WS-1		12015B	149	63	31	ABBC2	W					Ŷ	Ŷ
WS-1		12015C	149	63	31	ABBC3	W					x	x
WS-1	1.0	12026A	149	63	34	BBB1	W					x	x
WS-1		12026B	149	63	34	BBB2	W					х	х
WS-1		120118	149	63	35	ABBD2	W					х	х
WS-1		12014A	149	63	36	AACB1	W					x	х
WS-1		120140	149	63	36	AACB2	VV NAZ					x	х
WS-1		12014D	149	63	36	AACB4	VV \\\/					X	х
WS-1		12023A	149	63	36	DDBBC1	W					×	x
WS-1		12023B	149	63	36	DDBBC2	Ŵ					×	x
WS-1		12023C	149	63	36	DDBC3	W					Ŷ	Ŷ
WS-1		12021A	149	63	13	BAAB1	W					x	x
WS-2	1	13103	149	62	28	CCC1	147						
WS-2	1	13104	149	62	28	CCC2		×				x	x
WS-2	2	13105	149	62	29	DAD	Ŵ	Ŷ				X	X
WS-2	3	Spring	148	63	2	DA	S	x				×	x
WS-2	4	Reservoir	149	62	31	С	R	x				Ŷ	×
WS-2	5	13097	149	63	36	ACA1	W	х				x	x
WS-2	5	13098	149	63	36	ACA2	W	х				x	x
WS-2	0	13101	149	63	25	CDC1	W	х				x	x
WS-2	7	13086	149	63	25	CDC2	W	x				х	х
WS-2	7	13087	148	63	2	ACAT	VV VV	X				x	х
WS-2	8	13090	149	62	19	DBD1	VV \\\/	*	v	v		х	x
WS-2	8	13091	149	62	19	DBD2	ŵ		^	*	X		
WS-2	8	13106	149	62	19	DBD3	W		х	x	X		
WS-2	9	13088	149	63	13	DAA1	W		x	x	x		
WS-2	9	13089	149	63	13	DAA2	W		x	x	х		
WS-2	10	13092	149	63	12	CAC1	W		х	x	х		
WS-2	11	13093 S.W.Lako	149	63	12	CAC2	W		х	X	х		
WS-2	12	13084	149	63	14	RABCI			х	X	х		
WS-2	12	13085	148	63	2	BARC2	M/						
WS-2	13)	13099	149	63	35	BCBA1	W			¥			
WS-2	13	13100	149	63	35	BCBA2	Ŵ			x			
WS-2	14	Lake Coe	149	63	26	ADD	L		х	x	x		
WS-2	15	Lake Coe	149	63	27	DDB	L		x	x	x		
WS-2	10	Spring	149	63	13	BDA	S			x	x		
WS-2	17	13095	148	63	4	ABA1	W			x			
WS-2	20	13094	149	63	14	ADA2 AAR	VV M/			x			
				50	17		vv						

Table 2. List and locations of proposed 1996-1997 sampling sites for the CGS training facility. WS-1 designates wells placed by Comesky (1989), and WS-2 designates wells placed by Schuh (1994).

PREVIOUS SAMPLING RECOMMENDATIONS

Following water sampling and analysis in 1992 and 1993 six recommendations were made. These were listed above in the Introduction section. Recommendation #1994-1: that Lake Coe and South Washington Lake be sampled at least once per year to determine if picloram contamination is an ephemeral or long-term condition, has been implemented. Samples for picloram were collected in 1994, 1995, and 1996 from each lake. Results indicated that trace levels of picloram were consistently present, and that background picloram is therefore a consistent outcome of current weed-control management on the CGS facility. Status of pesticide detections will be presented and discussed in greater detail later in this report. Recommendation #1994-2: that dimethoate be resampled in WS-2 Well 13102 (Site 6) in early 1994 to determine whether the well was contaminated was implemented in June of 1994. Results indicated no further detections of dimethoate. The initial (fall 1993) detection was therefore either spurious or ephemeral. Recommendation <u>#1994-3:</u> that sampling for each potential contaminant group be selectively repeated in 1996 was implemented and will comprise the discussion of most of this report. Recommendation #1994-4: that all wells drilled in 1992 be surveyed for measuring point elevation (MP) has not yet been implemented. <u>Recommendation #1994-5:</u> that all wells drilled in 1992 be fitted with locking caps was completed by the North Dakota National Guard in 1995. However, WS-2 Well 13103 (Site 6, 149-062-28CCC1) was too long for the outside protective case, and the aluminum cap could not be closed without removing the inside cap, risking contamination of the well. This PC needs to be extended a few inches to allow for proper cap fit. Recommendation #1994-6: that a comparative analysis of water chemistry data trends be considered following the 1996 sampling was implemented in Schuh (1997), and will be updated in this report.

Following water sampling and analysis in 1996 eight recommendations were made (Schuh 1997). <u>Recommendation #1997-1</u>: that samples for picloram in Lake Coe and South Washington Lake be collected every other year instead of every year. The lakes were sampled in 2001. <u>Recommendation #1997-2</u>: that water supply wells locates south of HWY 15 (149-063-35A) should be sampled for water chemistry and for trace elements, and sampled annually to determine arsenic concentration. These wells were sampled and reported in a memorandum from W.M. Schuh to Mr. Neal Jacobson, titled <u>Water Quality and Arsenic Concentrations in the Camp Grafton South Supply Wells</u>, dated 5/20/98. <u>Recommendation #1997-3</u>: that appropriate procedures for disposal of high arsenic filtrate should be established following use or training in water purification using reverse

osmosis. Appropriate procedures have been worked out with the North Dakota Department of Health. <u>Recommendation #1997-4</u>: that the well-house area (149-063-35A) as a staging area for storage of herbicide and for mixing herbicides should be reviewed for wellprotection safety, and that pesticides be stored away from the well site. No action has yet been collected. <u>Recommendation #1997-5</u>: that CGS wells should be sampled again for water quality in 2001 has been implemented and is completed with this report. <u>Recommendation #1997-6</u>: that the PVC protective cover for WS-2 well 13103 (Site 1, 149-062-28CCC1) should be extended three or four inches. No action has yet been taken. <u>Recommendation #1997-1</u>: that elevations of the measuring points (tops) of all wells should be surveyed. No action has yet been taken.

CAMP GRAFTON SOUTH USE PATTERNS

In 1996 major ion chemistry and trace elements were measured in all of the WS-1 wells. In 2001 only the shallow WS-1 wells were sampled. Deeper wells in nests were not sampled. Sampling from the WS-2 wells was designed to monitor potential contamination based on CGS use patterns. A summary of samples collected from each well and surface-water source is shown on Table 3. Sample results in this report will be discussed under categories: 1. background water quality, 2. munitions and explosives, 3. herbicides, 4. pesticides, and 5. petroleum residues. CGS use patterns affecting water quality can be summarized as follows.

1. <u>Agricultural use</u>: most of the CGS facility is used for grazing during part or all of the year. The primary chemical parameter of concern would be nitrate. Nitrate is tested with major ion quality sampling on the WS-1 wells and selected WS-2 wells (Table 3). Weed control (primarily leafy spurge) is practiced throughout CGS. Herbicides used are picloram and 2,4-D.

2. <u>Bivouac sites</u>: common bivouac site locations are shown on Figure 5. Potential contaminants on bivouac sites include gasoline and diesel fuel (from vehicles staged on site), and insecticides used for mosquito control (usually malathion or chlorpyrifos). Previously, potential nitrate and bacterial contamination from latrines was possible. Current CGS practice (since about 1990) is to use portable lavatories, which should minimize future contamination. Tests for bivouac areas previously included TPH as

gasoline and TPH as fuel oil (which includes diesel fuel). This has been replaced by GRO (gasoline range organics) and DRO (diesel range organics). Insecticides tested in 1996 were chlorpyrifos and malathion. In 2001 only malathion was tested. Nitrates were tested for samples on bivouac sites. Some trace metals were also tested as possible indicators of contamination from spills of used motor oils. Locations of planned pesticide, petroleum, major ion chemistry, and trace element samples are on Table 3.

3. <u>Munitions and explosives use sites</u>: most of these are located south of HWY 15. The demolitions range, located at T149N R63W Section 36DC has been in operation since 1993. The M-60 range located at T149N R062W Section 32B was completed in 1993. The M203 range was completed in 1992; and the pistol range was completed in 1995.

CAMP GRAFTON SOUTH

BIVOUAC SITES, TRAINING AREAS & RANGES

AREA NO.	AREA DESCRIPTION	GRID LOCATION				
B-1-1	BIVOUAC SITE	NII 22658585				
B-1-2	BIVOUAC SITE	NII 23108489				
B-1-3	BIVOUAC SITE	NII 23808503				
B-1-4	BIVOUAC SITE	NI1 25558490				
B-1-5	BIVOUAC SITE	NH 24958630				
B-1-6	BIVOUAC SITE	NII 23368054				
B-1-7	BIVOUAC SITE	NII 22908090				
B-1-8	BIVOUAC SITE	NII 24148175				
13-1-9	BIVOUAC SITE	NII 23758175				
B-1-10	BIVOUAC SITE	NII 22908160				
B-1-11	BIVOUAC SITE	NII 22158155				
B-1-12	BIVOUAC SITE	N1126558268				
B-1-13	BIVOUAC SITE	NII 25057945				
B-1-14	BIVOUAC SITE	NII 25358280				
T-1-1	INDIRECT WEAPONS EMPL.	VIC NII 245845				
T-1-2	DIRECT FIRE EMPLACEMENT	VIC NII 257825				
T-1-3	TANK DITCH/BARRIER AREA	NII 251825 TO 25781				
T-1-4	TIMBER TRESTLE BRIDGE SITE	VIC NII 247827				
T-1-5	BAILEY BRIDGE SITE	VIC NII 246824				
T-1-6	ENGINEER EQUIP. TRNG. SITE	VIC NI1 252858				
T-1-7	M4T6 BRIDGE SITE, DRY (NORTH)	VIC NI1 256845				
T-1-8	M4T6 BRIDGE SITE, DRY (SOUTH)	VIC NI1 146826				
R-1-1	M203, AT 4, MK 19 RANGE	NH 25757995				
R-1-2	DEMOLITION RANGE	NII 25608025				
R-1-3	MULTIPURPOSE MG RANGE	NII 28308130				
R-1-4	MODIFIED RECORD FIRE RANGE	NI1 28308020				
R-1-5	KD RANGE (NOT CONSTRUCTED)					
R-1-6	25 METER ZERO RANGE	N11 28308055				
R-1-7	COMBAT PISTOL RANGE	NI1 28308060				
R-1-8	MICLIC RANGE	NII 28308085				

Pesticide

Figure 5. Location of sites for pesticide samples in relation to bivouac sites; and sample sites for explosives residue samples in relation to training areas involving demolitions and munitions training.

Explosive

Residue Samples

Well Set	Site	SWC Well No.	Township N	Range W	Section	Location	Water Source	Mun.	Petrol (GBO/	prom-	piclor-	malat-	Basic	Trace
								Expl.	DRO)		+ 24-D			
WS-1		12024A	148	83	1	CBBC1	W							
WS-1		12024B	148	83	1	CBBC2	Ŵ						x	x
WS-1 WS-1		12020A 12020B	149 149	63 63	14 14	DACD1 DACD2	W							
WS-1		12020C	149	83	14	DACD3	Ŵ						x	x
WS-1		12019A 12019B	149	63 63	23	ADBB1 ADBB2	Ŵ							
WS-1 WS-1		12019C 12017A	149 149	63	23	ADBB3	W						x	x
WS-1		12017B	149	ŝ	25	DBBC2	Ŵ							
WS-1		12017C	149 149	63	25	DBBC3 DBBB4	Ŵ						x	x
WS-1 WS-1		12025	149	63 63	26 27	DCA DDDC1	W						x	x
WS-1		12015B	149	88	31	ABBC2	Ŵ							
WS-1 WS-1		12015C 12026A	149	62 63	31	BBB1	Ŵ						×	x
WS-1	14	12026B 12011B	149	83	34	BBB2	W							
WS-1		12014A	149	ŝ	36	AACB1	Ŵ						~	*
WS-1 WS-1		12014B 12014C	149 149	63 63	36 36	AACB2 AACB3	Ŵ							
WS-1		12014D	149	63	36	AACB4	W						x	x
WS-1		120238	149	83	36	DDBBC2	Ŵ							
WS-1 WS-1		12023C 12021A	149 149	63 63	36 13	DDBC3 BAAB1	Ŵ						×	×
WS-2	н	13103	149	8	28	CCC1	NA/	v	v	v				
WS-2	1	13104	149	82	28	CCC2	ŵ	x	x	x			x	x
WS-2 WS-2	2	13105 Spring	149 148	82	29	DAD	w s	×					×	×
WS-2	4	Reservoir	149	62	31	C	R	x	x	x			x	×
WS-2	5	13098	149	83	36	ACA2	Ŵ	x	x	x			×	x
WS-2 WS-2	6 6	13101 13102	149 149	ន	න න	CDC1 CDC2	w	×			x		×	×
WS-2	7	13086	148	83	2	ACA1	W	x					x	x
WS-2	8	13090	149	82	19	DBD1	ŵ	X	X		x		Χ.	x
WS-2 WS-2	8	13091 13106	149 149	62 62	19 19	DBD2 DBD3	Ŵ		x		x	x		
WS-2	9	13088	149	នេ	13	DAA1	W		v			×		
WS-2	10	13092	149	ន	12	CAC1	Ŵ		^		^	^		
WS-2 WS-2	10 11	13093 S W Lake	149 149	83 63	12 14	CAC2 CA	Ľ		x		×	x	x	x
WS-2	12	13084	148	83	2	BABC1	W				ų			
WS-2	13)	13099	149	ŝ	35	BCBA1	ŵ				X			
WS-2 WS-2	13 14	13100 Lake Coe	149 149	83 63	36 26	ADD	W L	x	x	x	x x	x x	x	x
WS-2	15	Lake Coe	149	83	27	DDB	L	100040	~		v	v	v	~
WS-2	17	13095	148	383	4	ABA1	w		~		~	×	*	^
WS-2 WS-2	17 20	13096 13094	148 149	ន ន	4 14	ABA2 AAB	w				x x	x		
			1998 (1996)	100000										

Table 3. List and locations of 2001 proposed sampling sites for the CGS training facility as presented in the initial plan proposal. WS-1designates wells placed by Comesky (1989). WS-2 designates wells placed by Schuh (1994).

SAMPLING AND LABORATORY METHODS

Sampling methods were designed for specific contaminants. Sampling procedures for low level detection of organic compounds, such as petroleum products, explosives residues, and pesticides, require "clean-clean" procedures, which involve high assurance against spurious contamination caused by field procedures. Because of their low concentrations, trace elements also require greater cleanliness in sampling. Major ion chemistry can usually be sampled using less stringent procedures, although even for these elements specific protocals are necessary to avoid contamination.

In the CGS monitoring plan, major ion chemistry and trace elements were sampled using PVC bailers. They were collected from wells from which at least three well volumes had been purged using either air lift, or suction lift methods. Air-lift purging was used for wells having piezometric surface too deep for suction lift. A rubber compressor hose was field-cleaned by coiling it in a polyethylene tub, and scrubbing it with non-phosphate soap, and rinsing with distilled water. The tip was inserted in the well to a level at least 20 feet above the well screen. An air compressor was used to air lift the water. Suction lift was used on wells having piezometric surface near enough to the surface to support a water column (generally less than 20 feet). A 1-inch rigid polyethylene hose was washed with non-phosphate soap and stored in a polyethylene bag. The hose was inserted in the well, and water was pumped using a screw pump.

For organic contaminants, five well volumes were evacuated from the well to be sampled. Air lift was not used for these samples, because of concern over possible introduction of petroleum residues on a compressor hose. Clean-clean procedures were used. A polyethylene apron was placed on the soil around each well to be sampled, and weeds and brush were cut or flattened. The well-cap was removed, and the inside and outside of the well were cleaned using non-phosphate soap and a clean-white disposable laboratory tissue. Shallow wells were purged using the suction-lift procedure described above. Deeper wells were purged using a gas-squeeze pump. For petroleum samples the engine used for operating the gas-squeeze pump was moved as far downwind as possible from the sample well. Both the polyethylene hose of the suction pump and the gas squeeze pump were thoroughly cleaned with non-phosphate detergent and distilled water before placement in the well.

After purging, water samples were collected using a disposable polyethylene bailer. Before sampling the assistant washed his hands with soap and distilled water, and put on clean latex gloves from a container held by the clean worker. Throughout the sampling
process the assistant would periodically rinse his gloves with distilled water. The assistant washed the hands of the clean worker with non-phosphate soap and distilled water and then presented an opened package of disposable latex gloves to the clean worker, who removed them without touching the container and put them on his hands. The assistant opened the end of the disposable bailer package, without touching the bailer, and placed the still-covered body of the bailer under the arm of the clean worker. The assistant then removed a spool of nylon rope from a polyethylene bag, and without touching the rope presented the spool to the clean worker. The clean worker tied the rope to the bailer with gloved hand, and then placed the bailer down the well for sampling. About one additional well volume was bailed using the bailer, and the well was then sampled. The assistant opened caps of the bottles. Replicate bottles were partially filled from each bailer sample. Bottles were filled to the top before capping. After completion the samples were placed in coolers with frozen "blue-ice". Samples were placed in a refrigerator in a utility building at the CGS facility within two hours of sampling. Cold samples (appr. 3 ^OC) were packed on ice in insulated coolers and transported for arrival at the laboratory within 24 hours of packing. All samples arrived on ice.

The author maintained personal chain of custody of samples for determination of munitions and explosives residues from the field to the FEDERAL EXPRESS shipping point, where sealed containers were sent to DATA CHEM Laboratories in Salt Lake City Utah. The author maintained personal chain of custody from the field to Minnesota Valley Testing Laboratory in New Ulm, Minnesota, where samples for determination of GRO, DRO, and herbicide and pesticide residues were hand delivered.

Major Ion Chemistry and Trace Elements

Major ion chemistry [pH, total dissolved solids (TDS), hardness, specific conductivity, temperature, sodium adsorption ratio (SAR), bicarbonate (HCO₃), potassium (K), sodium (Na), sulfate (SO₄), nitrate (NO₃), chloride (Cl), fluoride (F), boron (B), silicate (SiO₂), iron (Fe), manganese (Mn), calcium (Ca), and magnesium (Mg)]; and trace elements [arsenic (As), barium (Ba), mercury (Hg), lead (Pb), and selenium (Se)] were determined from water samples collected from each well in the fall of 1996. Previous samples collected in 1994 included cadmium (Cd) and zinc (Zn) as well. All samples were collected after purging of at least three well volumes of water from the well. Samples were stored in 500 ml polyethylene bottles. All major ion chemistry bottles were washed with well water before collecting the sample. Bottles used for water samples for trace metal analysis were washed with concentrated nitric acid, two distilled water washes, and one

deionized water wash before use. In some samples, laboratory grade concentrated hydrochloric acid was used for wash. Trace element impurities in the hydrochloric acid were negligible. Samples for trace metal analysis were acidified in the field with 2 ml of concentrated nitric acid per 500 ml sample. Lab analytical methods for general chemistry and trace elements were described previously by Shaver (1991). Nitrate measurements were made using an Orion ion-specific electrode, using an Orion conductivity meter.

Organic Compounds

GRO (gasoline range organics), DRO (diesel range organics), malathion, prometon, and picloram were analyzed by Minnesota Valley Testing Laboratory (New Ulm, MN). For DRO and GRO the laboratory used Method 8015B (EPA-SW-846, Rev. 2, 1996). Prometon and malathion were extracted using Method 3510, and measured using Method 8270, while picloram and 2,4-D were extracted and measured using Method 8151 (EPA-SW-846, Rev. 2, 1996). Methods for determining TPH and pesticides in previous sampling (1992 and 1993) were described by Schuh (1994,1996). Water samples collected in 2001 for determination of munitions and explosives residues were analyzed by DATA CHEM LABORATORIES (Salt Lake City, Utah). Laboratory procedures used were Methods 8260B, 8270C, and 8332 (USEPA 1996b); and Method 8330 (USEPA 1996b). Methods for initial munitions and explosives collected prior to 1996 are described in Schuh (1994).

RESULTS

As previously described, changes in major ion chemistry and trace elements are routinely measured using water samples from WS-1 wells. In addition, WS-2 wells used for sampling potential contamination from munitions and explosives were also sampled for major ion chemistry and trace elements in 1996 because of potential elevated nitrate from ammonium nitrate, barium and nitrate from barium nitrate, and potential lead contamination from projectiles. Samples were also collected for selected munitions and explosives, pesticides, and petroleum hydrocarbons. A summary of wells and surface waters sampled is shown on Table 3.

Major Ion Chemistry

A summary of major ion chemistry for CGS surface and ground water samples collected through 1996 was discussed by Schuh (1997). It was reported that water chemistry of the Cherry Lake aquifer varied. Total dissolved solids (TDS) varied from as low as 200 mg/L to as much as 2,000 mg/L in well samples, and TDS in surface-water samples were gererally high (2,000 to 5,000 mg/L). pH varied from lows near 6, to high values near 9. Ground-water ranges from predominantly calcium bicarbonate to predominantly sodium sulfate types. Chloride concentrations varied from non-detects to more than 1,000 mg/L. Anionic composition of many deep water samples was a mixture of chloride, sulfate, and bicarbonate.

Highest specific conductance and TDS were usually in the deeper wells (screens placed more than 100 feet below land surface). Sodium concentrations were also highest in the deeper wells. Shallow wells commonly had a sodium adsorption ratio (SAR) of 2 or less. Several deep wells had SAR values greater than ten, and some were as large as 35. Sulfate concentrations were positively correlated with sodium and negatively correlated with calcium. Deeper wells were, in general, more sulfatic than shallower wells. Some, however, were also high in chloride. Highest SAR and specific conductance values were in the deep wells of nests placed in the uplands east of South Washington Lake.

Although Comesky (1989) identified three main sub-units of the Cherry Lake aquifer, the aquifer is heterogeneous. Some aquifer sub-units may be interconnected, while others may occur as isolated pockets within the glacial till. Temporal changes in water chemistry of some deep wells indicate that they are connected to other aquifer units, and can be freshened. For example, The deep well on Site 6 (Table 4) located in the littoral area southeast of Lake Coe changed from a specific conductance of 1,041 μ S in October of 1992, to 471 μ S in September of 1996. Following large rains in 1993 this well was flowing, indicating a large change in piezometric pressure caused by recharge in the uplands. Thus, both changing piezometric pressure and water chemistry data indicate a deep well

connected to the surface, and freshened by rainfall at some distance (more than one mile) from the well. Similar, but less marked decreases in specific conductance occurred for several deep wells, as shown by data on Tables 4 and 5. Differences in water chemistry between deep wells may be strongly related to their levels of isolation from other fresher bodies of water. In the most recent sampling (September 2001) the deep well on Site 6 had returned to an electrical conductivity of 1,072 μ S (Table 4).

Most of the shallow wells were reported by Schuh (1997) to have low SAR values, low specific conductance, and low TDS. The pH of most shallow wells was slightly acid to neutral (6.5 to 7.5). Calcium was the predominant cation. Water from most shallow wells was reported to be of good quality for drinking. Water from springs was similar in chemistry to water samples collected from shallow wells.

Surface waters, and particularly water from Lake Coe and South Washington Lake, were described as exposures of the water table, and appeared to function as discharge areas for ground water moving slowly toward the Sheyenne River. Water in these lakes was reported to be brackish (Schuh 1997), having specific conductance ranging from 3,720 to 6,430 μ S. Lake waters were high in sodium, sulfate and bicarbonate, and also had very large SAR values.

The previous report (Schuh 1997) examined deep well-water chemistry in detail. In the September 2001 sampling, it was decided to place primary emphasis on sampling the shallower wells, because these are most vulnerable to anthropogenic influence. Of the WS-1 (Comesky, 1989) well set, which is used primarily for non-organic species, only the shallow wells were sampled (Table 5). Of the WS-2 wells, which are used for sampling organic species (Schuh 1994), some of the deeper wells were also sampled (Table 4).

Results for samples collected in September, 2001 were similar for both well sets. Water samples collected in 2001 indicated no major changes in any of the previously determined parameters of major ion chemistry. Specific conductance values indicated a slight rise in salinity following a decrease due to freshening in the 1996 samples, but increases were almost always a return to previous concentrations. There is some evidence of long-term freshening of South Washington Lake and of the spring at T148 R63 Section 2DA (Table 4). However, these changes can be attributed to climatic conditions. The September 2001 sampling has provided no evidence of adverse anthropogenically induced changes in major ion chemistry at CGS.

Nitrate

Nitrate is one contaminant of potential concern. Nitrate has an EPA-MCL of 10 mg/L nitrate as N, or 44 mg/L as nitrate. Possible nitrate sources are fertilizers and manure from cattle. A certain amount of nitrate can result from atmospheric fixation and from mineralization of soil organic matter.

Well	Site	Well No.	Location	SI	Date	SiO2	Fe	Mn	Ca	Mg	Na	к	HCO3	CO3	\$04	Ci	F	NO3	в	TDS	CaCO3	NCH	PerNa	SAR	Cond	Temp	pH
Set				Ft.		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	.mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				µmohs/ cm	٥c	
WS-2	1	13103	149-062-28CCC1 149-062-28CCC1 149-062-28CCC1	139-144 139-144 139-144	10/21/92 9/5/96 9/4/01	25	0.06 0.06 0.21	0.55 0.61 0.59	32 34 35	8 8 8	180 180 180	8.8 7.4 7.1	482 481 480	nd nd nd	130 130 130	6.1 1.4 4.2	0.3 0.3 0.4	2.9 0.3 0.2	0.58	631 599 602	110 120 120	nd nd nd	76 75 75	7.5 7.1 7.1	958 794 916	8 9.4	7.26
WS-2	1	13104	149-062-28CCC2 149-062-28CCC2 149-062-28CCC2	56-61 56-61 56-61	10/21/92 9/4/96 9/4/01	30	0.3 0.47 0.38	0.4 0.37 0.37	78 76 76	20 19 20	27 25 27	10 9.7 10	372 376 380	nd nd nd	49 45 47	3.5 0.3 0	0.2 0.2 0.2	4.3 0.2 0.3	0.15	406 361 370	280 270 280	nd nd nu	17 16 17	0.7 0.7 0.7	661 515 6 i 9	8 9.1	7.07
WS-2	2	13105	149-062-29DAD 149-062-29DAD 1 49-062-29DAD	50-55 50-55 50-55	10/21/92 9/4/96 9 /4/01	33	0.1 0.13 0.18	0.52 0.52 0.5	88 84 88	24 22 2 3	12 11 12	7.3 7.8 8	365 368 370	nd nd nd	54 49 51	1.7 0.2 0	0.2 0.2 0.2	2 0.2 0.1	0.11	403 356 365	320 300 310	20 nd 1 1	7 7 7	0.3 0.3 0.3	608 527 600	10 8.5	7
WS-1	3	Spring	148-063-02DA	0	9/11/86	33	0.02	0.04	72	21	5.5	2.2	310	nd	27	2.6	0.1	0	0.03	316	270	12	4	0.1	540	13	
and WS-2			148-063-02DA 148-063-02DA 148-063-02DA	0 0 0	10/22/92 9/4/96 9/5/01	25	0.06 0.05 0.1	0.03 0.29 0.17	71 74 73	21 21 21	6 5.5 6	4 3.5 3	294 337 323	nd nd nd	34 16 18	2.7 0.3 0	0.2 0.2 0.2	0 0.3 0.1	0.03	309 287 281	260 270 270	23 0 4	5 4 5	0.2 0,1 0.2	502 424 469	9 13.3	6.8
WS-2	4	Reservoir	148-062-31C 148-062-31C 148-062-31C	0 0 0	10/22/92 9/4/96 9/5/01	3	0.12 0.09 0.12	0.01 0.14 0.25	36 26 33	9.5 8.5 14	3.5 2 5	18 8.8 11	182 145 193	nd nd	0.8 2.9 4.1	2.8 0 0	0.1 0.1 0.1	0.6 0.8 0.5	0.02	164 120 163	130 100 140	nd nd nd	5 4 7	0.1 0.1 0.2	331 224 303	10 20.2	7.25
WS-2	5	13097	149-063-36ACA1 149-063-36ACA1 149-063-36ACA1	41-48 41-48 41-48	10/22/92 9/3/96 9/4/01	25	0.12 0.19 0.24	0.34 0.34 0.3	60 60 58	15 15 15	23 22 28	6.7 6.4 6.4	302 305 311	nd nd nd	23 26 30	2.6 0.2 0	0.2 0.2 0.2	1.8 0.1 0.3	0.13	307 280 291	210 210 210	nd nd nd	18 18 22	0.7 0.7 0.8	543 427 472	10 7.6	6.65
WS-2	5	13098	149-063-36ACA2 149-063-36ACA2 1 49-063-36ACA2	21-27 21-27 21-27	10/22/92 9/3/96 9/4/01	24	0.61 0.92 0.49	0.66 0.61 0.71	67 65 69	16 16 17	8 7 8.5	5.3 3.8 4	288 300 296	nd nd nd	17 16 17	3.5 0 0	0.2 0.2 0.2	0 0.2 0.1	0.05	284 258 263	230 230 240	nd nd nd	7 6 7	0.2 0.2 0.2	491 425 455	10 7.2	6.63
WS-2	6	13101	149-063-25CDC1 149-063-25CDC2 149-063-25CDC1	110-115 110-115 110-115	10/22/92 9/5/96 9/5/01	25	0.04 0.02 0.07	1.5 1.8 1.8	94 91 94	19 19 19	120 120 1 20	13 11 12	250 246 245	nd nd nd	300 310 300	46 43 48	0.4 0.4 0.3	2.2 5 0.2	0.47	745 722 716	310 310 310	110 100 110	44 45 44	3 3 3	1041 890 1072	10 14.6	
WS-2	6	13102	149-063-25CDC2 149-063-25CDC1 149-063-25CDC2	25-30 25-30 25-30	10/22/92 9/5/96 9/5/01	25	0.27 0.23 0.31	0.46 0.42 0.49	77 75 84	25 24 27	11 10 12	4.3 4.3 4.5	359 366 398	nd nd nd	22 23 28	3.1 1.2 4.5	0.2 0.2 0.2	0.1 0.1 0.1	0.06	345 318 357	300 290 3 2 0	2 nđ nd	7 7 7	0.3 0.3 0.3	579 471 614	10 12.4	6.58
WS-2	7	13086	148-063-02ACA1 148-063-02ACA1 1 48-063-02ACA 1	97-102 97-102 97-102	10/22/92 9/3/96 9/5/01	25	0.02 0.03 0.09	1.3 1.3 1.3	83 78 78	21 20 20	23 23 24	5.1 5.4 5.3	371 369 370	nd nd nd	37 37 37	3.8 0.5 2	0.2 0.2 0.2	1.1 0.4 0.2	0.12	384 348 350	290 280 280	nd nd nd	14 15 15	0.6 0.6 0.6	623 524 547	8 8.5	6.42
WS-2	7	13087	148-063-02ACA2 148-063-02ACA2 1 48-063-02ACA2	18-23 18-23 18-23	10/22/92 9/3/96 9/5/01	26	0.23 0.47 0.26	0.37 0.28 0.28	53 55 51	15 15 14	2.5 2 3.5	1.6 1.6 1.7	236 246 223	nd nd nd	4.5 4.5 9.1	2.2 0.2 4.3	0.1 0.1 n d	0.8 0.5 0.3	0.03	222 201 194	190 200 180	1 nd 2	3 2 4	0.1 0.1 0.1	464 337 347	10 7.7	6.6
WS-2	8	13090	149-062-19DBD1	95-100	8/25/93	31	0.18	0.56	89	21	16	13	375	nd	45	3.7	0.2	5.6	0.04	410	310	1	10	0.4	673	10	7.55
WS-2	8	13106	149-062-19DBD3	43-48	8/25/93	40	0.04	0.71	69	18	8	7.8	311	nd	23	4.7	0.2	1.1	0.09	326	250	nd	6	0.2	1109	10	6.87
WS-2	9	13088	149-063-13DAA1	95-100	8/25/93	59	0.04	0.07	13	4	300	8.9	716	nđ	150	8.4	0.7	5	1.7	904	49	nd	92	19	1299	9	8.13
WS-2	9	13089	149-063-13DAA2	30-35	8/25/93	28	0.02	0.02	83	31	9	4.5	383	nd	35	6.2	0.2	1.2	0.05	387	330	21	5	0.2	776	11	7.69
WS-2	10	13092	149-063-12CAC1	105-110	8/25/93	28	0.18	0.28	38	11	150	9.9	453	nd	79	30	0.4	5.4	0.05	575	140	nd	68	5.5	867	11	7.23
WS-2	10	13093	149-063-12CAC2	45-50	8/25/93	26	0.14	0.48	78	23	13	5.1	346	n đ	27	2.7	0.2	1.3	0.73	348	290	6	9	0.3	581	12	6.35
WS-2	11	S. Washingt on Lake	149-063-14CA	0	9/11/86	1.4	0.04		15	60	1000	280	737	400	930	360	0.1	1	2.7	3410	280	nd	77	26	5400	15	
			149-063-14CA	0	9/12/01		2	0.45	30	45	230	68	582	50	220	91	0.1			1020	260	nd	59	6.2	1730		
			149-063-14DBB	0	8/24/93	32	0.03	0.01	20	35	630	200	778	100	710	260	0.1	1.1	0.06	2370	190	nď	75	20	3720	26	9.05

Well	Site	Well No.	Location	SI	Date	SiO2	Fe	Mn	Ca	Mg	Na	к	нсоз	C03	SO4	Ci	F	NO3	в	TDS	CaCO3	NCH	PerNa	SAR	Cond	Temp	рН
				Ft.		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	'mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				µmohs/ cm	0 C	
WS-2	12	13084	148-063-02BABC1	69-74	8/26/93	29	0.12	0.39	27	8.5	110	6.2	399	nd	26	12	0.3	4.5	0.22	421	100	nd	68	4.8	653	7	7.8
WS-2	12	13085	148-063-02BABC2	12-17	8/26/93	26	0.02	0.04	110	35	9.5	3.2	450	nd	65	7.1	0.1	5.7	0.04	484	420	50	5	0.2	746	8	7.56
WS-2	13	13099	149-063-35BCBA1	39.5-43.5	8/24/93	6.5	0.18	0.5	83	30	40	5.7	385	nd	100	7.8	0.1	1.5	2.3	468	330	15	20	1	728	13	7.08
WS-2	13	13100	149-063-35BCBA2	23-28	8/24/93	26	0.71	0.79	84	27	19	4.7	364	nd	60	7.7	0.2	0.9	0.08	410	320	22	11	0.5	629	14	7
WS-2	14	Lake Coe	149-063-26ADD 149-063-26ADD	0 0	8/24/93 9/5/01	9.7	0.05 0.15	0.01 0.03	20 1 7	33 33	900 620	120 81	1060 773	200 100	730 470	370 210	0.1 0.2	2 0.1	3.8	2910 1910	190 180	nd nd	85 83	28 20	3950 2700	27	9.2
WS-1 and WS-2	15	Lake Coe	149-063-26DA 149-063-27CA 149-063-27DDB	0 0 0	9/11/86 9/11/86 8/24/93	7.9 2.2 9.4	0.14 0.18 0.13	0.01 0.01 0.01	15 15 20	40 40 35	1300 1400 1500	160 180 200	1230 1210 1510	200 300 400	980 1100 1200	540 580 630	0.1 0.2 0.1	1 0.1 0	3.7 4.8 1.5	3850 4220 4740	200 200 190	nd nd nd	87 88 88	40 43 47	6000 6400 6430	15 14 26	9.46
WS-1 and WS-2	16	Spring	149-063-13BDA	0	9/11/86 8/25/93 9/5/96 9/11/01	30 34	0.03 0.09 0.04 0.3	0.13 1 0.17 0.43	79 90 76 50	25 30 25 1 7	17 15 13 8	7 4.8 6.4 8.3	365 428 366 27 1	nd nd nd nd	31 22 32 3.3	4.3 2.9 0.9 0	0.2 0.2 0.3 0.1	0.3 0 0.2 0.2	0.06 0.07	374 411 334 22 1	300 350 290 200	1 nd nd	11 8 9 8	0.4 0.3 0.3 0.2	620 660 483 400	14 18 16.3	7.22
WS-2	17	130954	148-063-04ABA1	39.67- 44.67	8/24/93	28	0.41	0.19	57	16	39	7	311	nd	41	6.7	0.2	4	0.13	353	210	nd	28	1.2	656	10	7.35
WS-2	17	13096	148-063-04ABA2	25-30	8/26/93	26	0.43	0.68	81	25	46	4.6	369	nd	94	11	0.1	1	0.09	472	310	3	24	1.1	718	11	7.47
WS-2	20	13094	149-063-14AAB	17-22	8/25/93	29	1.9	0.58	88	30	12	3.9	409	nd	24	7.6	0.2	2.3	0.06	401	340	8	7	0.3	633	11	7.06

Table 4. Major ion chemistry and selected chemical parameters for CGS WS-2 Wells (Schuh 1994). Locations of site numbers for designated for WS-2 well sites are shown on map Figures 3, 4, and 5.

Well	Well No.	Location	SI	Date	SiO2	Fe	Mn	Ca	Mg	Na	К	нсоз	CO3	SO4	CI	F	NO3	В	TDS	CaCO3	NCH	PerNa	SAR	Cond	Temp	рН
Set			Ft.		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				µmohs/ cm	°C	
WS-1	12024B	148-063-01CBBC2 148-063-01CBBC2 148-063-01CBBC2	151-156 151-156 151-156	9/2/87 10/23/91 9/11/96	30 30	0.01 0.02 0.04	0.79 0.68 0.79	40 37 38	11 11 11	75 80 82	7.9 9.1 7.5	339 341 344	nd nd nd	40 42 44	4.8 7.3 6.7	0.3 0.3 0.2	1.7 nd 0.1	0.27 0.3	379 386 359	150 140 140	nd nd nd	51 54 54	2.7 2.9 3	590 583 509	11 6 8.1	8.03
WS-1	12015B	149-062-31ABBC2 149-062-31ABBC2 149-062-31ABBC2	162-167 162-167 162-167	9/1/87 10/23/91 9/11/96	31 29	0.04 0.02 0.15	0.27 0.2 0.21	45 42 42	12 12 11	64 65 61	9.1 9 8.9	321 325 332	nd nd nd	43 36 37	4 4.4 4.2	0.3 0.3 0.3	2.8 nd 0.1	0.28 0.26	370 358 329	160 150 150	nd nd	44 46 45	2.2 2.3 2.2	570 563 493	13 5 7.9	8.44
WS-1	12015C	149-062-31ABBC3 149-062-31ABBC3 149-062-31ABBC3	78-83 78-83 78-83	10/23/91 9/11/96 9/6/01	32	0.02 0.3 0.08	1.1 0.64 0.46	63 69 68	18 18 18	5.5 4.5 6.5	6.2 5.2 5.5	290 300 300	nd nd nd	19 21 19	3 2.5 0	0.2 0.2 0.2	3.6 0.1 0.6	0.01	295 269 266	230 250 240	nd nd nd	5 4 5	0.2 0.1 0.2	455 410 470	б 7.6	7.97
WS-1	12021A	149-063-13BAAB1 149-063-13BAAB1 149-063-13BAAB1 149-063-13BAAB1	96-101 96-101 96-101 96-101	9/1/87 10/23/91 9/11/96 9/6/01	25 26	0.02 0.03 0.43 0.05	0.22 0.44 0.42 0.39	64 110 110 120	18 30 30 3 3	470 820 830 900	17 20 25 2 5	633 755 782 765	nd nd nd nd	140 79 77 6 7	490 1100 1100 1100	0.4 0.3 0.3 0.3	5.5 0.1 17 0.2	1.2 2.4	1540 2560 2580 2620	230 400 400 440	nd nd nd nd	80 81 81 81	13 18 18 19	3710 4440 3060 3980	12 6 7.9	8.03
WS-1	12020A	149-063-14DACD1 149-063-14DACD1 149-063-14DACD1	212-217 212-217 212-217	9/1/87 10/23/91 9/11/96	31 30	0.03 0.02 0.01	0.39 0.16 0.17	20 13 9.3	6 4 4	640 510 490	12 9.5 10	752 772 782	nd nd nd	430 340 330	360 160 140	0.5 0.6 0.7	0.6 3.7 2.3	3.4 2	1870 1450 1370	75 49 40	nd nd nd	94 95 95	32 32 34	3070 2310 1858	12 6 8.3	8.62
WS-1	12020B	149-063-14DACD2 149-063-14DACD2 149-063-14DACD2	151-156 151-156 151-156	9/1/87 10/23/91 9/11/96	31 29	0.01 0.02 0.05	0.22 0.17 0.18	14 15 11	4 3 4	310 320 310	8.4 7.9 9	659 671 693	nd nd nd	200 190 190	20 23 19	0.7 0.6 0.6	0.5 1.8 0.2	1.1 1.3	915 923 885	52 50 44	nd nd nd	92 92 92	19 20 20	1460 1384 1173	12 6 8.4	8.41
WS-1	12020C	149-063-14DACD3 149-063-14DACD3 149-063-14DACD3 149-063-14DACD3 149-063-14DACD3	38-43 38-43 38-43 38-43	9/1/87 10/23/91 9/10/96 9/6/01	32 29	0.01 0.08 0.09 0.02	0.06 0.07 0.07 0.02	73 70 73 74	23 23 23 2 3	18 15 15 16	6.8 5.8 5.5 4.9	341 335 353 338	nd nd nd	35 35 31 3 2	3.9 5.6 4.5 9.7	0.2 0.2 0.2 0.3	2.4 1.4 1.8 2.7	0.06 0.05	362 350 328 3 3 0	280 270 270 280	nd nd nd 2	12 11 10 11	0.5 0.4 0.4 0.4	580 567 499 585	12 6 7.7	8.04
WS-1	12019A	149-063-23ADBB1 149-063-23ADBB1 149-063-23ADBB1	218-223 218-223 218-223	9/1/87 10/23/91 9/11/96	30 28	0.09 0.11 0.12	0.43 0.41 0.42	41 44 41	10 11 9.5	76 67 70	6.9 6.3 6.5	322 331 337	nd nd nd	19 23 23	21 16 18	0.2 0.2 0.2	2.9 4.3 0.2	0.15 0.14	367 363 335	140 160 140	nd nd nd	52 47 50	2.8 2.3 2.6	590 569 491	12 6 8.5	8.3
WS-1	12019B	149-063-23ADBB2 149-063-23ADBB2 149-063-23ADBB2	32-37 32-37 32-37	9/1/87 10/23/91 9/10/96	28 26	0.21 0.05 0.25	0.44 0.35 0.4	74 72 77	21 21 22	6.5 8 6	3.6 3.3 3.1	298 304 310	nd nd nd	40 45 53	1.6 3.9 1.7	0.2 0.2 0.1	0.4 0.7 0.4	0.04 0.05	323 331 317	270 270 280	27 17 29	5 6 4	0.2 0.2 0.2	515 524 471	11 9 7.9	8.08
WS-1	12019C	149-063-23ADBB3 149-063-23ADBB3 149-063-23ADBB3 149-063-23ADBB3	7-12 7-12 7-12 7-12	9/1/87 10/23/91 9/10/96 9/6/0 1	38 27	0.11 0 1.7 0.84	0.33 0.05 1.3 0.45	77 82 80 78	18 20 18 21	4 3.5 3.5 5	2.3 1.2 1.4 1.3	287 331 315 284	nd nd nd	16 9.9 19 3 7	1 3.4 2.7 nd	0.2 0.2 0.1 0.2	3.4 24 14 10	0.05 0.03	301 334 297 294	270 290 270 280	31 16 16 4 9	3 3 4	0.1 0.1 0.1 0.1	585 537 462 525	14 10 10.9	8.08
WS-1	12017A	149-063-25DBBC1 149-063-25DBBC1 149-063-25DBBC1	263-268 263-268 263-268	9/1/87 10/24/91 9/11/96	30 27	0.01 0 0.02	0.24 0.24 0.28	19 18 18	4.5 4.5 4.5	240 250 250	7.5 8 7.4	444 454 458	nd nd nd	100 100 110	99 96 97	0.4 0.4 0.4	0.6 0 1.2	0.65 0.71	721 729 715	66 64 64	nd nd nd	87 88 88	13 14 14	1200 1144 1008	12 5 8.8	8.15
WS-1	12017B	149-063-25DBBC2 149-063-25DBBC2 149-063-25DBBC2	78-83 78-83 78-83	9/2/87 10/24/91 9/11/96	22 26	0.01 0.01 0.15	0.15 0.11 0.13	26 25 29	7.5 7.5 8.5	160 130 120	14 7.9 8.3	376 416 418	nd nd nd	150 45 53	4.1 7.5 8.4	0.5 0.5 0.5	3.1 5.6 0.9	0.55 0.47	573 460 435	96 94 110	nd nd nd	75 73 69	7.1 5.8 5	860 706 632	11 7 7.9	8.16
WS-1	12017C	149-063-25DBBC3 149-063-25DBBC3 149-063-25DBBC3	51-56 51-56 51-56	9/2/87 10/24/91 9/10/96	31 24	0.09 0 0.08	0.5 0.03 0.25	72 62 66	20 17 19	6 6.5 5	5.1 3.9 4.3	314 264 293	nd nd nd	25 23 26	1 4.8 3.7	0.3 0.2 0.2	0.4 2.4 0.6	0.06 0.03	316 274 269	260 220 240	5 8 3	5 6 4	0.2 0.2 0.1	490 457 411	11 9 9.4	7.84
WS-1	12017D	149-063-25DBBC4 149-063-25DBBC4 149-063-25DBBC4 149-063-25DBBC4	23-28 23-28 23-28 23-28 23-28	9/2/87 10/24/91 9/10/96 9/6/01	32 32	1.1 1.8 1.8 2	0.93 0.74 0.69 0.6 1	72 70 74 74	19 19 19 20	5.5 7 6 8	5.2 4.9 4.3 2	319 316 325 324	nd nd nd nd	19 18 20 2 2	1.3 4 2.9 nd	0.2 0.2 0.2 0.2	1 3 0.1 0.1	0.07 0.04	314 317 289 289	260 250 260 270	nd nd nd 2	4 5 5 6	0.1 0.2 0.2 0.2	500 500 442 504	9 9 7.5	7.32
WS-1	12025	149-063-26DCA 149-063-26DCA 149-063-26DCA 149-063-26DCA 149-063-26DCA	38-43 38-43 38-43 38-43	9/1/87 10/24/91 9/12/96 9/6/01	28 27	0.61 0.49 1.4 1.1	0.34 0.28 0.31 0.3	71 73 87 80	46 53 58 54	83 82 83 90	12 14 14 13	444 476 500 511	nd nd nd nd	170 190 230 190	14 14 20 17	0.3 0.3 0.2 0.2	2 0 0.4 0.2	0.26 0.21	647 688 740 698	370 400 460 420	2 10 46 3	32 30 28 3 1	1.9 1.8 1.7 1.9	975 996 880 992	11 7 7.9	7.87
WS-1		149-063-27DDDC2 149-063-27DDDC2 149-063-27DDDC2	158-163 158-163 158-163	9/1/87 11/19/91 9/11/96	10 28	0.15 0.01 0.02	0.24 1.1 1.1	29 53 57	8.5 15 15	2.5 64 65	14 9.2 8.6	161 299 308	nd nd nd	61 89 94	1.8 15 41	0.1 0.3 0.3	1 1.2 0.2	0.07 0.31	207 423 434	110 190 200	nd nd nd	4 40 40	0.1 2 2	241 638 725	13 7 7.7	7.53

Well Set	Well No.	Location	SI	Date	SiQ2	Fe	Mn	Ca	Mg	Na	ĸ	HCO3	CO3	S04	CI	F	NO3	В	TDS	CaCO3	NCH	PerNa	SAR	Cond	Temp	рĤ
			Ft.		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L				µmohs/	0 C	
WS-1	12026A	149-063-348881 149-063-348881 149-063-348881	251-256 251-256 251-256	9/1/87 11/19/91 9/12/96	27 30	0.03 0.01 0.07	0.68 0.73 0.72	47 49 52	23 15 14	120 59 50	14 7.7 7.2	428 328 318	nd nd nd	110 47 48	23 13 10	0.5 0.5 0.5	1 0 0.3	0.28 0.2	577 384 340	210 180 190	nd nd nd	53 40 36	3.6 1.9 1.6	595 491	7	7.05
WS-1	12026B	149-063-348882 149-063-348882 149-063-348882 149-063-348882	27-32 27-32 27-32 27-32 27-32	9/1/87 10/24/91 10/22/92 9/12/96	27 25 25	0.01 0.01 0.02 0.01	0.34 0.04 0.01 0.33	74 71 70 75	25 23 23 24	28 18 16 18	4,7 3.6 3.1 3.5	298 289 281 305	nd nd nd nd	89 72 66 63	8.5 8 5.6 5.5	0.2 0.2 0.1 0.2	1 5.1 7.6 17	0.1 0.05 0	405 368 354 357	290 270 270 290	44 35 39 36	17 12 11 12	0.7 0.5 0.4 0.5	670 566 486	11 6 7,4	7.95
CGS	Supply	149-063-35A1 149-063-35A1	28-36 28-36	9/3/97 3/5/98		0.99 0.44	0.33 0.33	81 88	29 31	96 110	9.8 9.9	463 479	nd nd	160 190	10 16	0.2	0.1		615 682	320 350	nd nd	38 40	2.3 2.6	932 1048	7.9 7.5	
CGS	Supply	149-063-35A2 149-063-35A2	26-34 26-34	9/3/97 3/5/98		0.93 0.35	0.34 0.33	83 89	29 31	96 110	9.9 9.8	465 468	nd nd	160 200	9.6 19	0.2 0.2	0.1 1.5		618 692	330 350	nd nd	38 40	2.3	935 1037	7.9 7.7	
WS-1	12011B	149-063-35ABBD2 149-063-35ABBD2 149-063-35ABBD2 149-063-35ABBD2 149-063-35ABBD2	45-50 45-50 45-50 45-50	9/1/87 10/24/91 9/10/96 9/6/01	29 27	0.76 0.37 1.2 1	0.29 0.34 0.29 0.27	68 68 80 7 9	25 26 29 2 9	93 94 99 97	9.6 9.9 10 9.3	422 432 459 455	nd nd nd	120 130 170 160	8.5 10 11 9.4	0.2 0.3 0.2 0.2	1.8 5.5 0.1 0.1	0.3 0.24	564 585 627 609	270 280 320 320	nd nd nd	42 41 39 39	2.5 2.4 2.4 2.4	880 869 835 887	10 7 7.7	8.02
WS-1	12014B	149-063-36AACB2 149-063-36AACB2 149-063-36AACB2	181-186 181-186 181-186	9/2/87 10/22/91 9/11/96	31 28	0.03 0.03 0.02	1.1 1 1.1	63 62 64	13 13 13	140 140 140	9.8 9 9.5	452 457 467	nd nd nd	110 110 110	32 30 33	0.2 0.1 0.2	2.7 0.8 0.2	0.5 0.48	626 619 601	210 210 210	nđ nđ nđ	58 58 58	4.2 4.2 4.2	950 929 804	10 7 8,4	7.75
WS-1	12014C	149-063-36AACB3 149-063-36AACB3 149-063-36AACB3	64-69 64-69 64-69	9/2/87 10/22/91 9/11/96	32 29	0.18 0.23 0.37	0.81 0.61 0.6	110 120 110	30 32 29	11 11 9	7.4 7.4 6.5	401 486 472	nd nd nd	57 55 50	3 5 5.2	0.2 0.1 0.2	0.4 0 0.1	0.06 0.04	450 499 444	400 430 390	70 33 7	6 5 5	0.2 0.2 0.2	740 763 627	10 8 8,4	7.41
WS-1	12014D	149-063-36AACB4 149-063-36AACB4 149-063-36AACB4 149-063-36AACB4	24-29 24-29 24-29 24-29	9/2/87 10/22/91 9/10/96 9 /6/01	29 26	0.02 0.01 0.01 0.08	0.03 0.02 0.02 0.04	79 78 82 91	23 23 23 2 6	5.5 6 4 5.5	3.5 5.6 2.8 3	305 329 342 3 5 2	nd nd nd nd	29 36 27 29	2.9 6 4.1 2.8	0.2 0.1 0.2 0.1	3.2 10 12 1 5	0.03 0.03	325 353 323 346	290 290 300 330	42 20 19 4 6	4 4 3 3	0.1 0.2 0.1 0.1	540 597 481 577	12 8 7.6	7.59
WS-1	12013B	149-063-36BBDA2 149-063-36BBDA2 149-063-368BDA2	22-27 22-27 22-27 22-27	9/1/87 10/24/91 9/11/96	31 30	0.01 0.01 0.03	0.11 0.34 0.36	59 60 66	22 19 19	47 49 45	7.5 7.7 7.6	358 358 370	nd nd nd	43 42 47	8 8.9 8.2	0.3 0.3 0.3	1 0.2 0.4	0.23 0.19	395 394 376	240 230 240	nd nd nd	29 31 28	1.3 1.4 1.3	620 620 536	14 9 8,7	7.96
WS-1	12023A	149-063-36DDBC1 149-063-36DDBC1 149-063-36DDBC1	131-136 131-136 131-136	9/2/87 10/22/91 9/11/96	31 27	0.02 0.29 0.1	0.93 0.77 0.62	30 28 29	8 7 7	130 140 130	7.5 6.9 6.9	399 413 403	nd nd nd	49 48 47	18 20 18	0.5 0.3 0.3	2 0 0.6	0.38 0.35	474 482 439	110 99 100	nd nd nd	71 74 72	5.4 6.1 5.7	720 748 613	11 6 7 7	8.18
WS-1	12023B	149-063-36DDBC2 149-063-36DDBC2 149-063-36DDBC2	83-88 83-88 83-88	9/2/87 10/22/91 9/11/96	32 29	0.01 0.02 0.01	1.4 1.3 1.3	55 56 59	15 16 16	61 52 52	7.6 7.6 7.3	353 353 360	nd nd nd	38 35 41	9.4 9.2 9.9	0.3 0.2 0.2	0.4 0.4 0.1	0.22 0.16	394 381 364	200 210 210	nd nd nd	39 34 34	1.9 1.6 1.6	620 598 509	10 6 7.4	7.83
WS-1	12023C	149-063-36DDBC3 149-063-36DDBC3 149-063-36DDBC3 149-063-36DDBC3	46-51 46-51 46-51 46-51	9/2/87 10/22/91 9/10/96 9/6/01	30 27	0.4 0.31 0.55 0.62	0.32 0.3 0.31 0.27	77 72 75 78	22 21 22 2 3	8 16 11 8,5	4.4 5.6 4.1 2.9	329 339 345 355	nd nd nd	28 30 27 2 0	3.3 5.5 5.3 4.5	0.2 0.2 0.2 0.2	0.5 3.7 0.1 0.1	0.08 0.05	336 349 316 313	280 270 280 290	13 nd nd	6 11 8 6	0.2 0.4 0.3	540 548 465	10 7 7.9	2

.

Table 5. General ion chemistry and selected chemical parameters for CGS WS-1 Wells (Comesky (1989). Locations for designated for WS-1 sites are shown on map Figure 4.

Small amounts of nitrate might be locally derived from ammonium nitrate and barium nitrate used in explosives. Moderate amounts of nitrate would be expected to be immobilized almost entirely within the grass vegetation on the CGS lands.

Nitrate concentrations in water samples were usually low, at a fraction of a mg/L on both WS-1 and WS-2 well sets (Tables 4 and 5). None of the water samples in any of the sampling years approached an EPA-MCL. On three sites (Location 149-063-23ADDB3, SWC Well No. 12019C; Location 149-063-34BBB2, SWC Well No. 12026B; and Location 149-063-36AACB4, SWC Well No. 12014D), (Table 5), nitrate concentrations have approached or exceeded 25% of an MCL. There also seems to be a slight upward trend at these three sites. All wells with elevated nitrate have shallow well screens. All three of these sites are in areas used to pasture cattle. Stratification of nitrate, with highest concentrations in the upper part of the aquifer is a common occurrence in North Dakota ground water, and these concentrations are considered low compared with most agricultural settings. Samples of WS-1 and WS-2 well sets through 2001 have shown no indications of nitrate contamination at levels of concern, nor is there substantial evidence of anthropogenically induced ground-water degradation with respect to nitrate.

Trace Elements

Trace elements arsenic, mercury, lead, and selenium were measured in WS-1 wells in 1987, 1991, and 1996. In addition, barium was measured in 1991 and 1996, and cadmium and zinc were measured in 1991. There were no detections of barium, cadmium, mercury, lead, selenium and zinc at levels of toxicological concern in any of the samples (Schuh 1994, 1997). Most were non-detections. There were also no trends of rising concentrations.

Trace elements were measured for all WS-2 wells in 1993 (Table 7) and for selected wells in 1996 (Schuh 1997). Barium and lead were sampled as possible indicators of residuals from projectiles and barium nitrate, in wells designated as indicators of contamination from munitions and explosives. Other trace metals were sampled from wells associated with some bivouac areas. There were no detections of heavy metals approaching EPA-MCL.

In September 2001 water samples were collected for determination of arsenic, barium, lead, lithium, mercury, molybdenum, selenium, strontium, and zinc. All except arsenic, which was above EPA-MCL on several sites, were below EPA-MCL. Arsenic will be discussed in more detail in the next section. None of the other trace elements have evident increases in concentration since initial samples were collected in 1987 before development of the military facility. These data are summarized for WS-1 wells on Table 6, and for WS-2 wells on Table 7.

3			Screened							5 896.0	
	Well No.	Location	Interval (ft.)	Date Sampled	As	Нg	Li	Mo	Pb	Se	Sr
-						-	~ •	10		7	220
	12024B	14806301CBBC2	151-156	9/2/87	1	nd	84	10	nd	na	330
		14806301CBBC2	151-156	10/23/91	na	nα	90	0	1101	11.4	100
	12015B	14906231ABBC2	162-167	9/1/87	42	nd	79	26	-	nd	330
		14906231ABBC2	162-167	10/23/91	1	nđ	80	18	nd	nd	390
		14906231ABBC2	162-167	9/11/96	47	nd	70	19	nd	nd	320
	120150	1490623148803	78-83	10/23/91	10	nd	20	4	nd	nđ	350
	120130	14906231ABBC3	78-83	9/11/96	10	nd	20	1	nd	nd	290
		14906231ABBC3	78-83	9/6/01	11	nd	<100	3	< 2	< 3	300
	Supply Well	14906232BAA	-	3/5/98	6		90	17	nd	nd	270
		4 4 9 9 4 9 1 9 1 9 1 9 1	06 101	0/1/07	24	0 1	160	16	nd	nd	510
	12021A	14906313BAAB1 14006212BAAB1	96-101	10/23/91	24	nd	250	18	nd	4	980
		14906313BAAB1 14906313BAAB1	96-101	9/11/96	36	nd	240	19	nd	nd	890
	×	14906313BAAB1	96-101	9/6/01	38	nđ	240	15	< 2	16	960
	120203	1400621403001	212-217	9/1/87	4	NS	180	8	1	NS	280
	IZUZUA	14906314DACD1	212-217	10/23/91	6	nd	140	6	nd	nd	230
		14906314DACD1	212-217	9/11/96	6	nd	130	47	nd	nd	190
	120208	1490631405002	151-156	9/1/87	4	NS	120	200	1	1	160
	120200	14906314DACD2	151-156	10/23/91	4	nd	110	10	nd	nd	190
		14906314DACD2	151-156	9/11/96	4	nd	110	69	nd	nd	170
	120200	14906314DACD3	38-43	9/1/87	14	NS	29	5	NS	NS	290
	100000	14906314DACD3	38-43	10/23/91	8	nd	30	4	nd	nd	330
		14906314DACD3	38-43	9/10/96	6	nd	30	2	nd	2	280
		14906314DACD3	38-43	9/6/01	11	nd	<100	4	<2)	6	280
	12019A	14906323ADBB1	218-223	9/1/87	5	NS	45	9	NS	1	400
		14906323ADBB1	218-223	10/23/91	3	nd	50	7	nd	nd	450
		14906323ADBB1	218-223	9/11/96	3	nd	40	4	nd	nd	380
	12019B	14906323ADBB2	32-37	9/1/87	3	0.1	17	1	NS	1	230
		14906323ADBB2	32-37	10/23/91	2	0.1	20	1	1	1	260
		14906323ADBB2	32-37	9/10/96	nd	nd	20	nd	nd	nd	250
	12019C	14906323ADBB3	7-12	9/1/87	1	0.1	8	NS	NS	2	170
		14906323ADBB3	7-12	10/23/91	1	0.1	7	1	1	3	190
		14906323ADBB3	7-12	9/10/96	nđ	nd	10	nd	nd	1	200
		14906323ADBB3	7-12	9/6/01	2	0	<100	0	~ 2	13	100
	12017A	14906325DBBC1	263-268	9/1/87	5	nd	99	200	nd	nd	170
		14906325DBBC1	263-268	10/24/91	2	0.1	100	4	1	nd	200
		14906325DBBC1	263-268	9/11/96	4	na	100	20	na	nu	190
	12017B	14906325DBBC2	78-83	9/2/87	13	nd	87	300	nd	nd	270
		14906325DBBC2	78-83	10/24/91	19	0.1	80	12	r.d	nd	260
		14906325DBBC2	78-83	9/11/96	25	nd	70	15	nd	na	270
	12017C	14906325DBBC3	51-56	9/2/87	6	0.3	21	4	r.d	nd	270
		14906325DBBC3	51-56	10/24/91	3	0.1	20	2	nd	nd	260
		14906325DBBC3	51-56	9/10/96	3	nd	20	2	nd	nd	260

Table 6.Trace elements arsenic (As), mercury (Hg), lithium (Li), lead (Pb), selenium (Se), andstrontium (Sr) concentrations for WS-1 wells (Comesky 1989).NS = not samples. nd = none detected.

· · · · · · · · · · · · · · · · · · ·		Screened			(micr	ograms	per	liter	•)	
Wall No	Location	Interval	Date	As	Hg	Li	Mo	Pb	Se	Sr
Merr No.	hooderon	(ft.)	Sampled							
								_	-	
12017D	14906325DBBC4	23-28	9/2/87	8	nd	21	4	nd	nd	290
Care and Care of Lines.	14906325DBBC4	23-28	10/24/91	2	0.1	20	1	nd	nd	320
	14906325DBBC4	23-28	9/10/96	3	nd	20	nd	nd	nd	300
	14906325DBBC4	23-28	9/6/01	6	nd	<100	3	< 2	< 3	280
12025	14906326DCA	38-43	9/1/87	15	0.1	82	6	nd	nd	460
	14906326DCA	38-43	10/24/91	13	0.1	80	3	na	na	510
	14906326DCA	38-43	9/12/96	19	0.1	80	2	nd	nd	510
	14906326DCA	38-43	9/6/01	19	nd	<100	5	< 2	< 3	500
		150 160	0/1/07	7	0 1	5	nđ	nd	2	140
	14906327DDDC2	158-163	9/1/0/	1	5.U	80	q	nd	1	390
	14906327DDDC2	158-163	11/19/91	1	na	00	12	nd	5	320
	14906327DDDC2	158-163	9/11/96	T.	na	80	15	na	nu	520
120267	140062:40001	251-256	9/1/87	2	nd	94	12	nd	nd	320
TZUZOA	140062240001	251-256	11/19/91	4	nd	60	10	nd	1	390
	14906334BBB1	251-256	9/12/96	3	0.1	50	9	nd	nđ	310
	1100000100001		energia de la compañía				-	-		4 - 6
12026B	14906334BBB2	27-32	9/1/87	1	nd	30	nd	nd	n	170
	14906334BBB2	27-32	10/24/91	1	0.1	20	nd	nd	2	170
	14906334BBB2	27-32	9/12/96	1	nd	20	nd	nd	1	160
						70	F	~ 7	nđ	410
12011B	14906335ABBD2	45-50	9/1/8/	22	nd	79	2	na	na	410
	14906335ABBD2	45-50	10/24/91	16	0.1	80	4	na	na	450
	14906335ABBD2	45-50	9/10/96	20	nd	80	3	nd	nd	460
	14906335ABBD2	45-50	9/6/01	24	nd	<100	4	< 2	< 3	470
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	101 106	9/2/87	1	nđ	120	9	n	1	480
12014B	14906336AACB2	101-100	10/22/07	1	nd	100	5	nd	nd	500
	14906336AACB2	181-186	10/22/91		nd	110	8	nd	nd	430
	14906336AACB2	181-186	9/11/96	U	na	110	U	nu	110	100
120140	14906336AACB3	64-69	9/2/87	13	0.1	30	2	n	1	420
120190	14906336AACB3	64-69	10/22/91	11	nd	30	2	nd	nd	460
	14906336AACB3	64-69	9/11/96	8	nd	30	4	nd	nd	370
					_		~			000
12014D	14906336AACB4	24-29	9/2/87	NS	nd	14	3	n	1	220
	14906336AACB4	24-29	10/22/91	nd	nd	10	1	nd	na	250
	14906336AACB4	24-29	9/10/96	nd	nd	20	nd	nd	nd	220
	14906336AACB4	24-29	9/6/01	2	nd	<100	2	< 2	< 3	22
	_	00 07	0/1/07	20	50	18	13	nđ	nd	380
12013B	14906336BBDA2	22-21	3/1/0/	10	0 1	50	11	nd	nd	400
	14906336BBDA2	22-27	10/24/91	12	0.1	10	10	nu nd	nd	261
	14906336BBDA2	22-27	9/11/96	22	nd	40	10	nu	nu	500
120228	1400633600801	131-136	9/2/87	1	0.2	83	30	nd	nd	23
TZUZOM	1400633600000	131-136	10/22/91	2	nd	80	16	nd	nd	250
	14906336DDBC1	131-136	9/11/96	1	nd	70	30	nd	nd	200
				-		~~		2		211
12023B	14906336DDBC2	83-88	9/2/87	1	nd	68	20	na	na	101
	14906336DDBC2	83-88	10/22/91	1	nd	60	14	nd	na	400
	14906336DDBC2	83-88	9/11/96	1	nd	60	14	nd	nd	35
		AC 51	9/2/27	5	nd	23	2	nd	nd	24
12023C	14906336DDBC3	40-31	10/22/07	د ۵	nd	30	4	nd	nd	34
	14906336DDBC3	40-01	0/10/06	ר ה	nd	20	1	nd	nd	26
	14906 136DDBC3	40-01	9/10/90	J	110	20	-			~ 4

Table 6.Trace elements arsenic (As), mercury (Hg), lithium (Li), lead (Pb), selenium (Se), andstrontium (Sr) concentrations for WS-1 wells (Comesky 1989).NS = not samples. nd = none detected.

			Screened			(mic	roar	ams n	per li	ter)				
			Interval	Date						001				
<u>Site</u>	<u>Well No.</u>	Location	(ft)	Sampled	As	Ba	Cd	Hg	Li	Мо	Pb	Se	Sr	Zn
1	13103	149-062-28CCC1	139-144	10/21/92	4	ns	nd	nd	90	21	nd	nd	300	ns
1		149-062-28CCC1	139-144	09/05/96	4	13	ns	nd	90	19	nd	nd	220	ns
1		149-062-28CCC1	139-144	09/04/01	6	<100	ns	nd	<100	26	< 2	< 3	210	< 5 0
1	13104	149-062-28ccc2	56-61	10/21/92	50	20	-	nd	70	0				
1		149-062-28CCC2	56-61	09/04/96	17	57	na	na	70	8	na	na	550	ns
1		149-062-28CCC2	56-61	09/04/01	62	<100	ns	nd	<100	9	na < 2	na < 3	440	ns <50
2	13105	149-062 20000		10/01/00										
2	10100	149-062-29DAD	50-55 60-66	10/21/92	25	ns	nd	nd	40	3	nd	nd	500	ns
2		149-062-29DAD	50-55 50 55	09/04/96	26	97	ns	nd	40	3	nd	nd	410	ns
		LIS COL LIDAD	50-55	09/04/96	28	110	ns	0.1	<100	5	< 2	< 3	430	< 5 0
3	South	148-063-02DA	0 – 0	09/11/86	1	nc	na	0 1	0.1	-	4	-	000	
3	Spring	148-063-02DA	0-0	10/22/92	1 2	ns	nd	0.1 5d	21	لد ج	1	T J	200	ns
3		148-063-02DA	0-0	09/04/96	1	22	na	nd	20	na	na	na	260	ns
3		148-063-02DA	0 - 0	09/05/01	2	<100	ns	0.1	<100	na ≺2	na < 2	na < 3	200 190	ns <50
	D	140 070 04												
4	Reservoir	148-062-31C	0-0	10/22/92	2	ns	nd	nd	10	nd	nd	nd	170	ns
4		148-062-31C	0 - 0	09/04/96	4	93	ns	nd	5	nd	nd	nd	110	ns
4		148-062-310	0 - 0	09/04/96	5	<100	n s	nd	<100	< 2	< 2	< 3	94	< 5 0
5	13097	149-063-36ACA1	41-48	10/22/92	26	ng	nd	nd	40	3	nd	nd	410	
5		149-063-36ACA1	41-48	09/03/96	20	130	ns	nd	40	Δ	nd	nd	320	ns
5		149-063-36ACA1	41-48	09/05/01	22	<100	ns	nd	<100	5	< 2	< 3	370	<50
5	13098	149-063-362022	21 27	10/00/00										
5	10000	149-063-36ACA2	21-27	10/22/92	13	ns	nd	nd	20	2	nd	nd	320	ns
5		149-063-36ACA2	21-27	09/03/96	11	270	ns	nd	20	2	nd	nd	260	ns
		10-005-50ACA2	21-21	09/5/01	11	120	ns	nd	<100	4	< 2	< 3	260	< 50
6	13101	149-063-25CDC1	110-115	10/22/92	1	nc	nd	nd	120	1.4			C.0.0	
6		149-063-25CDC1	110-115	09/05/96	6	100	na	nd	20	14	na	na	580	ns
6		149-063-25CDC1	110-115	09/05/96	3	<100	ns	nd	120	4 8	na < 2	na < 3	300 540	ns <50
c	10100	140 052 055												
0	13102	149-063-25CDC2	25-30	10/22/92	7	ns	nd	nd	20	5	nd	nd	380	ns
6		149-063-25CDC2	25-30	09/05/96	1	29	ns	nd	120	2	nd	nd	470	ns
6		149-063-25CDC2	25-30	09/05/96	7	<100	ns	0.1	<100	4	< 2	< 3	350	< 50

Table 7.Barium (Ba), lithium (Li), Strontium (Sr), and trace elements [arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb), selenium (Se),and Zinc (Zn)] concentrations for WS-2 wells (Schuh 1994).

uuuri — "M		······································	Screened			(mic	rogra	ms p	er l:	iter)			
<u>Site</u>	Well No.	Location	Interval (ft)	Date Sampled	As	Ba	Cđ	Hg	Li	Мо	Pb	Se	Sr	Zn
7 7 7	13086	148-063-02ACA1 148-063-02ACA1 148-063-02ACA1	97-102 97-102 97-102	10/22/92 09/03/96 09/05/01	nd ns n s	nd nd 0.1	40 40 <100	5 4 6	nd nd < 2	nd nd < 3	nd ns n s	nd nd 0.1	40 40 <100	5 4 6
7 7 7	13087	148-063-02ACA2 148-063-02ACA2 148-063-02ACA2	18-23 18-23 18-23	10/22/92 09/03/96 09/05/01	nd ns n s	nd nd n d	nd 3 <100	nd nd 2	nd nd < 2	nd nd < 3	nd ns n s	nd nd n d	nd 3 <100	nd nd 2
8	13090	149-062-19DBD1	95-100	08/25/93	nd	nd	50	6	nd	nd	nd	nd	50	6
8	13106	149-062-19DBD3	43-48	08/25/93	nd	nd	20	4	nd	nd	nd	nd	20	4
9	13088	149-063-13DAA1	95-100	08/25/93	nd	nd	120	28	nd	nd	nd	nd	120	28
9	13089	149-063-13DAA2	30-35	08/25/93	nd	nd	10	2	nd	nd	nd	nd	10	2
10	13092	149-063-12CAC1	105-110	08/25/93	nd	14	110	17	nd	nđ	nd	14	110	17
10	13093	149-063-12CAC2	45-50	08/25/93	nđ	5	30	1	nd	nd	nd	5	30	1
11	S. Washington	149-063-14DBB	0-0	08/24/93	nd	nd	240	4	nd	nd	nd	nd	240	4
11	Lake S. Washington Lake	149-063-14CA	0 - 0	09/12/01	ns	nđ	120	3	320	< 3	ns	nđ	120	3
12	13084	148-063-02BABC1	69-74	08/26/93	nd	nd	70	6	nd	nd	nd	nd	70	6
12	13085	148-063-02BABC2	12-17	08/26/93	nd	nd	20	nd	1	nd	nđ	nd	20	nd
13	13099	149-063-35BCBA1	23-28	08/24/93	nd	nd	40	1	nd	nd	nd	nd	40	1
13	13100	149-063-35BCBA2	23-28	08/24/93	nd	nd	20	3	nd	nd	nd	nd	20	3
14 14	Lake Coe	149-063-26ADD 149-063-26ADD	0-0 0-0	08/24/93 09/5/01	nd n d	nd n d	230 150	4 5	nd < 2	nd 8	nd n d	nd n d	230 150	4 5

Table 7.Trace elements arsenic (As), barium (Ba), cadmium (Cd), lithium (Li), mercury (Hg), lead (Pb), selenium (Se),
strontium (Sr), and Zinc (Zn)] concentrations for WS-2 wells (Schuh 1994).

			Screened			(micro	grams	s per	liter)					
<u>Site</u>	Well No.	Location	(ft)	Date Sampled	As	Ba	Cđ	Hq	Li	Мо	Pb	Se	Sr	7.n
15	Lake Coe	149-063-27DDB	0-0	08/24/93	24	ns	nd	0.1	320	8	1	nd	140	ns
16 16 16 16	North Spring	149-063-13BDA 149-063-13BDA 149-063-13BDA 149-063-13BDA	0 - 0 0 - 0 0 - 0 0 - 0	9/11/86 8/25/93 9/5/96 9/11/01	2 2 3 4	ns ns 91 <100	ns nd ns n s	0.1 nd nd nd	39 40 30 100	1 nd nd <2	1 nd nd < 2	nd nd nd < 3	320 360 280 120	ns ns ns < 5 0
17	13095	148-063-04ABA1	25-30	08/26/93	20	ns	nd	nd	60	6	nd	nd	430	ns
17	13096	148-063-04ABA2	25-30	08/26/93	4	ns	nd	nd	30	4	nd	nd	250	ns
Sites 18 and 19*			-	-		-	-	÷	-	~	-	-	-	-
20	13094	149-063 - 14AAB	17-22	08/25/93	3	ns	nd	nd	20	2	nd	nd	280	ns
CGS	Supply Well	14906335A1		3/5/98	24	ns	ns	nd	80	4	nd	nd	460	ns
CGS	Supply Well	14906335A2		3/5/98	20	ns	ns nd	nd 0.1	80 320	4 8	nd 1	nd nd	460	ns

Table 7.Trace elements arsenic (As), barium (Ba), cadmium (Cd), lithium (Li), mercury (Hg), lead (Pb), selenium (Se),
strontium (Sr), and Zinc (Zn)] concentrations for WS-2 wells (Schuh 1994).

One sample, collected from South Washington Lake (Site 11) has very large concentrations of lead and zinc (Table 7). We suspect that these results may be spurious and might have resulted from field or laboratory contamination or other sources of error. South Washington Lake is located on the periphery of most training activities near the NW boundary of CGS. It is located far from munitions ranges and their fire fans, which are in the southern half of the camp, and far from areas of heavy equipment operation or fueling, such as the Engineering Training Site. There is no reasonable explanation for the high dissolved lead concentrations. A pH > 9 measured in 1993 renders lead and zinc presence in solution even more unlikely. This site should be resampled in 2002 or 2003.

The reservoir (Site 4, Table 7), and to a lesser extent wells on Sites 5 and 7 (Table 7) are of particular concern for lead and other heavy metal concentrations because of their position within the surface and ground-water drainage of the firing ranges. No traces of lead or barium have been found in current or previous samples from these surface- or ground-water locations.

Except for the South Washington Lake sample, there is no evidence of contamination from lead, barium, or heavy metals on any of the surface or ground-water sample sites. The single high-concentration sample from South Washington Lake may possibly be spurious, and needs to be confirmed.

Arsenic

One trace element of concern on the CGS facility is arsenic. In previous samplings (Schuh 1997) some water samples on the CGS facility have been found to exceed the previous EPA-MCL of 50 μ g/L. This standard will soon be replaced with a new EPA-MCL of 10 μ g/L (here labeled EPA-MCL^N). The lower standard will increase the number of locations and the relative exceedence margin with respect to the EPA-MCL. Arsenic concentrations for WS-1 and WS-2 are shown on Table 6 and Table 7, respectively. Arsenic samples have historically been variable with location and depth, with an upper limit (in Lake Washington) approaching 70 μ g/L (about seven times EPA-MCL^N). There is some evidence (Schuh 1997) of lower concentrations can be found at all depths (Figure 6).

Of the WS-1 well samples, eight of 26 wells (31%) have arsenic concentrations above EPA-MCL^N in the most recent sampling, and an additional well (4%) have concentrations at or above EPA-MCL^N in a previous sample, for a total of 35%. Of the WS-2 well samples, six of 22 (27%) were above EPA-MCL^N in the most recent sampling. An additional five wells (22%) had previous concentrations above EPA-MCL^N, for a total of 49%. The range for the WS-1 well set was from non-detection to 47 μ g/L, with a median of 4 μ g/L. The range for the WS-2 well set was from non-detection to 62 μ g/L with a median of 6 μ g/L.) While there is some temporal variation, there are no long-term trends indicating consistent or systematic changes in arsenic concentrations.

All measured arsenic concentrations in both springs (Table 7, Site 3 and Site 16) were below EPA-MCL^N. The reservoir (Site 4) located in the drainage of the firing ranges was generally below EPA-MCL^N. However, both South Washington Lake and Lake Coe had consistently high arsenic concentrations. South Washington Lake had a maximum value of 71 μ g/L in 1993, and a 2001 value of 30 μ g/L; while Lake Coe had concentrations of 10 and 24 μ g/L in 1993, and 16 μ g/L in the 2001 sample. High concentrations in these lakes likely result from their function as evaporative discharge areas. There appears to have been some freshening and dilution of arsenic in both lakes since 1993, possibly caused by wet climatic conditions prevailing since 1993.

An interpolative map (Figure 6) was prepared using a kriging procedure to examine the spatial distribution of arsenic concentrations with respect to depth. Mean arsenic concentrations (using all available data) were computed for each well, and wells were divided into shallow, mid-depth confined, and deep confined groups. Groupings do not correspond to geological units (shallow, middle, and deep Cherry Lake aquifer) laid out by Comesky (1989), but rather to well depth and confinement alone. Shallow wells consist of shallow well-screens that are unconfined, and all wells that are confined and within ten feet of the water-table. Shallow "wells" also include surface-water samples. Mid-depth wells consist of confined wells more than about ten feet below the water table and less than about 80 feet below land surface. Deep wells are confined and have total depths greater than 80 feet. Data-mapping boundaries were determined as the close outer rectangle which included the outermost wells on its perimeter.

The map for shallow wells (Figure 6) indicates that highest arsenic is concentrated in the Lake Coe and South Washington Lake wetland complex, which is consistent with the previous hydrologic interpretation of these lakes and wetlands as areas of evaporative concentration. About half of the entire mapped area would be expected to have arsenic concentrations above the EPA-MCL^N of 10 µg/L. Highest concentrations for mid-depth wells are in the southeastern area of the camp, including the weapons range complex. Lowest concentrations are in the central area of the CGS lands. Again, about half of the overall area would be expected to have concentrations above the expected new EPA-MCL^N. The deep wells had highest concentrations in the northeast portion of CGS, with largest concentrations centering in the area of the Engineering Training Site. About one third of the mapped area was predicted to have arsenic concentrations exceeding the EPA-MCL^N. While understanding that these maps are limited by the non-uniformity of data, lack of total coverage, and an extremely heterogeneous aquifer, these maps demonstrate that high arsenic concentrations are found at each depth, and that predominant concentrations for each depth vary spatially from one another. Map predictions of total areas for concentrations above EPA-MCL^N, about half, are similar to those predicted using statistical summaries.

Figure 6. Krige map of arsenic concentrations in CGS wells.

There is no evidence that increasing concentrations of arsenic in ground- or surface-waters have been caused by CGS facility use or introduction of contaminants. There are, however, some uses of the CGS facility that may be affected by arsenic. Two of these are (1) the water supply used for CGS; and (2) the operation of reverse osmosis (RO) equipment for training purposes using waters from Lake Coe, or South Washington Lake.

In 1988 two 5-inch diameter supply wells were drilled at a site just south of HWY 15 (149-063-35A). Well-screens were placed at depths of 26 to 34 feet, and 28 to 36 feet. Measured pumping capacities were 51 and 55 gpm. These supply wells had arsenic concentrations of 20 μ g/L and 24 μ g/L in 1998. About 200 feet west of the supply wells (149-063-35ABBD2) a sample well (WS-1 set) was placed with screen at about 45 to 50 feet. Arsenic concentrations in this well varied from 16 to 24 μ g/L. In a previous report (Schuh 1996) these wells were stated to be below the EPA-MCL for arsenic, but concern was raised over concentration of arsenic through certain potential causes, including application of reverse osmosis in training exercises, and natural evaporation. Following changes in the EPA-MCL, all of these wells will exceed federal drinking-water concentration limits for arsenic for public water systems. Measures to treat drinking water may be required. These may include dilution with other fresh water, or suitable water treatment.

One activity requiring careful consideration is the conduct of training exercises using reverse osmosis equipment. In the past the North Dakota National Guard has obtained water permits for using water from lakes on the CGS facility for training in water purification methods. The use of reverse osmosis causes the removal and concentration of salts, including arsenic, in the filtrate. If, for example, 80% of the water is purified and salts are concentrated in the remaining 20%, a five-fold concentration of arsenic will occur in the filtrate. Such concentration would result in arsenic concentrations exceeding EPA-MCL^N at almost all sites on the facility, and would result in concentrations of up to 25 times those allowable for supply wells, Lake Coe, and South Washington Lake if source waters were to be used for public water supplies. If both the filtered water and the filtrate are immediately returned to the source at the same location and time, this should not cause a problem, since no net concentration is occurring. However, if the filtered water is pumped for use in filtration training, and if water is disposed of through infiltration, filtrate and filtered water should be mixed before disposal. Arrangements for other practices should be cleared with the North Dakota Department of Health.

Other well sites having high arsenic concentrations are shown on Tables 6 and 7. One well having a particularly high arsenic concentration is located at T149 R62 Section 31ABBC2, which is just south of HWY 15, west of the M-60 range, and with a screened interval from 162 to 167 feet. Other WS-2 wells having high arsenic concentrations include the deep well at Site 1 (149-062-

28CCC2) located about one-half mile east of the previously described (149-062-31ABBC2) well having high arsenic concentration. The shallow well placed at Site 2 (149-062-29DAD) also had a high arsenic concentration. Wells at Site 1 and Site 2 are both located outside the boundaries of CGS lands. It is important to note that base-line measurements on samples collected in 1992, before development of the training facility, were high, and that they did not result from military sources.

Data on Tables 6 and 7 indicate that arsenic concentrations are generally high in the sections bordering the south side of HWY 15. These include wells at T149N R63W Sections 35 and 36 and T149N R63W Sections 29, 31, and 32. <u>The area having potentially high arsenic concentrations</u> would include the firing range complex, the equipment storage site located in T149N-R63W Section 36, and the main well site T149N R63W Section 35. Water supplies on each of these sites should be periodically tested for arsenic.

Munitions and Explosives

Almost all activities using live ammunition and explosives at CGS are concentrated in the plateau area of the eastern component McHenry End Moraine located on Sections 31 and 32 (T149 N R62W) and in the lowland of Section 36 (T149N R63W). Facilities located within these bounds include a demolition range, a recoilless rifle range, a modified record fire range, an M-203 range, and an M-60 machine gun range as shown on Figure 5. In general, well nests for monitoring these activities (Sites 5, 6 and 7) have been placed between the activity sites and the series of wetlands draining toward Lake Coe, and at the foot of drainage ways leading eastward from the firing ranges toward the Colvin Creek basin (Sites 1 and 2). In addition two surface-water sites, the Reservoir (Site 4) west of the firing range (Figure 3,4,5) and the South Spring (Site 3) are sampled for residues of munitions and explosives.

In 1992 water samples for residues of munitions and explosives were collected only from the shallow wells of each well nest. Because large increases in piezometric pressures in deeper wells in 1993 indicated a likely connection between deeper units of the Cherry Lake aquifer and recharge in the CGS uplands, deeper wells were also sampled on each of the sites in the fall of 1996. The only exception is Site 2, where there was only a single well.

Samples were analyzed for eight explosive compounds in 1992, and fourteen in 1996 using USEPA Method 8330 (Table 8). There were no detections of organic residues from explosives in any of the wells, springs, or surface water-bodies sampled in either year (Schuh 1994, 1997).

In addition to organic residues, elevated lead might indicate contamination from projectiles and from compounds like lead styphonate. Elevated barium or nitrate might be caused by

Table 8.List of analytes for EPA Methods 8260B, 8270C, 8330, and 8332 used for 2001samples at CGS. * indicates partial list of specific target analytes known to be in use.

Lipit Lipit <th< th=""><th>Method / Analyte</th><th>MDL</th><th>Method / Analyte</th><th>MDL</th><th>Method / Analyte</th><th>MDL</th></th<>	Method / Analyte	MDL	Method / Analyte	MDL	Method / Analyte	MDL
EPA Method B270C (cont.) EPA Method B270C (cont.) EPA Method B270C (cont.) 1,1,1-Trichlorosthane 0.0971 Benzyl Alcohol 0.0699 Carbazole 0.0726 1,1,2-Trichlorosthane 0.182 1,2-Dichlorosthane 0.0697 Carbazole 0.0723 1,1-Dichlorosthane 0.0557 2-Methylphenol 0.0113 Fluoranthene 0.0372 1,-Dichlorosthane 0.0355 2-Mitrostedin-propyl amine 0.0562 2.0067 0.0773 Benzo (a) Authracene 0.0723 2-butanone 0.0355 Evantholostene 0.0164 0.0763 Benzo (a) Authracene 0.075 2-butanone 2.14 Nitrobenzene 0.0180 Din-outylphinalate 0.126 2-methol-2-rentanone 0.0355 Benzo (a) Authracene 0.075 Benzo (a) Mucanthene 0.126 2-methol-2-rentanone 0.0367 Benzo (a) Mucanthene 0.132 Carboneco (a) Pyrene 0.0762 Bromodichloromethane 0.0552 2.4-Dichorophenol 0.144 Ideno (1,2,3-C,d) Pyrene 0.132		/ μg/L		/ μg/L		μg/L
1,1,1-Trichloroethane 0.0971 Benzyl Alcohol 0.0699 Carbazole 0.0726 1,1,2-Z-Tetrachloroethane 0.118 1,2-Dichlorobenzene 0.0633 Di-n-butylphthalate 0.0347 1,1-Dichloroethane 0.0563 Bis (2-chlorospropyl)ethic 0.0967 Pyrene 0.0836 1,1-Dichloroethane 0.0352 Evitrosoft-propyl amine 0.0972 Pyrene 0.0332 1,2-Dichloroethane 0.0352 Evitrosoft-propyl amine 0.0773 Benzo (a) anthracene 0.075 2-Butanone 2.075 Evitrosoft-propyl amine 0.0114 Bis (2-chloroethane 0.076 2-Hexanone 2.07 2.01170phenol 0.0888 Di-noctylphthalate 0.105 2-methol-2-Pentanone 0.0544 Bis (2-Chloroethoxy) 0.0508 Benzo (b) fluoranthene 0.105 Bromodichloromethane 0.0688 4-Chloroencayn 0.0552 Benzo (b) fluoranthene 0.138 Bromodichloromethane 0.0544 Benzo (c) fluoranthene 0.138 0.172 Bromodichloromethane 0.0552 Benzo (b) fluoranthene	EPA Method 8260B		EPA Method 8270C		EPA Method 8270C	
1,1-1-Tichloroethane 0.071 Benzyl Alcohol 0.0693 Carbazole 0.0726 1,1,2-Tichloroethane 0.182 1,2-Dichloroethane 0.0638 Dir-butylphthalate 0.0723 1,1-Dichloroethane 0.0555 Bis (2-chloroisopropylether 0.0552 Bitylpenzylphthalate 0.0723 1,-Dichloroethane 0.0557 Evexachloroethane 0.0753 Alexthylpenzylphthalate 0.204 1,-Dichloroethane 0.0752 Alexthone 0.0752 Alexthone 0.0752 2-Butanone 1.4 Nitrobenzene 0.0774 Evexachloroethane 0.0778 Benzo (a) anthracene 0.0752 2-methol-2-Pentanone 2.16 2.4-Dimethylphenol 0.8285 Benzo (b) fluoranthene 0.128 Bromodichloromethane 0.0544 bis (2-Chloroethoxy) 0.0508 Benzo (a) prene 0.0772 Bromodichloromethane 0.0529 1.2.4-Fichlorobenzene 0.141 Ideno (1.2.3-c.d) prene 0.318 Bromodichloromethane 0.0528 Benzo (a) prene 0.0772 EPA Method 0.330 Chlo			(cont.)		(cont.)	
1,1,2-2-Tetrachloroethane 0.182 1,2-Dichlorobenzene 0.0633 Di-n-butylphthalate * 0.347 1,1-2-Trichloroethane 0.168 2-Methylphenol 0.0636 0.0636 Di-n-butylphthalate 0.0636 1,1-Dichloroethane 0.0507 2-Methylphenol 0.0652 Butylpenzylphthalate 0.264 1,2-Dichloroethane 0.0507 2-Methylphenol 0.0773 Benzo (a) anthracene 0.076 1,2-Dichloroethane 0.0752 Hexachloroethane 0.0773 Benzo (a) anthracene 0.076 2-Butanone 1,4 Nitrobenzene 0.0836 0.0773 Benzo (a) nthracene 0.076 2-Hexanone 2,4 2-Nitrophenol 0.285 Benzo (a) fluoranthene 0.162 2-methol-2-Pentanone 0.0574 bis (2-chloroethoxy) 0.0508 Benzo (a) fluoranthene 0.162 Bromoform 0.0864 1,2,4-Tichlorophenol 0.442 Benzo (a) pyrene 0.318 Bromoform 0.0864 1,2,4-Tichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoform 0.0864 0.0551 2,4,6-Trinitorobenzene 0.0758	1,1,1-Trichloroethane	0.0971	Benzvi Alcohol	0.0699	Carbazole	0.0726
1,1-2:Trichloroethane 0.116 2-Methylphenol 0.113 Fluoranthene 0.0728 1,1-Dichloroethane 0.0857 Bis (2-chloroisopropylethic 0.0967 Pyrene 0.0836 1,2-Dichloroethane 0.0395 2-Methylphenol 0.0552 Butylpenzylphthalate 0.204 1,2-Dichloroptopane 0.0772 2-Methylphenol 0.0752 Butylpenzylphthalate 0.204 2-Dichloroptopane 1.4 Isophorone 0.114 Bis (2-ethylhexyl) phthalate 0.204 2-methol-2-Pentanone 2.40 Isophorone 0.114 Bis (2-ethylhexyl) phthalate 0.264 2-methol-2-Pentanone 0.057 Benzoic Acid 4.35 Benzo (k) fluoranthene 0.132 Bromodichloromethane 0.057 Benzoic Acid 4.35 Benzo (k) fluoranthene 0.132 Bromoform 0.0688 2.4-Direchylphenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoform 0.0626 2.4-Direchylphenol 0.144 Ideno (1,2,3-c,d) pyrene 0.287 Carbon Tetrachloride 0.0557 Naphthalene 0.0582 Benzo (g,h)perylene 0.287 Ch	1,1,2,2-Tetrachloroethane	0.182	1,2-Dichlorobenzene	0.0638	Di-n-butylobthalate *	0.347
1.1-Dickhoroethane 0.0835 Bis (2-chloroisopropy)lether 0.0857 Pyreme Noto 0.0830 1.2-Dickhoroethane 0.0535 2-Mithylphenol 0.0522 Butylpenzylphthalate 0.204 1.2-Dickhoropropane 0.0752 Hexachloroethane 0.0773 Benzo (a) anthracene 0.076 2-Butanone 1.4 Nitrobenzene 0.0924 Chrysene 0.076 2-Hexanone 2.4 Nitrobenzene 0.0924 Chrysene 0.076 2-Hexanone 2.4 Sis (2-chloroethylpylphthalate 2.49 Dianoctylphthalate 0.128 2-methol-2-Pentanone 0.174 Sis (2-chloroethane 0.168 0.128 Benzo (a) fluoranthene 0.132 Bromodichloromethane 0.0684 2.4-Dichlorobenzene 0.0492 Dibenz (a,h) Anthracene 0.287 Carbon Tetrachloride 0.0888 4-Chloroanaline 0.155 Dibenz (a,h) Anthracene 0.0768 Chloroethane 0.127 4-Chloroanaline 0.155 Dibenz (a,h) Anthracene 0.0758 Chlororoffm 0.0405 2.4.6 T	1.1.2-Trichloroethane	0.116	2-Methylphenol	0 113	Eluoranthene	0.0723
1,1-Dickloroethene 0.507 2-Methylphenol 0.0552 Bityloperzylphthalate 0.2014 1,2-Dickloropethane 0.0752 Hexachloroethane 0.0773 Benzo (a) anthracene 0.0776 2-Butanone 1.4 Nitroberzene 0.0732 Benzo (a) anthracene 0.0762 2-Hexanone 2.06 Isophorone 0.114 Bis (2-ethylhexyl) phthalate 0.0762 2-methol-2-Pentanone 0.774 2-Nitrobenol 0.0830 Din-octylphthalate 0.126 Acetone 2.4-Dintrulylphenol 0.282 Benzo (a) anthracene 0.132 Bromodichloromethane 0.0573 Benzo (a) (a) pyrene 0.127 Bromoethane 0.0628 2.4-Dichlorophonol 0.144 Ideno (12.3-c.d) pyrene 0.287 Carbon Disuffide 0.0573 Naphthalene 0.0528 Benzo (a), huoranthene 0.287 Chloroethane 0.127 4-Chiorochanaline 0.152 Chioroethane 0.276 Chloroethane 0.0528 2.4,6-Trinklroobenzene 0.0759 Lenza (b, h) pyrene 0.276 <	1,1-Dichloroethane	0.0585	Bis (2-chloroisopropyl)ether	0.0967	Pvrene	0.0836
1.2-Dichloroethane 0.0395 2-Nitrosodi-n-propyl amine 0.109 3.3-Dichlorobenzidine 0.372 2-Dichloroetpapane 0.075 Benzo (a) anthracene 0.076 2-Butanone 1.4 Nitrobenzene 0.0820 Chrysene 0.076 2-Hexanone 2.06 Isophorone 0.114 Bis (2-entylhexyl) phtnalate 2.49 2-methol-2-Pentanone 2.16 2-Alimotphenol 0.0830 Di-n-octypithinalate 0.105 Benzone 0.0544 bis (2-Chloroethoxy) 0.0508 Benzo (a) anthracene 0.0772 Bromodichloromethane 0.0658 2-Alichlorophenol 0.144 Iden (1,2,3-c,d) pyrene 0.318 Bromodirm 0.0686 2-Alichlorophenol 0.144 Iden (1,2,3-c,d) pyrene 0.216 Carbon Disulfide 0.0886 4-Chloro-analine 0.152 Benzo (a) (a) Anthracene 0.276 Chlorobetnane 0.0652 Naphthalene 0.0632 Benzo (a) (a) Anthracene 0.276 Chloroothane 0.0724 4-Chloro-3-methylphenol 0.112 Chlorobatadiene 0.276 Chloromethane 0.0552 Hexachlorocyclopent	1,1-Dichloroethene	0.0507	2-Methylphenol	0.0552	Butylpenzylphthalate	0.204
1,2-Dichloropropane 0.0752 Hexachloroethane 0.0773 Benzo (a) anthracene 0.075 2-Butanone 1.4 Nitrobenzene 0.076 Chrysene 0.076 2-Hexanone 2.06 Isophorone 0.114 Bis (2-ethylhexyl) pithalate 0.492 2-methol-2-Pentanone 0.757 Benzo (b) fluoranthene 0.105 Benzene 0.0357 Benzoic Acid 4.35 Benzo (k) fluoranthene 0.132 Bromodichloromethane 0.0629 1,2.4-Trichlorobenzene 0.0492 Dibenzo (k) fluoranthene 0.287 Bromoothane 0.0629 1,2.4-Trichlorobenzene 0.0492 Dibenzo (a) pyrene 0.318 Bromoothane 0.0629 1,2.4-Trichlorobenzene 0.0492 Dibenzo (a) h.1 Anthracene 0.287 Carbon Disulfde 0.0888 4-Chloro-3-methylphenol 0.0754 EPA Method 8330 0.758 Chloroethane 0.0552 2,4.6-Trichlorophenol 0.112 2,4.6-Trinitrobluene 0.0758 Chloroethane 0.0562 2,4.6-Trichlorophenol 0.112 2,4.6-Trinitrobluene<	1,2-Dichloroethane	0.0395	2-Nitrosodi-n-propyl amine	0.109	3,3'-Dichlorobenzidine	0.372
2-Butantone 1.4 NitrobenZene 0.0924 Chrysene 0.076 2-metanone 2.06 Isophorone 0.114 Bis (2-ethylinexyl) phthalate 0.126 2-metanone 2.45 Nitrophenol 0.0830 Di-n-octylphthalate 0.126 Acetone 2.45 Berzo (a) fluoranthene 0.105 Branodichloromethane 0.0544 bis (2-chloroethoxy) 0.0508 Berzo (a) pyrene 0.132 Bromodichloromethane 0.0682 2.4-Dichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromodinane 0.0573 Naphthalene 0.0532 Berzo (a,h) Anthracene 0.287 Carbon Tetrachloride 0.0684 4Chloroanaline 0.155 EPA Method 8330 -Chloroform Chloroform 0.0491 2-Chloroaphthalene 0.0687 -A-Dinitrobenzene 0.0758 Dibromochhoromethane 0.0551 2.4,5-Trichlorophenol 0.0256 2.4,6-Trinitrobenzene 0.0256 Ethylbenzene * 0.0551 2.4,5-Trichlorophenol 0.0266 2.4,0-Trinitrotoluene *	1,2-Dichloropropane	0.0752	Hexachloroethane	0.0773	Benzo (a) anthracene	0.075
2-nethol-2-Pentanone 2.00 2-bitrophenol 0.114 Bit 2-entymexty) prinalate 2.49 Acetone 2.16 2-A-Dimethylphenol 0.285 Benzo (b) fluoranthene 0.105 Benzene 0.0544 bit 2-chitrophenol 0.285 Benzo (b) fluoranthene 0.132 Bromodichloromethane 0.0544 bit (2-Chloroethoxy) 0.0508 Benzo (a) pyrene 0.318 Bromootinane 0.0629 1.2,4-Trichlorobenzene 0.0492 Diberz (a,h) Anthracene 0.287 Carbon Disulide 0.0573 Naphthalene 0.0522 Benzo (b, i)perylene 0.276 Chlorobenzene 0.0706 Hexachlorobutadiene 0.172 Hexachlorobutadiene 0.172 Chlorobenzene 0.0706 Hexachlorocyclopentadiene 0.0784 EPA Method 8330 0.758 Chloromethane 0.126 2.4,6-Trichlorophenol 0.0769 2,4-Drinitrotoluene * 0.0681 Dibromochloromethane 0.0551 2,4,6-Trichlorophenol 0.112 2,4-Drinitrotoluene * 0.0681 Styrene 0.0548 2,6-Dinitr	2-Butanone	1.4	Nitrobenzene	0.0924	Chrysene	0.076
Actetone 2.1.4 2.1.400 printing and the second sec	2-methol-2-Pentanone	0 774	2-Nitrophenol	0.114	Dis (2-ethylnexyl) phthalate	2.49
Benzene 0.0357 Benzoic Add 4.35 Benzo (k) fluoranthene 0.132 Bromodichioromethane 0.0544 bis (2-Chloroethoxy) methane 0.0508 Benzo (a) pyrene 0.0772 Bromodichioromethane 0.0688 2.4-Dichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoethane 0.0689 1.2.4-Trichlorobenzene 0.0492 Dibenz (a,h) Anthracene 0.2876 Carbon Tetrachloride 0.0888 4Chloro-3-methylphenol 0.112 EPA Method 8330 0.276 Chlorobenzene 0.0705 Hexachlorobutadiene 0.112 2.4,6-Trinitroblenzene 0.0758 Chlorootname 0.0552 2.4,5-Trichlorophenol 0.012 2.4,6-Trinitroblenzene 0.0256 Chlorootnom 0.0491 2-Chloronaphthalene 0.0769 2.4,6-Trinitrotoluene * 0.0256 Ethylbenzene 0.0512 2.4,5-Trichlorophenol 0.112 2.4,6-Trinitrotoluene * 0.0256 Ethylbenzene 0.0528 2.4,5-Trichlorophenol 0.152 2-Mitrotoluene * 0.0256 Styrene 0.0568	Acetone	2.16	2.4-Dimethylphenol	0.285	Benzo (b) fluoranthene	0.120
Bromodichloromethane 0.0544 bis (2-Chloroethoxy) methane 0.0508 Benzo (a) pyrene 0.0772 Bromoofrm 0.0829 1,2,4-Trichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoothane 0.0629 1,2,4-Trichlorobenzene 0.0452 Dibenz (a,h) Anthracene 0.287 Carbon Disulide 0.0573 Naphthalene 0.112 Benzo (g,h,i)perylene 0.276 Chloroothane 0.0706 Hexachlorobutadiene 0.112 Benzo (g,h,i)perylene 0.276 Chloroothane 0.0562 2.46,Frichlorophenol 0.0684 1,3,5-Trinitrobenzene 0.0758 Dibromochloromethane 0.0562 2.4,6-Trichlorophenol 0.0122 2.4,6-Trinitrobuzene 0.0769 Styrene 0.0925 1,3-Dinitrobuzene 0.0684 1.35-Trinitrobuzene 0.0582 Styrene 0.0928 2.4,6-Trinitrobuzene 0.0769 2.4-Dinitrotoluene 0.0154 Tetrachloroethene 0.0696 Dimethylphthalate 0.0769 2.4-Dinitrotoluene 0.0158 Toluene * 0.0493 2.	Benzene	0.0357	Benzoic Acid	4.35	Benzo (k) fluoranthene	0.132
Bromoform 0.0868 2,4-Dichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoethane 0.0629 1,2,4-Trichlorobenzene 0.0492 Dibenz (a,h) Anthracene 0.276 Carbon Disulfide 0.0573 Naphthalene 0.0553 Benzo (g,h,i)perylene 0.276 Carbon Tetrachloride 0.0405 2-Methylnaphthalene 0.0587 Benzo (g,h,i)perylene 0.276 Chloroothane 0.127 4-Chloro-3-methylphenol 0.0687 EPA Method 8330 0.0758 Chloroothare 0.0405 2-Methylnaphthalene 0.0687 1,3,5-Trinitrobenzene 0.0769 Chloronomthane 0.0551 2,4,5-Trichlorophenol 0.112 2,4,6-Trinitrotoluene 0.0681 Styrene 0.0928 2-Nitroanaline 0.0769 2,4-Dinitrotoluene 0.0154 Tetrachlorothene 0.0660 Dimethylphthalate 0.0766 2-Nitroaluene 0.0129 Toluene 0.0518 2-6-Dinitrotoluene 0.0129 2-Nitroaluene 0.0129 Toluene * 0.0618 Acenapthtylene 0	Bromodichloromethane	0.0544	bis (2-Chloroethoxy)	0.0508	Benzo (a) pyrene	0.0772
Bromoform 0.0868 2,4-Dichlorophenol 0.144 Ideno (1,2,3-c,d) pyrene 0.318 Bromoethane 0.0629 1,2,4-Trichlorobenzene 0.0492 Diber,2-c,d) pyrene 0.318 Bromoethane 0.0673 Naphthalene 0.0532 Benzo (1,2,3-c,d) pyrene 0.287 Carbon Tetrachloride 0.0888 4Chloroanaline 0.0532 Benzo (1,2,3-c,d) pyrene 0.287 Carbon Tetrachloride 0.0888 4Chloroanaline 0.0532 Benzo (1,2,3-c,d) pyrene 0.287 Chlorobentane 0.0573 Naphthalene 0.053 EFA Method 8330 -27 Chloroothane 0.127 4-Chloro-3-methylphenol 0.0794 EPA Method 8330 -0758 Dibromochloromethane 0.0522 2,4,5-Trichlorophenol 0.0925 1,3-Dinitrotoluene 0.0769 Styrene 0.0521 2,4,5-Trichlorophenol 0.112 2,4-Dinitrotoluene 0.0681 Styrene 0.0628 2-Alpinitrotoluene 0.0152 2,4-Dinitrotoluene 0.0582 Trichloroethene 0.0648 Acenap			methane			
Bromoethane 0.0629 1,2,4-Trichlorobenzene 0.0492 Diberz (a,h) Anthracene 0.287 Carbon Disulfide 0.0573 Naphthalene 0.155 Benzo (g,h,i)perylene 0.276 Carbon Disulfide 0.0573 Naphthalene 0.155 Benzo (g,h,i)perylene 0.276 Chlorobenzene 0.0706 Hexachlorobutadiene 0.155 Benzo (g,h,i)perylene 0.276 Chlorooform 0.0405 2-Methylphenol 0.0794 EPA Method 8330	Bromoform	0.0868	2,4-Dichlorophenol	0.144	Ideno (1,2,3-c,d) pyrene	0.318
Carbon Disultide 0.0573 Naphthalene 0.0276 Benzo (g,h,i)perylene 0.276 Carbon Tetrachloride 0.088 4Chloroanaline 0.112 EPA Method 8330 Chlorotehane 0.127 4-Chloro-3-methylphenol 0.0784 EPA Method 8330 Chlorotehane 0.0455 2-Methylnaphthalene 0.0887 1.3,5-Trinitrobenzene 0.0768 Chloromethane 0.0551 2,4,6-Trichlorophenol 0.0825 1,3-Dinitrobenzene 0.0256 Ethylbenzene * 0.0512 2,4,5-Trichlorophenol 0.0112 2,4,6-Trinitrotoluene 0.0769 Methylene Chloride 0.0491 2-Chloronaphthalene 0.0769 2,4-Dinitrotoluene 0.0681 Styrene 0.0928 2-Nitroanaline 0.14 2,6-Dinitrotoluene 0.0154 Tetrachloroethene 0.0548 Acenaphthylene 0.0467 3-Nitrotoluene 0.0129 Trichloroethene 0.0548 Acenapthene 0.0680 4-Nitrotoluene 0.152 Vinyl Chloride 0.114 3-Nitroaniline 0.318	Bromoethane	0.0629	1,2,4-Trichlorobenzene	0.0492	Dibenz (a,h) Anthracene	0.287
Chlorobarame 0.0868 4Chlorobarame 0.155 Chlorobarame 0.127 4-Chloro-3-methylphenol 0.0794 EPA Method 8330 Chlorobarame 0.0405 2-Methylnaphthalene 0.0687 0.0687 Chlorobarmethane 0.0552 2.4,6-Trichlorophenol 0.0925 1,3-Dinitrobenzene 0.0758 Dibromochloromethane 0.0562 2,4,6-Trichlorophenol 0.0769 2,4-Girnitrotoluene 0.0769 Methylene Chloride 0.0491 2-Chloronaphthalene 0.0769 2,4-Dinitrotoluene 0.0681 Styrene 0.0928 2-Nitroanaline 0.112 2,6-Dinitrotoluene 0.0154 Tetrachloroethene 0.0696 Dimethylphthalate 0.0769 2-Amino-4,6-Dinitrotoluene 0.0582 Toluene * 0.0433 2.6-Dinitrotoluene 0.0152 2-Nitrotoluene 0.0152 Toluene * 0.0433 2.6-Dinitrotoluene 0.152 2-Mitrotoluene 0.152 Toluene * 0.0458 Acenapthene 0.0667 3-Nitrotoluene 0.153 <	Carbon Disuilide	0.0573	Naphinalene	0.0532	Benzo (g,h,i)perylene	0.276
Oniode Relie 0.0700 The Activity Output lefter 0.0712 EPA Method 8330 Chlorooform 0.0405 2-Methylnaphthalene 0.0687 1,3,5-Trinitrobenzene 0.0758 Chlorooform 0.0552 2-4,6-Trichloroophenol 0.0925 1,3-Dinitrobenzene 0.0256 Ethylbenzene * 0.0551 2,4,5-Trichlorophenol 0.112 2,4,6-Trinitrotoluene * 0.0769 Methylene Chloride 0.0491 2-Chloronaphthalene 0.0769 2,4-Dinitrotoluene * 0.0681 Styrene 0.0928 2-Nitroanaline 0.014 2,6-Dinitrotoluene * 0.0154 Trichloroothene 0.0680 Dimethylphthalate 0.0769 2-Amino-4,6-Dinitrotoluene 0.0154 Trichloroothene 0.0648 Acenaphthylene 0.0467 3-Nitrotoluene 0.0129 Trichloroothene 0.0564 Acenaphthylene 0.0680 4-Nitrotoluene 0.123 Cis-1,2-Dichloroothene 0.0667 4-Nitrooluene 0.0451 2.4-Dinitrotoluene 0.0653 rans-1,	Chlorobenzene	0.0000	4Chioroanaiine	0.155		
Chlorofarm0.14052-Methylaphthalen0.0137Chlorofar0.0301Chlorofarm0.04052-Methylaphthalen0.06871.3.5-Trinitrobenzene0.0256Dibromochloromethane0.05622.4,6-Trichlorophenol0.09251.3-Dinitrobenzene0.0256Dibromochloromethane0.05512.4,6-Trichlorophenol0.01122.4,6-Trinitrobluene0.0256Methylene Chloride0.04912-Chloronaphthalene0.07692.4-Dinitrotoluene*0.0681Styrene0.09282-Nitroanaline0.142,6-Dinitrotoluene*0.0582Toluene*0.04832.6-Dinitrotoluene0.01522-Nitrotoluene*0.0582Trichloroethene0.0548Acenapthylene0.04762-Nitrotoluene0.01290.123Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.196Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.0445cis-1,3-Dichloropropene0.06874-Nitrobenzene0.06594-Nitrotoluene0.0539o-Xylene*0.04512,4-Dinitrotoluene0.0519RDX*0.0539o-Xylene*0.136Diethylphthalata0.1404-Chlorophenyl0.0478trans-1,2-Dichloroethene0.04512,4-Dinitrotoluene0.0981Tetryl*0.0539o-Xylene*0.136Diethylphthalata0.1400.0478Ether*0.0548represent<	Chloroethane	0.0700	4-Chloro-3-methylphenol	0.112	EPA Method 8330	
Chloromethane 0.0955 Hexachlorocyclopentadiene 0.0864 1,3,5-Trinitrobenzene 0.0758 Dibromochloromethane 0.0551 2,4,6-Trichlorophenol 0.0925 1,3-Dinitrobenzene 0.0256 Ethylbenzene 0.0551 2,4,5-Trichlorophenol 0.112 2,4,6-Trinitrobenzene 0.0769 Methylene Chloride 0.0491 2-Chloronaphthalene 0.0766 2,4-Dinitrotoluene 0.0681 Styrene 0.0928 2-Nitroanaline 0.14 2,6-Dinitrotoluene 0.0618 Tetrachloroethene 0.0648 2.6-Dinitrotoluene 0.0152 2-Nitroaluene 0.0129 Trichloroethene 0.0648 Acenaphthylene 0.0467 3-Nitrotoluene 0.0129 Vinyl Chloride 0.114 3-Nitroaniline 0.313 2-Amino-2,6-Dinitrotoluene 0.123 cis-1,3-Dichloropropene 0.0618 Acenapthene 0.0664 -Nitrotoluene 0.123 cis-1,2-Dichloroethene 0.0667 4-Nitroaniline 0.3141 PMX 0.0445 cis-1,2-Dichloroethene 0.0467 2,4-Dinitrotoluene<	Chloroform	0.0405	2-Methylnaphthalene	0.0687	ETA Metriou 0000	
Dibromochloromethane0.05622,4,6-Trichlorophenol0.09251,3-Dinitrobenzene0.0256Ethylbenzene0.05512,4,5-Trichlorophenol0.1122,4,6-Trinitrotoluene0.0769Methylene Chloride0.04912-Chloronaphthalene0.07692,4-Dinitrotoluene0.0681Styrene0.09282-Nitroanaline0.142,6-Dinitrotoluene0.0542Tetrachloroethene0.0696Dimethylphthalate0.07662-Amino-4,6-Dinitrotoluene0.0582Trichloroethene0.0548Acenaphthylene0.04673-Nitrotoluene0.1522-Amino-2,6-Dinitrotoluene0.0154Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.1530.123cis-1,3-Dichloropropene0.06764-Nitrophenol1.24HMX0.0445cis-1,2-Dichloroethene0.0671Dibenzofuran0.0519RDX0.0853o-Xylene*0.04512,4-Dinitrotoluene0.0478EPA Method 8332ePA Method 8270C0.0515N-nitrosodiphenylamine0.0865Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin0.376Phenol0.05254-Bromophenyl Phenyl0.108Nitroglycerin0.376Phenol0.05254-Bromophenyl Phenyl0.108Nitroglycerin0.376Phenol0.05254-Bromophenyl Phenyl0.108Nitroglycerin0.376Phenol0.05254-Bromophenyl Phenyl0.108Nitroglycerin </td <td>Chloromethane</td> <td>0.0955</td> <td>Hexachlorocyclopentadiene</td> <td>0.0864</td> <td>1.3.5-Trinitrobenzene</td> <td>0.0758</td>	Chloromethane	0.0955	Hexachlorocyclopentadiene	0.0864	1.3.5-Trinitrobenzene	0.0758
Ethylbenzene * 0.0551 2,4,5-Trichlorophenol 0.112 2,4,6-Trinitrotoluene * 0.0769 Methylene Chloride 0.0491 2-Chloronaphthalene 0.0769 2,4-Dinitrotoluene * 0.0681 Styrene 0.0928 2-Nitroanaline 0.14 2,6-Dinitrotoluene * 0.0582 Tetrachloroethene 0.0696 Dimethylphthalate 0.0766 2-Amino-4,6-Dinitrotoluene 0.0582 Toluene * 0.0483 2.6-Dinitrotoluene 0.152 2-Nitrotoluene 0.0129 Trichloroethene 0.0548 Acenaphthylene 0.0467 3-Nitrotoluene 0.153 cis-1,3-Dichloropropene 0.114 3-Nitroaniline 0.313 2-Amino-2,6-Dinitrotoluene 0.153 cis-1,3-Dichloropropene 0.0667 4-Nitrophenol 1.24 HMX 0.0445 cis-1,2-Dichloroethene 0.0667 4-Nitrophenol 0.7415 nitrobenzene 0.0539 o-Xylene * 0.0451 2,4-Dinitrotoluene 0.0981 Tetryl * 0.0853	Dibromochloromethane	0.0562	2,4,6-Trichlorophenol	0.0925	1,3-Dinitrobenzene	0.0256
Methylene Chloride0.04912-Chloronaphthalene0.07692,4-Dinitrotoluene*0.0681Styrene0.09282-Nitroanaline0.142,6-Dinitrotoluene*0.0154Tetrachloroethene0.0696Dimethylphthalate0.07662-Amino-4,6-Dinitrotoluene0.0582Toluene*0.04832.6-Dinitrotoluene0.1522-Nitrotoluene0.0129Trichloroethene0.0548Acenaphthylene0.0473-Nitrotoluene0.196Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.153cis-1,3-Dichloropropene0.06674-Nitrophenol1.24HMX*0.0445cis-1,2-Dichloroethene0.06674-Nitrophenol0.7415nitroblenzene0.0696trans-1,2-Dichloroethene0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853o-Xylene*0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.1404-Chlorophenyl Phenyl0.0478*EPA Method 8270C*Fluroene0.0737EPA Method 8332**0.354Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.376Phenol0.0524-Bromophenyl Phenyl0.151****Bis (2-chloroethyl) ether0.262Hexachlorobenzene0.151***Pethol0.0851Pentachlorobe	Ethylbenzene *	0.0551	2,4,5-Trichlorophenol	0.112	2,4,6-Trinitrotoluene *	0.0769
Styrene0.09282-Nitroanaline0.142,6-Dinitrotoluene*0.0154Tetrachloroethene0.0696Dimethylphthalate0.07662-Amino-4,6-Dinitrotoluene0.0582Toluene*0.04832.6-Dinitrotoluene0.1522-Nitrotoluene0.0129Trichloroethene0.0548Acenaphthylene0.04673-Nitrotoluene0.196Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.153cis-1,3-Dichloropropene0.0618Acenapthene0.06804-Nitrotoluene0.123trans-1,3-Dichloropropene0.06674-Nitrophenol1.24HMX*0.0445cis-1,2-Dichloroethene0.06674-Nitrophenol0.7415nitrobenzene0.0696trans-1,2-Dichloroethene0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853o-Xylene*0.04512,4-Dinitrotoluene0.0478EPA Method8332*m,p-Xylene*0.315N-nitrosodiphenyl Phenyl0.0478EPA Method8332Pyridine0.315N-nitrosodiphenylamine*0.0865Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl0.108Nitroglycerin*0.376Bis (2-chloroethyl) ether0.262Hexachlorophenol1.03***2-chlorophenol0.351Pentachlorophenol1.03**	Methylene Chloride	0.0491	2-Chloronaphthalene	0.0769	2,4-Dinitrotoluene *	0.0681
Tetrachloroethene Toluene0.0696Dimethylphthalate 2.6-Dinitrotoluene0.0766 0.1522-Amino-4,6-Dinitrotoluene0.0582 0.0129Trichloroethene Vinyl Chloride0.0548Acenaphthylene 0.1140.0467 3-Nitrotoluene3-Nitrotoluene0.196 0.4457Vinyl Chloropopene cis-1,3-Dichloropropene trans-1,3-Dichloroptoethene0.0618 0.0667Acenapthene 4-Nitrophenol0.0680 1.244-Nitrotoluene HMX0.153 0.60680cis-1,2-Dichloroptoethene 	Styrene	0.0928	2-Nitroanaline	0.14	2,6-Dinitrotoluene *	0.0154
Toluene*0.04832.6-Dinitrotoluene0.1522-Nitrotoluene0.0129Trichloroethene0.0548Acenaphthylene0.04673-Nitrotoluene0.196Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.153cis-1,3-Dichloropropene0.0618Acenapthene0.06804-Nitrotoluene0.123trans-1,3-Dichloropropene0.1282,4-Dinitrophenol1.24HMX*0.0445cis-1,2-Dichloroethene0.06674-Nitrophenol0.7415nitrobenzene0.0696trans-1,2-Dichloroethene0.04512,4-Dinitrotoluene0.0981Tetryl*0.0539o-Xylene*0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.140***0.0853FPA Method 8270C*Fluroene0.0737EPA Method 8332**0.354Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl0.108**0.376Bis (2-chloroethyl) ether0.262Hexachlorobenzene0.151***2-Chlorophenol0.0851Pentachlorophenol1.03***	Tetrachloroethene	0.0696	Dimethylphthalate	0.0766	2-Amino-4,6-Dinitrotoluene	0.0582
Trichloroethene0.0548Acenaphthylene0.04673-Nitrotoluene0.196Vinyl Chloride0.1143-Nitroaniline0.3132-Amino-2,6-Dinitrotoluene0.153cis-1,3-Dichloropropene0.0618Acenapthene0.06804-Nitrotoluene0.123trans-1,3-Dichloropropene0.1282,4-Dinitrophenol1.24HMX*0.0445cis-1,2-Dichloroethene0.06674-Nitrophenol0.7415nitrobenzene0.0696trans-1,2-Dichloroethene0.04512,4-Dinitrotoluene0.0519RDX*0.0539o-Xylene*0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.140****FPA Method 8270C-4-Nitrosodiphenyl Phenyl0.0478Ether**0.354Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl0.108****Bis (2-chloroethyl) ether0.262Hexachlorobenzene0.151****2-Chlorophenol0.0851Pentachlorobenzene0.1511.03***	Toluene *	0.0483	2.6-Dinitrotoluene	0.152	2-Nitrotoluene	0.0129
Vinyl Chloride cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 0.06670.114 Acenapthene 2,4-Dinitrophenol0.313 Acenapthene 0.06802-Amino-2,6-Dinitrotoluene 0.123 HMX *0.153 0.123 0.0445o-Stylene m,p-Xylene P0.06674-Nitrophenol 0.07910.7415 Dibenzofurannitrobenzene 0.0519 PDX *0.0696 0.0519 PDX *0.0696 0.0539o-Xylene m,p-Xylene P0.04512,4-Dinitrotoluene Diethylphthalata 4-Chlorophenyl Phenyl Ether0.0478 0.0478Tetryl PETN *0.0853EPA Method 8270C0.315 4-Nitroanaline 2,4-Dinitro-2-Methylphenol0.0737 1.48EPA Method 8332 PETN *0.354 0.354Pyridine Phenol0.315 0.0525N-nitrosodiphenylamine ther Ether0.0865 0.0851Nitroglycerin 1.080.376Bis (2-chloroethyl) ether 2-Chlorophenol0.262 0.0851Hexachlorobenzene Pentachlorophenol0.151 1.030.151 1.03	Trichloroethene	0.0548	Acenaphthylene	0.0467	3-Nitrotoluene	0.196
cis-1,3-Dichloropropene trans-1,3-Dichloropropene0.0618 0.128Acenapthene 2,4-Dinitrophenol0.0680 1.244-Nitrotoluene HMX0.123 0.0445cis-1,2-Dichloroethene trans-1,2-Dichloroethene0.0667 0.07914-Nitrophenol0.7415 Dibenzofurannitrobenzene RDX0.0696 0.0519o-Xylene m,p-Xylene0.0451 0.04512,4-Dinitrotoluene0.0981 0.0451Tetryl*0.0853m,p-Xylene *0.136Diethylphthalata 2,4-Dinitro-2-Methylphenol0.0478 0.0478EPA Method8332EPA Method Pyridine0.315N-nitrosodiphenylamine ther 0.05250.0855Nitroglycerin*0.354Pyridine0.315N-nitrosodiphenyl Phenyl 2,4-Dinitro-2-Methylphenol0.108Nitroglycerin*0.376Bis (2-chloroethyl) ether 2-Chlorophenol0.262Hexachlorobenzene 0.08510.151 1.031.03**	Vinyl Chloride	0.114	3-Nitroaniline	0.313	2-Amino-2,6-Dinitrotoluene	0.153
trans-1,3-Dichloropropene0.1282,4-Dinitrophenol1.24HMXMMX0.0445cis-1,2-Dichloroethene0.06674-Nitrophenol0.7415nitrobenzene0.0696trans-1,2-Dichloroethene0.0791Dibenzofuran0.0519RDX*0.0539o-Xylene*0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.1400.0478EPA Method8270C4-Nitroanaline0.0737EPA Method8332Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.354Pyridine0.05254-Bromophenyl Phenyl0.108Nitroglycerin*0.376Bis (2-chloroethyl) ether0.262Hexachlorobenzene0.1512-Chlorophenol0.0851Pentachlorophenol1.03	cis-1,3-Dichloropropene	0.0618	Acenapthene	0.0680	4-Nitrotoluene	0.123
cis-1,2-Dichloroethene trans-1,2-Dichloroethene0.0667 0.07914-Nitrophenol Dibenzofuran0.7415 0.0519 RDXnitrobenzene RDX0.0696 0.0539o-Xylene*0.04512,4-Dinitrotoluene0.0981 0.0451Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.140 4-Chlorophenyl Phenyl Ether 4-Nitroanaline0.0737 0.341 2,4-Dinitro-2-MethylphenolEPA Method8332EPA Method8270C4-Nitroanaline 2,4-Dinitro-2-Methylphenol0.0865 1.48PETN*0.354Pyridine0.315 0.0525N-nitrosodiphenylamine Ether0.0865 0.108Nitroglycerin*0.376Phenol0.0525 0.0851Hexachlorobenzene Pentachlorophenol0.151 1.03	trans-1,3-Dichloropropene	0.128	2,4-Dinitrophenol	1.24	HMX *	0.0445
trails-1,2-Dichlorbethene0.0791Diberizordram0.0519RDX40.0539o-Xylene*0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.1404-Chlorophenyl Phenyl0.0478etherFluroene0.0737EPA Method8332ether	cis-1,2-Dichloroethene	0.0667	4-Nitrophenol	0.7415	nitrobenzene	0.0696
o-Xylene0.04512,4-Dinitrotoluene0.0981Tetryl*0.0853m,p-Xylene*0.136Diethylphthalata0.140**0.0853EPA Method 8270C4-Chlorophenyl Phenyl Ether 2,4-Dinitro-2-Methylphenol0.0737EPA Method8332Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl Ether0.108Nitroglycerin*0.376Bis (2-chloroethyl) ether 2-Chlorophenol0.262Hexachlorobenzene Pentachlorophenol0.151 1.03**	trans-1,2-Dichloroethene	0.0791	Dibenzoluran	0.0519	RDX ²	0.0539
m,p-Xylene*0.136Diethylphthalata0.1404-Chlorophenyl Phenyl Ether0.0478EPA Method 8270C4-Nitroanaline 2,4-Dinitro-2-Methylphenol0.0737EPA Method 8332Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl Ether0.108Nitroglycerin*0.376Bis (2-chloropthenol0.262Hexachlorobenzene Pentachlorophenol0.151 1.031.03*	o-Xylene	0.0451	2,4-Dinitrotoluene	0.0981	Tetryl *	0.0853
EPA Method 8270C4-Chlorophenyl Phenyl Ether0.0478EPA Method 8270C4-Nitroanaline 2,4-Dinitro-2-Methylphenol0.0737 1.48EPA Method 8332Pyridine0.315N-nitrosodiphenylamine Ether0.0865Nitroglycerin Nitroglycerin0.354Phenol0.05254-Bromophenyl Phenyl Ether0.108 Ether0.108 Ether0.151 1.030.0851	m,p-Xylene [*]	0.136	Diethylphthalata	0.140		
EPA Method 8270CEther Fluroene0.0737 0.341 2,4-Dinitro-2-MethylphenolEPA Method8332 8332Pyridine0.315N-nitrosodiphenylamine0.341 2,4-Dinitro-2-Methylphenol1.48 0.0865PETN *0.354Pyridine0.05254-Bromophenyl Phenyl Ether0.108 Ether0.108 Ether0.351			4-Chlorophenyl Phenyl	0.0478		
EPA Method 8270C4-Nitroanaline 2,4-Dinitro-2-Methylphenol0.0737EPA Method8332Pyridine0.315N-nitrosodiphenylamine0.3410.3410.354Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.376Phenol0.05254-Bromophenyl Phenyl Ether0.1080.108*0.376Bis (2-chloroethyl) ether 2-Chlorophenol0.262Hexachlorobenzene Pentachlorophenol0.1511.03			Ether	0 0707	554 M. H	
Pyridine0.315N-nitrosodiphenylamine0.365Nitroglycerin*0.354Phenol0.05254-Bromophenyl Phenyl0.1080.1080.1080.1510.262Hexachlorobenzene0.1512-Chlorophenol0.0851Pentachlorophenol1.030.1030.1030.1030.103	EPA Method 8270C		A Nitroanalino	0.0/3/	EPA Method 8332	
Pyridine0.315N-nitrosodiphenylamine0.0865Nitroglycerin*0.376Phenol0.05254-Bromophenyl Phenyl0.108Ether1.08Bis (2-chlorophenol0.262Hexachlorobenzene0.1512-Chlorophenol0.0851Pentachlorophenol1.03	EFA Method 82700		2 4-Dinitro-2-Methylphenol	1 48	DE-TAL *	0 354
Phenol 0.313 N-hitrosodipnenylamine 0.3033 Nitroglycerin 0.376 Phenol 0.0525 4-Bromophenyl Phenyl Ether 0.108 Bis (2-chloroethyl) ether 0.262 Hexachlorobenzene 0.151 2-Chlorophenol 0.0851 Pentachlorophenol 1.03	Pyridine	0.215	E,4 Dinido E Modifiphenor	0.0965	PEIN *	0.004
Phenol 0.0525 4-Bromophenyl Phenyl 0.108 Ether 0.151 Bis (2-chlorophenol 0.0851 Pentachlorophenol 1.03	Dhanal	0.315	N-nitrosodipnenylamine	0.0005	Nitroglycerin	0.370
Bis (2-chloroethyl) ether0.262Hexachlorobenzene0.1512-Chlorophenol0.0851Pentachlorophenol1.03	Phenol	0.0525	4-Bromophenyl Phenyl Ether	0.108		
2-Chlorophenol 0.0851 Pentachlorophenol 1.03	Bis (2-chloroethyl) ether	0.262	Hexachlorobenzene	0.151		
	2-Chlorophenol	0.0851	Pentachlorophenol	1.03		
1,3-Dichlorobenzene 0.0369 Phenanthrene 0.0582	1,3-Dichlorobenzene	0.0369	Phenanthrene	0.0582		
1,4-Dichlorobenzene 0.0622 Anthracene 0.088	1,4-Dichlorobenzene	0.0622	Aninracene	0.088		

barium nitrate. Various heavy metals, including zinc and cadmium, might be increased from use of flares or other pyrotechnical devices. In previous samplings (Schuh 1994,1997) there were no indications of elevated barium, nitrate, lead, or other heavy metals. Results for 2001 sampling of these analytes are discussed in "Major Ion Chemistry" and "Trace Element" sections of this report.

Aside from samples collected from the six sites specifically designated to test for residues from munitions and explosives, additional information can be obtained from several of the WS-1 wells placed by Comesky (1989) for piezometric measurements and sampling for major ion chemistry. Five of the WS-1 well nests (12013, 12014, 12015, 12023, and 12024, as shown on Figure 4) are located within the area of the demolitions and firing ranges. Water samples from these wells in 1986, 1992, and 1996 have shown no indications of increasing lead or nitrate.

In 2001 a more extensive sampling of munitions and explosives residues was planned. Procedures planned were: (1) Identify well and surface-water sample sites associated with each operational area; (2) Identify as many known compounds as possible for each use and operational area; (3) Identify sampling procedures and laboratory methods needed for those compounds; and (4) plan and sample each well and surface-water site for the required compounds and methods.

The demolitions range is located on the south half of T149N R63W Section 36. Surfacewater and ground-water draining from this area would flow northwestward to the Lake Coe and South Washington Lake basins, and from there toward the Sheyenne River. In addition, possible contamination of the Reservoir between the demolitions range and the firing ranges (Site 4, Figures 3,4, 5) and the South Spring (Site 3, Figure 3,4,5) could occur through atmospheric deposit following demolitions exercises. Sample sites chosen for the demolition range are on Table 9.

The M203 range is located in the northeast quarter of T148N R63W, Section 2. The M203 range was not yet in use at the time of the 1996 sampling (Schuh 1997), but is in current use. Both ground-water and surface runoff from this area would flow westward toward the wetlands in the center of T148N R63W Section 2, and from there northward through the Lake Coe and South Washington Lake basins toward the Sheyenne river. Ground water from the M203 range may also discharge from the spring (148-063-02DA) located in the southeast quarter of T148N R63W Section 2.

The western half of T149N R62W, Section 32 is occupied by several training sites, including an M-60/ 50 caliber machine gun training site (MPMG), a pistol range, an M-16 zero range, and a modified record fire range (MRF). All of these facilities were in use in 1996. A KD (known distance) range has been used more recently. These training facilities are located on a ridge that occupies a divide between the Colvin Creek drainage basin, and the Lake Coe and South Washington Lake drainage basin (Figure 3). Depending on time, conditions, and specific locations of use, both surfacewater and ground-water flow could carry contaminants in either direction. A reservoir located in the southwest quarter of T149N R62W Section 31 collects water from the training area, and would be expected to trap contaminants.

Table 9. Water sample sites associated
with ranges. Demo = Demolition Range,
(R) = Reservoir, (S) = Spring, MPMG = Multiple
Use Machine Gun, MRF = Modified Record Fire.
Site Locations are shown on Figure 5.

Use Site	Sample Site
Domo	2(S) 4(D)
Deno	5,6,7, 15 (Lake Coe)
M203	5,7
MPMG / MRF	1,2,3(S), 4(R),5,6

An inventory of known compounds for uses on each location was compiled by LTC David Anderson (Letter of 3/23/2000; Citation: Personal Communication, Appendix A-1). Most common uses of munitions and explosives are located at the Demolition Range and the assembly of ranges (MPMG, MICLIC, CPQL, ZERO, AND MRF) in the NE corner of the camp, south of HWY 29. Of the listed chemicals, there are standard EPA screening methods for Pentaerytrital (PETN), 2,4,6-trinitrotoluene (TNT), Styrene, Nitroglycerin, Tetranitrate Dibutylphthalate, and Toluene. Cadmium, magnesium, lead, nickel, and zinc components can also be tested using standard trace element methods. Target Compounds from this list were matched with laboratory procedures as shown on Table 10. A general list of all analytes determined for each of the four methods in Table 10 is presented on Table 8. A summary of sample sites for combined munitions and explosives residues, and laboratory procedures for each site are in the following table (Table 11).

Demo Range	MPMG/MRF	M203
8260B	-	
-	8270C	-
8330	-	-
8332	8332	-
Zn, Pb, Ni, Qu	Zn, Pb	Zn, Pb

Table 10.EPA Laboratory Method Proceduresfor known compounds from each designated use area.

Table 11. Sample Sites, Number of Wells Sampled,
and Laboratory Procedures for Munitions and Explosives
Residues. (W) = Well, (S) = Spring, (L) = Lake. * = Lake Coe.

		T FOA			FDA
Well	No.	L EPA	L FLA	EPA	EPA
(Site)	Samples	8260B	8270C	8330	8332
No.	per site				
1 (W)	2		X		
2 (W)	1		x	alter.	
3 (S)	1	x	x	x	Х
4 (R)	1	x	x	х	х
5 (W)	2	x	x	x	х
6 (W)	2	x	x	х	х
7 (W)	2	x		х	Х
15 (L)*	1	X	X	X	X
	Nation (Markar 2000)				

All Results for the 2001 samples are included in Appendix B. Included also in the sample summaries are case narratives; including: descriptions of method, analysis, matrix, general information, method summary, sample preparation, holding times, dilutions, quality control data, instrument QC, NC/CAR, confirmation analyses, and field and laboratory chain of custody.

A summary of detections is listed on Table 12. These must be interpreted cautiously, because samples of volatile compounds measured using EPA Method 8260B may have been contaminated with volatile compounds during handling, transit, or laboratory analysis. Four of the Method 8260B compounds were detected in water samples from several sites. Detected volatile compounds are acetone, carbon disulfide, methylene chloride, and toluene. Of these, all except

carbon disulfide were detected in the trip blank in concentrations comparable to, or greater than those in the environmental samples. One, methylene chloride, was also detected in the laboratory method blank. Only carbon disulfide was detected in field samples alone.

Table 12.Summary of organic analytes detected in water samples collected in2001 for assessment of residues from munitions and explosives on the CGS facility.

* indicates "qualitative" detection (above MDL but below lowest calibration concentration).

Method >	8260B	8260B	8260B	8260B	8270C	8270C
Analyte >	Acetone	Carbon	Methylene	Toluene	benzoic acid	di-n-butyl
	ug/l	Disulide	Unioride	ug/l	ua/I	pntnalate
Sample	μg/L	μς/Ε	μg/L	<u></u>	μg/ι	μу/∟
Gampie				1 mg/L		
Method Blank	ND	ND	0.13	ND	ND	ND
1-13103	ns	ns	ns	ns	ND	ND
1-13104	ns	ns	ns	ns	ND	ND
2-13105	ns	ns	ns	ns	ND	2.9 *
3-Spring	8.2	0.068	0.16	ND	ND	ND
4-Resrvoir	ns	ns	ns	ns	5.7 *	ND
5-13097	3	0.64	0.23	0.084	ND	ns
5-13098	3.7	3.3	0.038	0.13	ND	ns
5-13098	4.5	0.44	0.26	0.22	ND	ns
Duplicate						<i>p</i>
6-13101	4.1	23	0.29	ND	ND	ND
6-13102	3	2	0.29	0.062	ND	ND
7-13086	4.7	1.9	0.23	0.092	ns	ns
7-13087	4.7	21	0.34	0.14	ns	ns
7-13087	5.4	13	0.37	0.17	ns	ns
Duplicate						
15-Lake Coe	4.9	ND	0.17	0.095	7.2 *	11
Trip Blank	4.6	ND	1.6	0.25	ns	ns

Louise Parker of the U.S. Army ERDC-CRREL, New Hampshire, has kindly provided assistance in identifying some potential sources of detected compounds through a search of the Department of Defense (DOD) data base and additional sources in response to specific queries. In e-mail correspondence dated 10/1/2001 (Citation: Parker, 2001a; Appendix A-2a), and 11/1/2001 (Citation: Parker, 2001b; Appendix A-2b) she identified the following potential sources.

1. Di-n-butylphthalate: Parker (2001a, Appendix A-2a) cited an <u>Encyclopedia of Explosives and</u> <u>Related Items</u> (US Army Armament Research, Development, and Engineering Center, 1999) in identifying its use as a solvent for nitroaromatic compounds such as DNT and Dinitroethylbenzene, and as a coat for nitrocellulose and nitroguanidine propellants. She found it associated with 24 pages of munitions (20 munitions per page) in "one of the DOD data bases" queried.

2. Acetone: Parker (2001a, Appendix A-2a) found, in a DOD database query, 60 munitions listed, include "flares, fuses, hand grenades (smoke and riot types), anti-personnel mines, signals, and smoke pots."

3. Toluene: Citing the Encyclopedia of Explosives and Related Items, Parker (2001a, Appendix ME-3) found toluene to be one of the major components of explosives, including DNT and TNT. Citing <u>Hawley's Condensed Chemical Dictionary</u> (Sax and Lewis, 1987), "it is also a diluent and thinner for nitrocellulose and explosives such as TNT." In the DOD database, she found "78 munitions listed including fuses, fuse bombs, and several sizes of projectiles and ... rockets."

4. Methylene Chloride: In a search of the DOD database Parker (2001b, Appendix A-2b) found 15 matches for methylene chloride, including "several signals and smoke grenade launchers and a personnel signal kit."

5. Carbon Disulfide: Parker (2001b, Appendix A-2b) found carbon disulfide listed in the <u>Encyclopedia of Explosives and Related Items</u> as a compound that "had been tested as a developmental component for munitions", but was unable to find details of specific uses (there were no matches in the DOD database).

Detections of acetone, methylene chloride, and toluene in the trip blank in concentrations similar, and in some cases greater than those in field samples indicate that samples for volatile organic compounds (EPA Method 8260B) were likely contaminated in field, storage, packing, transit, or laboratory. Detection of methylene chloride in the laboratory blank means that these detections may have resulted from laboratory contamination. However, acetone and toluene contamination of samples likely occurred before the laboratory. Acetone was used for field cleaning the teflon dipper used in sampling surface waters, including Lake Coe (Site 15) and the Reservoir (Site 4). It was contained in a squeeze bottle placed within a container in the vehicle on each of the sample sites. Trip blanks were kept in the coolers during sampling, and were stored in refrigerators prior to shipping. Because trip blanks were contained in septum vials it is speculated that volatile contaminants may have passed the sealed septum, or that bottles themselves were contaminated on the outside, and that contaminants were not fully washed from the bottles before opening in the laboratory. While ground-water and surface-water samples were not collected during active demolition exercises, aerial

contamination from wind-born residues is possible, either through the septum membrane or as detritus on the bottle. Refrigerators used for storing organic samples were located in a utility building adjacent to the Multi-Purpose Machine-Gun (MPMG) range and contamination may have occurred in refrigerated storage on this site. While none of the bottles were ever opened within the utility building, it must be assumed that residues of munitions compounds used on the ranges would be present on site.

Carbon disulfide was detected in several samples, but not in trip blanks or in the method blank. It is known to be a toxic solvent (Parker 2001b, Appendix A-2b), but there is no currently published EPA-MCL value for carbon disulfide. Dr. Robert Benson of the USEPA in Denver, has provided, in an e-mail communication of 6/24/02, an approximation of 700 µg/L as a threshold of toxicological concern, using standard computation procedures for a 70 kg adult consuming 2 liters of water per day, a relative source contribution of 0.2, and an oral reference dose of 0.1 mg/kg-day (Citation: Benson 2002, Appendix A-3). All detections in water samples were several orders of magnitude below this approximation. Carbon disulfide detections are therefore considered to be "trace" detections, and of no immediate or long-term health concern, based on current toxicological information.

Di-n-butylphthalate was detected in one sample (Site 2 in the Colvin Creek basin). The detection level is considered qualitative because, while above the minimum detection level (MDL), it is below the lowest concentration used in calibration of the lab procedure. Di-n-butyl phthalate does not have an established EPA-MCL, but it does have a Reference Dose (RID) of 0.03 mg/kg/d which is an estimate of daily exposure to the human population that is likely to be non-deleterious to human health over a lifetime; and a Drinking Water Equivalent Level (DWEL) of 4,000 µg/L, which is a concentration for lifetime exposure that is "protective of adverse, non-cancer health effects, that assumes all of the contaminant is from a drinking water source" (USEPA 1996a). Concentrations detected in Lake Coe and in the ground-water northeast of the firing range complex in the Colvin Creek basin (Site 2), are below the DWEL by a factor of 1,000. Di-n-butyl phthalate detections are therefore considered to be "trace" detections, and of no known health concern, based on current toxicological information.

Benzoic acid was detected in the reservoir west of the firing range complex (Site 4) and in Lake Coe (Site 15). Detections are considered to be qualitative, indicating a likely presence, but at concentrations below that of the lowest laboratory concentration standard. Benzoic acid is a constituent of many synthetic and natural organic compounds, and has no currently published drinking water standards (USEPA 1996a).

In summary, results of water samples in 2001 indicate the possible presence of benzoic acid or di-n-butyl phthalate in two surface waters and two ground-water samples. Absence of a trip blank

for these species leaves open the possibility that detections may be spurious. If present, however, they are well below levels of toxicological concern. Carbon disulfide has been detected in several ground-water and surface-water samples, and detections seem to be authentic. All concentrations are at least 30 times below levels of potential toxicological concern. All detected species should be targeted in future sampling for verification, or deverification, and for tracking of quantitative trends.

Acetone, methylene chloride, and toluene were detected in several water samples, but appear to have likely sources other than the wells and surface-waters sampled. Toluene has an EPA-MCL of 1,000 μ g/L (USEPA 1996a). Detections are below the MCL by a factor of 1,000 to 10,000. Acetone and methylene chloride have no published EPA-MCL values (USEPA 1996a), and concentrations are low, at < 10 μ g/L for acetone, and < 1 μ g/L for methylene chloride. These detected species should also be targeted in future sampling for verification or deverification. Additional care needs to be taken in acquisition, transport, and storage of volatile organic compounds to avoid sample contamination. Storage and handling may have to be arranged outside of the CGS facilities.

Herbicides and Pesticides

The two primary pesticide uses at CGS are leafy-spurge control, which uses a mixture of 2,4-D and picloram, and mosquito control in bivouac areas, for which either malathion or chlorpyrifos (Lorsban) are most frequently used.

Herbicide Contamination

The primary herbicides used at CGS are 2,4-D and picloram which are used mainly for leafy spurge control, and prometon which is used for control of vegetation around buildings and operational facilities. Water samples from susceptible wells and surface waters, as described in the CGS sample plan, were analyzed for these species in 1992 and an 1995 and were discussed in two previous reports (Schuh 1994, Schuh 1997). In brief, the only herbicide detected was piclorarm, which was persistently present in Lake Coe and South Washington Lake at concentrations well below EPA-MCL. There were no herbicide detections in any of the wells sampled. A brief review from previous reports is given below.

Prometon is primarily of concern near buildings and operational facilities where it is used for clearing unwanted vegetation. One area of main concern is the M-60 range. Water was tested for prometon in samples collected from both shallow and deep wells at four sites in the basins draining from the M-60 range. These include wells at Sites 1 and 8 in the Colvin Creek basin; the Reservoir (Site 4), and the wells at Site 5 in the drainage toward Lake Coe. Additional water samples were collected in South Washington Lake, and shallow wells near the Engineering Training Site (Site 9),

and at Sites 13 and 20. Well Sites 13 and 20 were associated with bivouac areas. Sample site locations are summarized on Table 3. Prometon was not detected (MDL = $0.5 \mu g/L$) in any of the samples.

Picloram and 2,4-D are used to control leafy spurge in many areas of CGS. Twelve water samples were planned for 2001, corresponding to known areas of leafy spurge infestation and historical spraying practices. These included nine shallow well samples as summarized on Table 3, and samples from the North Spring (Site 16), South Washington Lake, and Lake Coe. Of these, Site 17 near North Twin Lake was not sampled because wells had been submerged by rising waters from the lake and destroyed by ice action. There were no detections of picloram (MDL = 0.1 μ g/L) or 2,4-D (MDL = 0.5 μ g/L) in any of the samples. This marks a major change in herbicide contaminant status, because it is the first sampling in which picloram was not detected in the range of 0.1 to 0.4 μ g/L in Lake Coe and South Washington Lake since sampling began in 1992. Either increased influx of fresh water to the lakes, a changing microbiological environment in the lake with respect to removal of picloram, or changing management practices have resulted in non-detections within the lakes.

There were no herbicides detected in any of the surface waters or wells sampled at CGS in 2001. Data and field and laboratory QR/QC are appended (Appendix C).

Insecticide Contamination

Water samples from all of the wells sampled for herbicides were also screened for insecticides in 1993. The primary use for insecticides is mosquito control in bivouac areas and work areas. Samples for insecticide screening are targeted to these sites. In the initial (1993) sampling a general and broad screening for herbicides and insecticides was performed. Target insecticides known to have been used at CGS included malathion (MDL = 1 μ g/L) and chlorpyrifos (MDL = 0.5 μ g/L). There were no detections of either. However, there was one detection (Site 6 near Lake Coe) of dimethoate (Schuh 1994). Since dimethoate (MDL = 0.5 μ g/L) was not known to have been sprayed at CGS, it was speculated that the source may have been residue in the spray tank of an aerial sprayer that had been spraying picloram about 2 miles northeast (and upwind) of Site 6 at the time of well construction. Site 6 was resampled for dimethoate in 1994, and none was detected.

In 1996 all water samples collected for insecticide screening were analyzed only for chlorpyrifos (MDL = $0.5 \mu g/L$). There were no detections in any of the wells and surface-water samples.

In 2001 eight water samples were collected from surface water and shallow wells for insecticide screening. Sites included the North Spring (Site 16), Lake Coe (Site 15), and South Washington Lake (Site 11), and generally the same wells sampled for 2,4-D and picloram. All samples were collected from north of HWY 15, however, because bivouac areas are not located within the

safety fan of the M-60 range, which is south of HWY 15. Sample sites are summarized on Table 3, and locations are shown on Figure 5. All samples were analyzed only for malathion.

There were no detections of malathion (MDL = $0.5 \mu g/L$) at any of the sampled sites. Data and field and laboratory QR/QC are appended (Appendix C).

Petroleum Residues

Petroleum products are used primarily in transportation and construction vehicles at CGS. Areas considered most susceptible to petroleum product contamination are vehicle staging areas, such as the Engineering Training Site (near Well Site 9), and the shop complex near the M-60 range. Other common vehicle staging areas are bivouac sites. If on-site filling is attempted, or if vehicles are damaged, gasoline, diesel fuel, lubricating oil, or hydraulic fluids could spill onto the topsoil, and eventually leach to ground water.

Site selection criteria and results for TPH samples in 1993 and 1996 were discussed in detail in Schuh (1994, 1997). To summarize, in 1993 and 1996 water samples were analyzed for TPH as gasoline, which is a test for petroleum hydrocarbons in the gasoline fraction; and TPH as fuel oil, which is a test for petroleum hydrocarbons in the fuel oil fraction, and includes diesel fuel. These were treated as an index of site contamination from petroleum products. In 1993 only shallow wells were sampled. During 1993 rising piezometric pressure in the lower confined units of the Cherry Lake aquifer indicated that recharge in the uplands of CGS did effect, and was connected to the deeper units of the aquifer. For this reason, some of the deep wells were also sampled in 1996.

Of five lake samples collected from Lake Coe and South Washington Lake in 1993 and 1996, five shallow well-water samples collected in 1993, three shallow well-water samples collected in 1996, and three deep well-water samples collected in 1996, there have been no detections of petroleum hydrocarbons as gasoline or fuel oil. There is no evidence of ground-water or surface-water contamination from vehicle leakage, or any other petroleum-based product source on Camp Grafton (South Unit).

In 2001 twelve (12) water samples were collected from surface waters and wells. Surfacewater samples included the Reservoir (Site 4) in the drainage from the M-60 range, Lake Coe, and South Washington Lake. Ground-water samples were collected from eight wells in operational and bivouac areas throughout CGS, and within upland drainage paths for all major basins, including the Lake Coe and South Washington Lake flow systems, and the Colvin Creek basin, which receives drainage and ground-water flux from the uplands containing the M-60 range and many of the bivouac sites. A summary of sample sites and results is on Table 13.

Gasoline and diesel fuel residues were evaluated using GRO (gasoline range organics) and DRO (diesel range organics) using EPA Method 8015B (USEPA 1996b). GRO is used in place of the

previous TPH as gasoline, and DRO in place of the TPH as diesel. The State of North Dakota, as represented by the Department of Health, generally uses a value of 0.5 mg/L DRO or GRO (or TPH values) as a threshold for "concern" over water quality. This value is not a regulatory standard in the strict sense and does not require action. Rather, it comprises a value at which regulatory agencies begin to take note and at which increased consideration of potential sources and possible effects of future deterioration are initiated.

Site	SWC Well No.	T-N	R-W	Section	Location	GRO 0.2 μg/L	DRO 0.3 µg/L
						1.0 Miles	
1	13103	149	62	28	CCC1	<0.2	<0.3
1	13104	149	62	28	CCC2	<0.2	<0.3
4	Reservoir	149	62	31	С	<0.2	<0.3
5	13098	149	63	36	ACA2	<0.2	<0.3
5	13098	149	63	36	ACA2	<0.2	<0.6
	duplicate						
5	13098	149	63	36	ACA2	<0.2	<0.99
	MS-MSD						
7	13087	148	63	2	ACA2	<0.2	<0.3
8	13106	149	62	19	DBD3	<0.03	0.041
9	13089	149	63	13	DAA2	<0.03	0.048
10	13093	149	63	12	CAC2	<0.03	0.07
11	S W Lake	149	63	14	CA	<0.03	<0.035
14	Lake Coe	149	63	26	ADD	<0.2	<0.3
16	Spring	149	63	13	BDA	< 0.03	<0.038
16	Spring	149	63	36	ACA2	< 0.03	<0.035
	duplicate						
17	13095	148	63	4	ABA1	<0.2	<0.3
	Trip Blank					<0.2	

Table 13. Summary of GRO and DRO data for well and surface-water samples collected on CGS in September 2001.

All samples on Table 13 are below the levels of toxicological concern using drinking water standards. Lower detection limits on some samples are due to use of different methods in different sample sets. Method documentation and all data, including QR/QC, are in Appendix C. Samples having lower detection levels indicate that DRO contaminants are possibly present in the northeast portion of CGS, notably in the vicinity of the Engineering Training Site (Well Site 9). However, all detections are a full order of magnitude below the level of toxicological concern, and below common detection limits of 0.2 mg/L. At such low levels we must also consider the possibility of contamination from sample procedures in which gasoline- or diesel-run vehicles are present on site. At this time, we conclude that diesel-range organics may be present in some wells on CGS, but at levels that are extremely low in relation to currently understood levels of concern.

CONCLUSIONS

Water samples were collected from surface waters (lakes and springs) and ground water (sample wells) on the Camp Grafton South Unit facility in 2001, to evaluate evidence of contamination or degradation due to facility use. Water samples were tested for changes in major ion chemistry, nitrate, trace elements, residues of munitions and explosives, herbicides, insecticides, and petroleum residues from gasoline and diesel fuel sources.

Analyses were targeted to specific use areas. There has been no discernible change in major ion chemistry. Nitrate concentrations have risen slightly in three shallow wells, likely due to manure mineralization under pasture, but are still at concentrations well below those of toxicological concern. Measured nitrate concentrations are also below levels commonly measured and expected in the surficial layers of aquifers in North Dakota under agricultural use.

Elevated lead and zinc concentrations were detected in South Washington Lake, but it is considered likely that these detections were spurious and caused by sample adulteration in storage, transit, or laboratory. There are no obvious source with respect to CGS management and use, and previous high pH measurements indicate that lead and zinc solubility should be low. All other water samples were free of trace metal detections. This is most notable in samples collected from areas of the CGS facility used for munitions training, and particularly in the reservoir at Site 4 which receives runoff directly from the firing ranges.

Arsenic is present in many CGS surface waters and wells at concentrations above or near the proposed new EPA-MCL of 10 µg/L. About half of the sample sites (both wells and surface waters) have had at least one sample above the proposed EPA-MCL over the last decade, and about 30% were above the proposed EPA-MCL in the 2001 sampling. Highest concentrations are in South Washington Lake, with next highest in Lake Coe, both of which concentrate arsenic through evaporation. Concentrations are also high in supply wells located near the firing range complex. Care should be taken in managing supply wells and in managing or disposing of concentrated filtrate from reverse osmosis units used in training. Concentrations in South Washington Lake and Lake Coe have decreased compared with previous samplings in 1993 and 1996, likely due to dilution from higher precipitation during the 1990s. Arsenic sources are natural, originating as constituents of the parent shales, rather than through anthropogenic (human management and use) sources.

There were detections of munitions and explosives residues, including acetone, carbon disulfide, methylene chloride, toluene, benzoic acid, and di-n-butylphthalate in some wells, springs, and surface waters. Of these, quality control data indicate that acetone, methylene chloride, and toluene are likely spurious detections. Carbon disulfide is likely present, and benzoic acid and di-n-butyl phthalate may be present. All detection concentrations, however, are well below levels of

regulatory or toxicological concern. Most are considered to be "qualitative"; that is, beyond the lower limits of reliable quantitative detection. Sampling results indicate no evidence of degradation of surface water or ground water due to current facility use or management. Questionable detections are all volatile compounds, extracted using USEPA Method 8260B. Additional care in sampling, storage, and transit should be exercised in future sampling for volatile organics. Levels of possible detection do not, however, warrant confirmation sampling before the next (2006) scheduled major sampling.

Herbicides 2,4-D, picloram, and prometon were not detected in any of the waters sampled. Picloram has previously (1993, 1994, 1995 and 1996) been detected at a persistent background level of about 0.1 µg/L in South Washington Lake and Lake Coe. These concentrations are orders of magnitude below those of toxicological concern. In 2001 picloram, for the first time, was no longer detectable. Decreasing picloram could be due to dilution from large rainfall (similar to arsenic) or changing use patterns and practices on the CGS facility. Neither 2,4-D nor prometon were detected in any of the water samples.

In past years samples have been collected for chlorpyrifos, dimethoate, and malathion. There have been no confirmed detections. In 2001 samples for malathion indicated no detections.

Gasoline range organics (GRO) and Diesel range organics (DRO) were tested on samples collected from sites near vehicle staging areas, such as bivouac sites and the Engineering Training Site. Very low concentrations of DRO were detected in shallow wells near the Engineering Training Site, and at two other locations in the north half of the CGS facility. Measured concentrations were very low with respect to reliable detection limits and toxicological standards.

As of 2001, there are no historical or current indications of degradation of ground water or surface water of the CGS facility through management or use. The next major sampling should be scheduled for 2006.

RECOMMENDATIONS

1. The 2001 sampling has indicated the first non-detections of picloram in Lake Coe and South Washington Lake. Previous recommendations for frequent (every year or every second year) sampling of picloram are now changed to testing for picloram only at the time of major sample sets (next recommended for 2006).

2. Consider the ramifications of the prospective new EPA-MCL for arsenic (10 μ g/L) on appropriate use for water supply wells on the firing range complex.

3. During water purification training using reverse osmosis, filtrate should be analyzed for arsenic concentration. If filtrate has high arsenic, care should be collected in disposal. Sufficient filtered water to dilute the filtrate should be returned to the original source to offset the concentrated arsenic. Use disposal methods approved by the North Dakota Department of Health.

4. The use of the well-house area (T149N R63W Section 35A) as a staging area for storage of herbicide and for mixing pesticides should be reviewed for well-protection safety. Overflow from filling tanks may contaminate wells. Also, it is suggested that pesticides be stored away from the well site.

5. CGS use should be reviewed and sampled again for water quality in 2006.

6. Barbed wire at all well sites should be inspected and repaired .

7. The PVC protective cover for WS-2 well 13103 (Site 1, 149-062-28CCC1) should be extended three or four inches.

8. The elevations of the measuring points (tops) of all wells should be surveyed.

9. South Washington Lake should be resampled for lead and zinc to test whether high concentrations in the 2001 samples were spurious.

10. Sampling, storage, and handling procedures for volatile organic compounds should be reviewed before the next major sampling to assure non-contamination of samples.

REFERENCES

Benson, Robert. 2002 (6/24/02). Subject: Citation. E-mail correspondence from: Benson.Bob@epamail.epa.gov. to: William Schuh <bschuh@water.swc.state.nd.us.

Bluemle, J.P. 1965. Geology and ground water resources of Eddy and Foster counties, North Dakota: part I. geology. Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

Comeskey, A.E. 1989. Hydrogeology of Camp Grafton South, Eddy county, North Dakota. North Dakota Ground-Water Studies #8. North Dakota State Water Commission. Bismarck, ND.

Parker, L.V., A.D. Hewitt, and T.F. Jenkins. 1990. Influence of casing materials on trace-level chemicals in well water. Ground Water Monitoring Review. Spring:146-156.

Parker, Louise. 2001a (10/31/01). Subject: Munitions contaminants. E-mail correspondence from: Louise. V.Parker@erdc.usace.army.mil; to: bschuh@swc.state.nd.us.

Parker, Louise. 2001b (11/1/01). Subject: Munitions contaminants. E-mail correspondence from: Louise. V.Parker@erdc.usace.army.mil; to: bschuh@swc.state.nd.us.

Sax, N.I. and R.J. Lewis, Sr. (Revised by). 1987. "Hawley's condensed chemical dictionary, Eleventh edition, Van Nostrand Reinhold Company, New York.

Schuh, W.M. 1992. Initial proposal for a water quality monitoring program for the North Dakota National Guard Camp Grafton South facility. Unpublished proposal, submitted 4/26 to Captain David Anderson.

Schuh, W.M. 1994. Planning, construction, and initial sampling results for a water quality monitoring program: Camp Grafton South Military Reservation, Eddy County, North Dakota. Water Resource Investigation No. 27. North Dakota State Water Commission. Bismarck, ND.

Schuh, W.M. 1997. Water quality evaluation for the North Dakota National Guard Camp Grafton (South Unit), Eddy County, North Dakota: 1996 sampling. Water Resource Investigation No. 33. North Dakota State Water Commission. Bismarck, ND.

Schuh, W.M., R.L. Cline, M.J. Kosse, and D.W. Sletton. 1997. Effect of rigid PVC bailer contact on detection of pesticides in water samples. GWMR 17:1, 81-90.

Shaver, Robert B. 1991. Sample bias in a hydrochemical investigation of the Oakes aquifer, southeastern North Dakota. Water Resources Investigation No. 16. North Dakota State Water Commission. 900 East Boulevard. Bismarck, ND.

Sykes, A.L., R.A.S. McAllister, and J.B. Homolya. 1986. Sorption of organics by monitoring well construction materials. Ground Water Monitoring Review. Fall: 44-47.

Trapp, Henry Jr. 1966a. Geology and ground water resources of Eddy and Foster counties, North Dakota: part II. ground water basic data. Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

Trapp, Henry Jr. 1966b. Geology and ground water resources of Eddy and Foster counties, North Dakota: part III. ground water resources: Ground Water Studies # 5. North Dakota State Water Commission. Bismarck, ND.

USEPA. 1996a. Drinking water regulations and health advisories. EPA-822-R-96-001.

USEPA. 1996b. Methods for evaluating soil and water. EPA-SW-846. Revision 2.

US Army Armament Research, Development, and Engineering Center. 1999. "Encyclopedia of Explosives and Related Items;" US Army Armament Research, Development, and Engineering Center; US Army Research and Development Command; US Army Tank and Automotive Command; Picatinny Arsenal; Dover, New Jersey.

APPENDIX A: LETTERS OF CORRESPONDENCE (INCLUDING E-MAIL)
APPENDIX A-1. LETTER OF 3/23/2000, LTC DAVID ANDERSON TO W.M. SCHUH, RE: LOCATIONS, USES, AND COMPOSITION OF MUNITIONS AND EXPLOSIVES USED ON THE CGS FACILITY.

OFFICE OF THE ADJUTANT GENERAL DIVISION OF INSTALLATIONS, RESOURCES AND ENVIRONMENTAL

NORTH DAKOTA NATIONAL GUARD PO BOX 5511, BISMARCK, ND 58506-5511

AGND-IRE-ENV

23 March 2000

MEMORANDUM FOR Mr. W. M. Schuh, ND State Water Commission, 900 East Boulevard Ave., Dept. 770, Bismarck, ND 58505-0850

SUBJECT: Information regarding pesticides, ammunition and petroleum products at Camp Grafton

1. Reference your memo dated 7 January 2000.

2. Attached you will find information regarding the types of pesticides, petroleum products, ammunition and explosives used by the NDARNG at the Camp Grafton Training Site. Also attached is a map of the training site indicating the range locations.

3. As we discussed on the phone, the use of the pesticides and the petroleum products is generally throughout the training site. The use of some of the munitions, such as blanks, smoke, and simulators would also be used throughout the site. The use of explosives and live ammunition is limited to the ranges marked on the attached map.

4. Please call me at 224-5244 should you have any questions.

Alesor

DAVID B. ANDERSO LTC, EN, NDARNG Environmental Chief

Encl. as

Munitions:		
Туре	Principle Ingredients	Location
5.56mm (ball & blank)	NC	Ball –MRF range
(ball = live ammunition	Graphite	blank - throughout camp
with bullet, fired only on	Nitroglycerin	
ranges)	Ethyl Centralite	
(blank = ammunition	K Sulfate	
without bullet fired	Primer:	
throughout camp)	SB Sulfide	
	BA Nitrate	
	PB Styphnate	
	Tetracene	
	PETN	
	AL powder	
7.62mm	Graphite	MPMG Range
	NA Sulfate	_
	CA Carbonate	
	Nitroglycerin	
	Diphenylamine	
	Dibutylphthalate	
	NC	
50 cal	Graphite	MPMG Range
	K Nitrate	
	NA Sulfate	
	CA Carbonate	
	Nitroglycerin	
	Diphenylamine	
	Dibutylphthalate	
	NC	
40mm (practice)	Silica	M203 range
	Basonyl Red	
	Isobenzofurandione	
	Formaldehyde/melamin	
	Tetrachlorozincate	

NOTE:

Key for Range acronyms -

MPMG = Multi Purpose Machine Gun range

MICLIC = Mine Clearing Line Charge

CPQL = Combat Pistol Qualification range

MRF = Modified Record Fire range

AT4, MK19, M203 = nomenclature for weapons (anti tank, & grenade) which fire only practice (non high-explosive) rounds at the range

Demo range = Demolitions range - location where live explosives are used for training

Туре	Principle Ingredients	Location
Bangalor Torpedo	Toluene	Demo range
2	Triethylamine	Denio Talige
	Phosphorus	
	Xvlene	
	Methyl Ethyl Ketone	
	Lead	
a 8	Nickel	
	Copper	
	Antimony	
	Zinc Compounds	
	Chromium Compounds	
Primacord Detonating	Pentaerythritol Tetranitrate (PETN)	Demo range
Cord	Cyclonite	Denio Talge
	Cyclotetramethylene Tetranitramine	
	(HMX)	
	Cyclonite	
	2.6-BIS(Picrylamino)-3.5-	
	Dinitropyridine (PYX)	
C4	Toluene	Demo range
TNT	2,4,6-trinitrotoluene	Demo range
Cratering Charge	Toluene	Demo range
5 5	Xylene	Dento Talige
	Nickel	
	Lead	
	Cobalt	
	Zinc Compounds	
	Chromium Compounds	
Artillery simulator	Methyl Isobutyl Ketone	Throughout camp
-	Methanol	Inoughout camp
	K Nitrate	
	S	
	Charcoal	
Smoke grenade	Ethylbenzene	Throughout camp
_	Cadmium	inoughout camp
	Manganese	
	Chromium	
	Methyl Isobutyl Ketone	
	Methanol	
	Chromium Compound	
	Lead	
	Barium	
Claymore Mine	Styrene	Demo Range
	Phosphorus	
	Nickel	
	Chromium	e de la constante de
	Methanol	
	Triethylamine	
	Lead	1
	Antimony	
	Zinc compounds	
	Lead compounds	ſ
CS Grenade	O-Chlorobenzylidene Malononitrile	Throughout camp
	Detective Chlamba	

1

.

Pesticides:			
Pesticide	Principle Ingredients	Application Method	Location
Tordon 22K	Picloram: 4-Amino-3,5,6-trichloropicolinic Acid Potassium salt Polyglycol 26-2	Ground application (Have not used Aerial application since 1997) (Generally applied once every year at selected locations)	Throughout South Camp
2,4 –D	Dimethylamine Salt of 2, 4 –Dichlorophenoxyacetic Acid	Ground (Have not used Aerial application since 1997) (Generally applied once every year at selected locations	Throughout South Camp
Pramitol 25E	2,4-bis(isopropylamino)-6-methoxy-s-triazine	Ground (Selected locations, once every year)	Throughout South Camp
Malathion 55	O,O-Dimethyl phosphorodithioate of diethyl mercapotosuccinate	Ground (Selected locations, bivouac and work sites, with repeated applications – approx 6 applications per site – depending on troop use)	Throughout South Camp

Petroleum products:

.

Туре	Principle Ingredients	Location
Diesel Fuel	Naphthalene	Throughout South Camp
	Complex mixture of Paraffinic Olefinic, Naphthenic and Aromatic	
	Hydrocarbons	
Unleaded	Gasoline	Throughout South Camp
Gasoline	Benzene	
Leaded	Gasoline	Throughout South Camp
Gasoline	Benzene	
Motor Oil	Refined heavy Paraffinic Distillates (solvent refined paraffinic	Throughout South Camp
	petroleum oil) PEL/TLV as Oil Mist	
Jet fuel JP-8	2-Methoxyethanol (EGME)	Throughout South Camp

.

APPENDIX A-2a

From: "Parker, Louise V ERDC-CRREL-NH" <Louise.V.Parker@erdc.usace.army.mil> To: bschuh@swc.state.nd.us Subject: Munitions contaminants Date: Wed, 31 Oct 2001 08:59:42 -0600 MIME-Version: 1.0

Hi Bill,

I thought I would share with you what I have so far. I have searched in two reference books and one DOD data base for the particular components of munitions. I have had trouble gaining access to the DOD database I use most frequently so, it may be a few days before I have the results of that query.

1) Concerning dibutyl phthalate:

According to an "Encyclopedia of Explosives and Related Items", it is used as a solvent for nitroaromatic compounds such as DNT and Dinitroethylbenzene. Is also used to coat nitrocellulose and nitroguanidine propellants. When I queried one of the DOD databases, I found 24 PAGES of munitions listed (with about 20 munitions per page)!

2) Concerning acetone:

When I queried the database, I found 60 munitions listed. These included flares, fuzes, hand grenades (smoke and riot types), anti-personnel mines, signals, and smoke pots.

3) Concerning toluene:

According to the "Encyclopedia of Explosives and Related Items", one of the major uses of toluene is explosives. Toluene is the precursor in the manufacture of DNT and TNT. According to "Hawley's Condensed Chemical Dictionary," it is also used as a diluent and thinner for nitrocellulose and explosives such as TNT.

When I queried the DOD database, I found 78 munitions listed including, fuzes, Fuze bombs, several sizes of projectiles (5". 16", 155 mm), and 2.75" rockets.

4) Concerning carbon disulfide,

I haven't had much luck here so I will have to keep looking. I found it listed in the "Encyclopedia of Explosives and Related Items" but it didn't say what it was used for other than it had been tested as a developmental component for munitions. This reference also claimed that it was guite toxic.

I also found it in the DOD database but the database did not list any munitions that it was a component of (0 matches). Since none of these DOD databases are complete yet, I will try the other one when I can get back into it.

Let me know which chemicals were you interested in maximum contaminant levels and anything else you still have questions on. I will let you know what I find on carbon disulfide when I get access to the other database.

Sincerely,

Louise Parker

APPENDIX A-2b

From: "Parker, Louise V ERDC-CRREL-NH" <Louise.V.Parker@erdc.usace.army.mil> To: bschuh@swc.state.nd.us Subject: Follow up- Munitions contaminants Date: Thu, 1 Nov 2001 08:36:36 -0600 MIME-Version: 1.0

Hi Bill,

Here is what else I have found since I e-mailed you yesterday.

1) Concerning carbon disulfide,

I was able to get into the other DOD database yesterday. It had been a while since I used it and I had forgotten that it is great if you want to know the composition of a particular munition but it does not offer the capability of searching the entire database for component chemicals. After striking out there, I tried another book on explosives analysis and did not find it. So, I asked our most knowledgeable explosives chemist, Dr. Thomas Jenkins, if he had run into it. He said he had not but and he thought he would remember because it is a nasty solvent. I could probably give you some other names outside of CRREL if you still want to pursue this.

2) Concerning methylene chloride,

I forgot to mention in my last e-mail that I found some affiliation with munitions for this chemical also. When I searched the first DOD database, I found 15 matches for it. Munitions that contained it included several signals and smoke grenade launchers and a personnel signal kit.

I hope this has been helpful. Let me know what else I can do to help you.

Sincerely,

Louise Parker

APPENDIX A-3

Date: Mon, 24 Jun 2002 12:42:31 -0600 From: Benson.Bob@epamail.epa.gov Subject: Re: Citation To: William Schuh <bschuh@water.swc.state.nd.us> MIME-version: 1.0 X-MIMETrack: Serialize by Router on EPAHUB11/USEPA/US(Release 5.0.9a |January 7, 2002) at 06/24/2002 02:42:33 PM

Revise the third sentence to read:

However, Dr. Robert Benson of the USEPA in Denver, has provided an approximation of 700 ug/L as a threshold of toxicological concern, using standard computation procedures for a 70 kg adult consuming 2 liters of water per day, a relative source contribution of 0.2, and an oral reference dose of 0.1 mg/kg-day(Personal Communication, June 24, 2002)

Here is the exact calculation using the standard approach of the Drinking Water Program: Lifetime Health Advisory = RfD x 70 kg x 1 day/2 L x Relative Source Contribution LHA = 0.1 mg/kg-day x 70 kg x 1 day/2 L x 0.2 = 0.7 mg/L or 700 micrograms per liter.

The RfD or 0.1 mg/kg-day is on IRIS (http://www.epa.gov/IRIS the under substance name). The Relative Source Contribution is intended to deal with any additional source of carbon disulfile other than drinking water, such as air, food, and dermal contact.

William Schuh <bschuh@water.swc.s To: tate.nd.us> cc: Subject: Citation 06/24/02 12:30 PM

Bob Benson/P2/R8/USEPA/US@EPA

APPENDIX B: MUNITIONS AND EXPLOSIVES RESIDUES

Laboratory results, and case narratives (including description of method, analysis, matrix, general information, method summary, sample preparation, holding times, dilutions, quality control data, instrument ZC, NCC/NCAR, confirmation analyses, and field and laboratory chain of custody).

Includes: Appendix B-1, EPA Method 8260B Appendix B-2, EPA Method 8270C Appendix B-3, EPA Method 8330 Appendix B-4, EPA Method 8332 Appendix B-1, EPA Method 8260B

.

Case Narrative

Method: 8260B Analysis: VOA Preparation SOP #: NA Analysis SOP#: OV-SW-8260B Rev # 1 Lot/Reference/SDG #: NA DCL Set ID #(s): 01E-0300-01 Client: N. Dakota State Water Commission Account #: 8001 Matrix: Water

<u>Analysis / Method</u>: Method 8260B is an EPA SW846 method (DCL SOP OV-SW-8260B Revision 1 - herein referred to as the "method") used in the analysis of water samples for volatile organics by GC/MS purge and trap techniques.

<u>General Set Information</u>: DataChem Laboratories received eleven water samples for VOA analysis. All samples were analyzed within fourteen days of sampling. Recoveries of target analytes are reported on the sample analysis data sheet in units of ug/L.

Sample Preparation: This method has no extraction procedure for the water matrix. The sample preparation date is the same as the date of analysis. Twenty-five milliliters of water sample was spiked with 2.5 uL of internal standard/surrogate solution and purged.

Instrument Calibration: The GC/MS was hardware tuned to meet the criteria for a 50 ng purging of 4-bromofluorobenzene as specified in the method. This tune check is valid for 12 hours.

Initial and Continuing Calibration Verification: The five point initial calibration curve which was analyzed prior to sample analysis met the specified criteria in the method. System performance check compounds (SPCC) are checked for a minimum response factor. These compounds are chloromethane (0.100), bromoform (0.100), 1,1-dichloroethane (0.100), chlorobenzene (0.100), and 1,1,2,2-tetrachloroethane (0.100). Response factors for the calibration check compounds (toluene, 1,1-dichloroethene, chloroform, 1,2-dichloropropane, ethylbenzene, and vinyl chloride) from the initial calibration curve are used to calculate percent relative standard deviations (%RSD). For the initial calibration standards, the %RSD for the calibration check compounds (CCC) must be less than 30% and the average %RSD for all spiked compounds must be less than 15%.

A calibration verification standard (CVS) which is used in the validation of the initial calibration was also analyzed prior to sample analysis. The CVS met the method criteria as specified. The response factors of the SPCC's met the minimum criteria as specified in the method. The CCC's were less than 20% difference from the target based on the initial calibration curve.

This report contains pages

<u>Method Blank Analysis:</u> A method blank (BL-188052-1) was prepared using reagent water spiked with 2.5 uL of internal standard/surrogate solution and analyzed prior to sample analysis. The blank was free of volatile organic contaminants within the specifications of the method with the exception of methylene chloride detected below the CRDL.

MS / MSD Analysis: Matrix spike and matrix spike duplicate analyses were performed for sample 01E01966 (5-13098). The MS compounds are 1,1-dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene and are spiked at a concentration of 10 ug/L. All matrix spike compound recoveries were within QC limits.

Laboratory Control Sample Analysis: A laboratory control sample (QC-188052-1) was analyzed for this analytical batch. The LCS compounds were spiked at a concentration of 10 ug/L. All recoveries met established QC acceptance criteria.

Data Qualifier Codes: A "J" qualifier indicates that the result is greater than the MDL but less than the CRDL or that the value is an estimate based on a relative response factor of one. Analytes found in field samples which also appear in the method blanks are reported with a "B" qualifier in the flag column.

NC/CAR: Not required.

<u>Miscellaneous Comments:</u> All surrogate recoveries were within established QC limits. Instrument designation is HP5971-L.

Sample Calculations :

Relative Response Factor:
$$\mathbf{RRF} = \begin{bmatrix} \mathbf{A}_{\mathbf{x}} \\ \mathbf{A}_{\mathbf{is}} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{\mathbf{is}} \\ \mathbf{C}_{\mathbf{x}} \end{bmatrix}$$

where A_x is the area of the characteristic ion for the compound to be measured, A_{is} is the area of the characteristic ion for the internal standard, C_{is} is the concentration of the internal standard, and C_x is the concentration of the compound to be measured.

$$C = \begin{bmatrix} (A_x) (I_s) (Df) \\ \hline (A_{is}) (ARF) \end{bmatrix}$$

where I_s is the amount of internal standard spiked in $\mu g/L$, Df is a dilution factor (1 if no dilutions are made), and ARF is the average response factor (assumed to be 1 for non target analytes).

Christopher Q. Coleman

Datapackage Table of Contents

Information pertaining to this datapackage is divided into the four categories listed below. A Case Narrative immediately precedes this Table of Contents and contains pertinent information about this datapackage.

Amplytical Results	llow
Analytical Results Torumentation	Pink
Sample Tracking Documentation	Blue
Analytical Documentation	TOOD
Raw Data G	Ieen

Analytical Results

COVER PAGE

ANALYTICAL REPORT FOR North Dakota State Water Commission Phone(701) 328-2739 Fax(701) 328-3696

Form COVER-V1.3 100101161319 Page 1

G018601C

DCL Report Group..: 01E-0300-01

Date Printed....: 01-OCT-01 16:11

Project Protocol #: P0186001 Client Ref Number.: Not Provided Release Number....: Not Provided

Analysis Method(s): 8260B 25mL

North Dakota State Water Commission Attention: William M. Schuh 900 East Boulevard Bismark, ND 58505

Client <u>Sample Name</u>	Laboratory Sample Name	Date <u>Sampled</u>	Date <u>Received</u>
Method Blank LCS 7-13086 7-13087 DUP 2 3-SPRING 6-13101 6-13102 5-13098 5-13098 5-13098 5-13098 DUP 1 LAKE COE 5-13197 TRIP BLANK	BL-188052-1 QC-188052-1 01E01959 01E01960 01E01962 01E01964 01E01965 01E01966 01E01966MSD 01E01966MSD 01E01967 01E01970 01E01972 01E01973	NA NA 05-SEP-01 05-SEP-01 05-SEP-01 05-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01	NA NA 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01
			and a comparison of the second s

Analyst: Christopher Coleman Revi Joseph Gress Wer

10/1/0

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

004

SAMPLE GROUP COMMENTS

G018601C

DCL Report Group..: 01E-0300-01 Date Printed.....: 01-OCT-01 16:11

Release Number: Not Provided

lient Name...: North Dakota State Water Commission

ample Group Comments C and LCS data included in set 01E-0300-01. urrogate and matrix spike compounds are spiked at 10 ug/L. he QC and sample data for this set are within acceptable parameters. he samples were analyzed by GC/MS according to method 8260 (OV-SW-8260B Rev 1).

eneral Information

The DCL QC Database maintains all numerical figures which are input from the pertinent data ource. These data have not been rounded to significant figures nor have they been moisture corrected. eports generated from the system, however, list data which have been rounded to the number of ignificant figures requested by the client or deemed appropriate for the method. This may create inor discrepancies between data which appear on the QC Summary Forms (Forms B-G) and those that would e calculated from rounded analytical results. Additionally, if a moisture correction is performed, lifferences will be observed between the QC data and the surrogate data reported on Form A (or other "eport forms) and corresponding data reported on QC Summary Forms. In these cases, the Form A will ndicate the "Report Basis" as well as the moisture value used for making the correction. leport generation options: X

lesult Symbol Definitions

ND - Not Detected above the MDL or IDL (LLD or MDC for radiochemistry).

** - No result could be reported, see sample comments for details.

Jualifier Symbol Definitions

- Not Detected above the MDL or IDL (LLD or MDC for radiochemistry). For radiochemistry the nuclide was not identified by the Canberra Nuclear NID program, U activity values reported are calculated using the Canberra Nuclear MINACT program.
- For organic analysis the qualifier indicates that this analyte was found in the method blank.
 For inorganic analysis the qualifier signifies the value is between the IDL and PQL.
 The qualifier indicates that the value is between the MDL and the PQL. It is also B
- used for indicating an estimated value for tentatively identified compounds in mass J spectrometry where a 1:1 response is assumed.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com Phone (801) 266-7700 E-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1 10010116131 Page 3

S0188001

Date Printed.....: 01-0CT-01 16:11

	DCL Sample Name: BL-188052-1
Client Name: North Dakota State Water Commission	DCL Report Group: 01E-0300-01
Client Ref Number: Not Provided	· ·
Sampling Site Not Applicable	Matrix WATER
Release Number: Not Provided	Date Sampled: Not Applicable
	Reporting Units: ug/L

Date Received.....: Not Applicable

DCL Preparation Group: Not Applicable Date Prepared.....: Not Applicable Preparation Method...: 5030 Aliquot Weight/Volume: 25 mL Net Weight/Volume....: Not Required

Client Sample Name: BL-188052-1

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,1,1-Trichloroethane	09-SEP-01 09:36	0.0971	ND			1	1
1,1,2,2-Tetrachloroethane	09-SEP-01 09:36	0.182	ND			1	1
1,1,2-Trichloroethane	09-SEP-01 09:36	0.116	ND			1	1
1,1-Dichloroethane	09-SEP-01 09:36	0.0585	ND			1	1
1,1-Dichloroethene	09-SEP-01 09:36	0.0507	ND			1	1
1,2-Dichloroethane	09-SEP-01 09:36	0.0395	ND			1	1
1,2-Dichloropropane	09-SEP-01 09:36	0.0752	ND			1	1
2-Butanone	09-SEP-01 09:36	1.40	ND			1	4
2-Hexanone	09-SEP-01 09:36	2.06	ND			1	4
4-Methyl-2-Pentanone	09-SEP-01 09:36	0.774	ND	•		1	4
Acetone	09-SEP-01 09:36	2.16	ND			1	4
Benzene	09-SEP-01 09:36	0.0357	ND			1	1
Bromodichloromethane	09-SEP-01 09:36	0.0544	ND			1	1
Bromoform	09-SEP-01 09:36	0.0868	ND			1	1
Bromomethane	09-SEP-01 09:36	0.0629	ND			1	1
Carbon Disulfide	09-SEP-01 09:36	0.0573	ND			1	1
Carbon Tetrachloride	09-SEP-01 09:36	0.0888	ND			1	1
Chlorobenzene	09-SEP-01 09:36	0.0706	ND			1	1
Chloroethane	09-SEP-01 09:36	0.127	ND			1	1
Chloroform	09-SEP-01 09:36	0.0405	ND			1	1
Chloromethane	09-SEP-01 09:36	0.0955	ND			1 1	1
Dibromochloromethane	09-SEP-01 09:36	0.0562	ND			1	1
Ethylbenzene	09-SEP-01 09:36	0.0551	ND			1	1 1
Methylene Chloride	09-SEP-01 09:36	0.0491	0.13		J	1	1
Styrene	09-SEP-01 09:36	0.0928	ND			1	1
Tetrachloroethene	09-SEP-01 09:36	0.0696	ND			1	1 1
Toluene	09-SEP-01 09:36	0.0483	ND			1	1
Trichloroethene	09-SEP-01 09:36	0.0548	ND			1	1
Vinyl Chloride	09-SEP-01 09:36	0.114	ND			1	. 1
cis-1,3-Dichloropropene	09-SEP-01 09:36	0.0618	ND			1	1
trans-1,3-Dichloropropene	09-SEP-01 09:36	0.128	ND			1	1
cis-1,2-Dichloroethene	09-SEP-01 09:36	0.0667	ND			1	1
trans-1,2-Dichloroethene	09-SEP-01 09:36	0.0791	ND			1	1
o-Xylene	09-SEP-01 09:36	0.0451	ND			1	1
m,p-Xylene	09-SEP-01 09:36	0.136	ND			1	2

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com

Form RLIMS63A-V1.3 10010116131995 Page 4

SAMPLE ANALYSIS DATA SHEET

S0188001

Date Printed.....: 01-OCT-01 16:11 Client Name...... North Dakota State Water Commission DCL Sample Name...: BL-188052-1 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
1.2 Dichloroethane-d4	10.2	10.0	102.
A Bromofluorobenzene	10.9	10.0	109.
Foluene-d8	10.8	10.0	108.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1. 100101161319! Page 5 S0188002

.

Date Printed.....: 01-OCT-01 16:11

	Den Sampre Hame 2c-100052-1
Client Name North Dakota State Water Commission	DCL Report Group: 01E-0300-01
Client Ref Number: Not Provided	2 ×
Sampling Site Not Applicable	Matrix WATER
Release Number: Not Provided	Date Sampled: Not Applicable
	Reporting Units: ug/L

Date Received..... Not Applicable

DCL Preparation Group: Not Applicable Date Prepared..... Not Applicable Preparation Method...: 5030 Aliquot Weight/Volume: 25 mL Net Weight/Volume....: Not Required

Client Sample Name: QC-188052-1 DCL Sample Name · OC-188052-1

Reporting Units...: ug/L

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,1-Dichloroethene	09-SEP-01 10:08	0.0507	11.			1	1
Benzene	09-SEP-01 10:08	0.0357	9.4			1	1
Chlorobenzene	09-SEP-01 10:08	0.0706	9.8			1	1
Toluene	09-SEP-01 10:08	0.0483	9.3			1	1
Trichloroethene	09-SEP-01 10:08	0.0548	9.3	146 S.		1	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
1,2-Dichloroethane-d4	10.3	10.0	103.	
4-Bromofluorobenzene	10.9	10.0	109.	
Toluene-d8	10.7	10.0	107.	

SAMPLE ANALYSIS DATA SHEET

ite Printed..... 01-OCT-01 16:11

lient Name.....: North Dakota State Water Commission DCL Re lient Ref Number...: Not Provided ampling Site.....: Not Provided Matri: elease Number....: Not Provided Date a ate Received.....: 07-SEP-01 00:00 Report

CL Preparation Group: Not Applicable ate Prepared.....: Not Applicable reparation Method...: 5030 liquot Weight/Volume: 25 mL et Weight/Volume....: Not Required Client Sample Name: 7-13086 DCL Sample Name...: 01E01959 DCL Report Group..: 01E-0300-01

Matrix..... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary Confirmation

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 1-Trichloroethane	09-SEP-01 10:40	0.0971	ND				1
1 2 2-Tetrachloroethane	09-SEP-01 10:40	0.182	ND				1
1 2-Trichloroethane	09-SEP-01 10:40	0.116	ND	31. ₁₁			1
1-Dichloroethane	09-SEP-01 10:40	0.0585	ND				1
1-Dichloroethene	09-SEP-01 10:40	0.0507	ND			1 1	1
2-Dichloroethane	09-SEP-01 10:40	0.0395	ND				
2-Dichloropropane	09-SEP-01 10:40	0.0752	ND				1
Butanone	09-SEP-01 10:40	1.40	ND		L		4
Vevanone	09-SEP-01 10:40	2.06	ND			$\frac{1}{1}$	4
-Methyl-2-Pentanone	09-SEP-01 10:40	0.774	ND		1		4
cetone	09-SEP-01 10:40	2.16	4.7		ļ	+	4
2017010	09-SEP-01 10:40	0.0357	ND		<u> </u>		1
romodichloromethane	09-SEP-01 10:40	0.0544	ND		<u> </u>		1
romoform	09-SEP-01 10:40	0.0868	ND		<u> </u>	1 1	1
promomethane	09-SEP-01 10:40	0.0629	ND			1	1
Jarbon Disulfide	09-SEP-01 10:40	0.0573	1.9			1	1
Jarbon Tetrachloride	09-SEP-01 10:40	0.0888	ND			1	1
blorobenzene	09-SEP-01 10:40	0.0706	ND			1	1
Thioroothane	09-SEP-01 10:40	0.127	ND			1	1
Thioroform	09-SEP-01 10:40	0.0405	ND			1	1
Thioromothane	09-SEP-01 10:40	0.0955	ND			1	1
Silvemechloromethane	09-SEP-01 10:40	0.0562	ND			1	1
Thulbonzone	09-SEP-01 10:40	0.0551	ND			1	1
Acthulene Chloride	09-SEP-01 10:40	0.0491	0.23		BJ	1	1
	09-SEP-01 10:40	0.0928	ND			1	1
Tetrachloroethene	09-SEP-01 10:40	0.0696	ND		1	1	1
Terracuitoroechene	09-SEP-01 10:40	0.0483	0.092		J	1	1
Totuelle	09-SEP-01 10:40	0.0548	ND			1	1
Trichioroechene	09-SEP-01 10:40	0.114	ND			1	1
vinyi Chioride	09-SEP-01 10:40	0.0618	ND			1	1
cis-i, 3-Dichioropropene	09-SEP-01 10:40	0.128	ND			1	1
trans-1, 3-Dichloroptopene	09-SEP-01 10:40	0.0667	ND			1	1
Distration of the sector of th	09-SEP-01 10:40	0.0791	ND			1	1
Crans-1,2-Dichioroechene	09-SEP-01 10:40	0.0451	ND			1	1
o-viteue	09-SEP-01 10:40	0.136	ND			1 .	2
n, p-Ayrene			Contraction of the local division of the loc				

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

009

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1. 100101161319 Page 7. S018609W

Date Printed......: 01-OCT-01 16:11 Client Name......: North Dakota State Water Commission DCL Sample Name...: 01E01959 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
1.2-Dichloroethane-d4	10.2	10.0	102.
4-Bromofluorobenzene	10.9	10.0	109.
Toluene-d8	10.6	10.0	106.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

te Printed..... 01-OCT-01 16:11

ient Ref Number : Not Provided

mpling Site Not Provided

lease Number..... Not Provided

te Received..... 07-SEP-01 00:00

L Preparation Group: Not Applicable

te Prepared..... Not Applicable

et Weight/Volume....: Not Required

ient Name.....: North Dakota State Water Commission

Client Sample Name: 7-13087 DCL Sample Name...: 01E01960 DCL Report Group. .: 01E-0300-01

Matrix..... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type ... : GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary [Confirmation

nalytical Results

reparation Method...: 5030

liquot Weight/Volume: 25 mL

1.1-Trichloroethane 09-SEP-01 17:26 0.9971 ND 1 1 1.2-Trichloroethane 09-SEP-01 17:26 0.182 ND 1 1 1.2-Trichloroethane 09-SEP-01 17:26 0.112 ND 1 1 1.2-Trichloroethane 09-SEP-01 17:26 0.0585 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0597 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0595 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0752 ND 1 4 Butanone 09-SEP-01 17:26 0.774 ND 1 4 Methyl-2-Pentanone 09-SEP-01 17:26 0.0574 ND 1 1 Inmodichloromethane 09-SEP-01 17:26 0.0628 ND 1 1 romoform 09-SEP-01 17:26 0.0628 ND 1 1		Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,2,2-Tetrachlorosthame 09-SEP-01 17:26 0.182 ND 1 1 1,2,2-Trichlorosthame 09-SEP-01 17:26 0.016 ND 1 1 1Dichlorosthame 09-SEP-01 17:26 0.0585 ND 1 1 1Dichlorosthame 09-SEP-01 17:26 0.0587 ND 1 1 2Dichlorosthame 09-SEP-01 17:26 0.0395 ND 1 1 2Dichlorosthame 09-SEP-01 17:26 0.0495 ND 1 4 Butanone 09-SEP-01 17:26 0.40 ND 1 4 Hexanone 09-SEP-01 17:26 0.714 ND 1 4 Methyl-2-Pentanone 09-SEP-01 17:26 0.714 ND 1 1 cotone 09-SEP-01 17:26 0.0644 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND	1 1 Trichloroethane	09-SEP-01 17:26	0.0971	ND			1	1
1,2-Tricklorosethame 09-SEP-01 17:26 0.116 ND 1 1 1,2-Tricklorosethame 09-SEP-01 17:26 0.0585 ND 1 1 1-Dichlorosethame 09-SEP-01 17:26 0.0597 ND 1 1 1-Dichlorosethame 09-SEP-01 17:26 0.0752 ND 1 1 2-Dichlorosethame 09-SEP-01 17:26 0.0752 ND 1 1 2-Dichlorosethame 09-SEP-01 17:26 0.0752 ND 1 4 -Butanone 09-SEP-01 17:26 0.0774 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.0537 ND 1 1 catome 09-SEP-01 17:26 0.0544 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0662 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0673 21 1 1 <t< td=""><td>1.2.2-Wetrachloroethane</td><td>09-SEP-01 17:26</td><td>0.182</td><td>ND</td><td></td><td></td><td></td><td>1</td></t<>	1.2.2-Wetrachloroethane	09-SEP-01 17:26	0.182	ND				1
1.7 Intervention 09-SEP-01 17:26 0.0585 ND 1 1 1-Dichloroethane 09-SEP-01 17:26 0.0395 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0395 ND 1 1 2-Dichloropropane 09-SEP-01 17:26 0.0752 ND 1 4 -Butanone 09-SEP-01 17:26 0.0752 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.16 4.7 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.0544 ND 1 1 1 -modichloromethane 09-SEP-01 17:26 0.0628 ND 1 1 1 romoform 09-SEP-01 17:26 0.0628 ND 1 1 1 arbon Disulfide 09-SEP-01 17:26 0.0706 ND	1.2-Trichloroethane	09-SEP-01 17:26	0.116	ND	1		1_1	1
1-Dichloroethane 09-SEP-01 17:26 0.0507 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0395 ND 1 1 2-Dichloroethane 09-SEP-01 17:26 0.0752 ND 1 4 Putanone 09-SEP-01 17:26 0.0752 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.16 4.7 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.0544 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 romodform 09-SEP-01 17:26 0.0629 ND 1 1 1 romodform 09-SEP-01 17:26 0.0629 ND 1 1 1 romonethane 09-SEP-01 17:26 0.0706 ND 1 1	1_Dichloroethane	09-SEP-01 17:26	0.0585	ND			1	1
2-Dichloroethame 09-SEP-01 17:26 0.0395 ND 1 1 2-Dichloropropane 09-SEP-01 17:26 0.0752 ND 1 4 Butanone 09-SEP-01 17:26 2.06 ND 1 4 -Metanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.0774 ND 1 4 extene 09-SEP-01 17:26 0.0554 ND 1 1 1 cetone 09-SEP-01 17:26 0.0628 ND 1 1 1 romodorm 09-SEP-01 17:26 0.0628 ND 1 1 1 romotethane 09-SEP-01 17:26 0.0706 ND 1 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0405 ND 1 1 1 hloroethane 09-SEP-01 17:26 0.0405 ND 1 <td< td=""><td>1-Dichloroethene</td><td>09-SEP-01 17:26</td><td>0.0507</td><td>ND</td><td></td><td>L</td><td>1 1</td><td></td></td<>	1-Dichloroethene	09-SEP-01 17:26	0.0507	ND		L	1 1	
2-Dichloropropane 09-SEP-01 17:26 0.0752 ND 1 1 -Butanone 09-SEP-01 17:26 1.40 ND 1 4 -Butanone 09-SEP-01 17:26 2.06 ND 1 4 -Hexanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.0734 ND 1 4 eatone 09-SEP-01 17:26 0.0537 ND 1 1 4 eatone 09-SEP-01 17:26 0.0544 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0573 21 1 1 1 romodethane 09-SEP-01 17:26 0.0573 21 1 1 1 romodethane 09-SEP-01 17:26 0.0706 ND 1 1 1 arbon Disulfide 09-SEP-01 17:26 0.0706 ND 1 1 1 hlorobetane 09-SEP-01 17:26 0.0405 ND 1	2 Dichloroethane	09-SEP-01 17:26	0.0395	ND				1
A-Ditactor 09-SEP-01 17:26 1.40 ND 1 4 -Hexanone 09-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.16 4.7 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 2.16 4.7 1 4 cetone 09-SEP-01 17:26 0.0357 ND 1 1 1 cetone 09-SEP-01 17:26 0.0544 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0628 ND 1 1 1 romoform 09-SEP-01 17:26 0.0628 ND 1 1 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0706 ND 1 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 1 1 hlorobenzene 09-SEP-01 </td <td>2 Dichloropropane</td> <td>09-SEP-01 17:26</td> <td>0.0752</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>	2 Dichloropropane	09-SEP-01 17:26	0.0752	ND				
-Hexanone 109-SEP-01 17:26 2.06 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.774 ND 1 4 -Methyl-2-Pentanone 09-SEP-01 17:26 0.774 ND 1 4 cetone 09-SEP-01 17:26 0.0357 ND 1 1 4 cetone 09-SEP-01 17:26 0.0629 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 1 romodethane 09-SEP-01 17:26 0.0629 ND 1 1 1 arbon Disulfide 09-SEP-01 17:26 0.0706 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 1 hlorobenzene 09-SEP-01 17:26	<u></u> Butanone	09-SEP-01 17:26	1.40	ND				4
Terrent Antone 09-SEP-01 17:26 0.774 ND 1 4 cetone 09-SEP-01 17:26 2.16 4.7 1 1 enzene 09-SEP-01 17:26 0.0357 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0368 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 1 romomethane 09-SEP-01 17:26 0.0629 ND 1 1 1 arbon Disulfide 09-SEP-01 17:26 0.0688 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0706 ND 1 1 1 1 hloroform 09-SEP-01 17:26 0.0405 ND 1 1 1 1 hloroform 09-SEP-01 17:26 0.0551 ND 1 1 1 1 hlorom	Vovenene	09-SEP-01 17:26	2.06	ND				4
Category 1 2 - restriction 09-SEP-01 17:26 2.16 4.7 1 4 enzene 09-SEP-01 17:26 0.0357 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0357 ND 1 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 1 romodethane 09-SEP-01 17:26 0.0629 ND 1 1 1 arbon Disulfide 09-SEP-01 17:26 0.0629 ND 1 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0673 21. 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0706 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0495 ND 1 1 1 hlorobenzene 09-SEP-01 17:26 0.0495 ND 1 1 1 <t< td=""><td>Mothul-2-Pentanone</td><td>09-SEP-01 17:26</td><td>0.774</td><td>ND</td><td></td><td></td><td></td><td>4</td></t<>	Mothul-2-Pentanone	09-SEP-01 17:26	0.774	ND				4
Determe 09-SEP-01 17:26 0.0357 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0544 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0629 ND 1 1 romomethane 09-SEP-01 17:26 0.0629 ND 1 1 arbon Disulfide 09-SEP-01 17:26 0.073 21. 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0706 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hloroform 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 hloromethane 09-SEP-01 17:26 0.0551 ND 1 1 ibromochlorometha	-Methy1-2-rencatione	09-SEP-01 17:26	2.16	4.7		ļ		4
Entering 09-SEP-01 17:26 0.0544 ND 1 1 romodichloromethane 09-SEP-01 17:26 0.0868 ND 1 1 romomethane 09-SEP-01 17:26 0.0629 ND 1 1 arbon Disulfide 09-SEP-01 17:26 0.0573 21. 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0706 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0706 ND 1 1 hlorotethane 09-SEP-01 17:26 0.0706 ND 1 1 hlorotethane 09-SEP-01 17:26 0.0706 ND 1 1 hlorotethane 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 bibromochloromethane 09-SEP-01 17:26 0.0562 ND 1 1 vitypene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 vitypene	Cecone	09-SEP-01 17:26	0.0357	ND		L		1
Considering 09-SEP-01 17:26 0.0868 ND 1 1 romoform 09-SEP-01 17:26 0.0629 ND 1 1 arbon Disulfide 09-SEP-01 17:26 0.0573 21. 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0888 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hloroform 09-SEP-01 17:26 0.0405 ND 1 1 hloroform 09-SEP-01 17:26 0.0562 ND 1 1 hloromethane 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 thylenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 tyrene 09-SEP-01 17:26 0.0496 ND 1 1 1	remodichloromethane	09-SEP-01 17:26	0.0544	ND		<u> </u>		1
Tomomethane 09-SEP-01 17:26 0.0629 ND 1 1 arbon Disulfide 09-SEP-01 17:26 0.0573 21. 1 1 arbon Disulfide 09-SEP-01 17:26 0.0573 21. 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0706 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0706 ND 1 1 hlorochnare 09-SEP-01 17:26 0.0405 ND 1 1 hlorochane 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 thylenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 tyrene 09-SEP-01 17:26 0.0483 0.14 J 1 1 coluene 09-SEP-01 17:26 0.0483 0.14 J 1 1	romotorm	09-SEP-01 17:26	0.0868	ND			1	1
Torrent of the second	remembers	09-SEP-01 17:26	0.0629	ND		<u> </u>		1
arbon Distriction 1 1 1 arbon Tetrachloride 09-SEP-01 17:26 0.0888 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0706 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.0405 ND 1 1 hloromethane 09-SEP-01 17:26 0.0551 ND 1 1 hloromethane 09-SEP-01 17:26 0.0551 ND 1 1 itypence 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 itypene 09-SEP-01 17:26 0.0483 0.14 J 1 1 icytene 09-SEP-01 17:26 0.0483 0.14 J 1 1 icytene <td>arbon Digulfide</td> <td>09-SEP-01 17:26</td> <td>0.0573</td> <td>21.</td> <td></td> <td>1</td> <td></td> <td>1</td>	arbon Digulfide	09-SEP-01 17:26	0.0573	21.		1		1
Alloch Tetrachion Tetrachion (action of the constraint) 09-SEP-01 17:26 0.0706 ND 1 1 hlorobenzene 09-SEP-01 17:26 0.127 ND 1 1 hloroethane 09-SEP-01 17:26 0.0405 ND 1 1 hloroethane 09-SEP-01 17:26 0.0955 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 hloromethane 09-SEP-01 17:26 0.0551 ND 1 1 hloromethane 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 hloroethene 09-SEP-01 17:26 0.04928 ND 1 1 1 horoethene 09-SEP-01 17:26 0.0483 0.14 J 1 1 horoethene 09-SEP-01 17:26 0.0483 0.14 J 1 1 horoethene 09-SEP-01 17:26 0.0483 ND 1 1 1 horoethene 09-SEP-01 17:26 0.114 <td>arbon Motrachloride</td> <td>09-SEP-01 17:26</td> <td>0.0888</td> <td>ND</td> <td>1</td> <td></td> <td>1</td> <td>1</td>	arbon Motrachloride	09-SEP-01 17:26	0.0888	ND	1		1	1
Information 09-SEP-01 17:26 0.127 ND 1 1 Inforomethane 09-SEP-01 17:26 0.0405 ND 1 1 Inforomethane 09-SEP-01 17:26 0.0955 ND 1 1 Inforomethane 09-SEP-01 17:26 0.0955 ND 1 1 Inforomethane 09-SEP-01 17:26 0.0562 ND 1 1 Inforomethane 09-SEP-01 17:26 0.0551 ND 1 1 Ithylbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 Ithylbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 Ithylene Chlorode 09-SEP-01 17:26 0.0493 0.14 J 1 1 Ityrene 09-SEP-01 17:26 0.0483 0.14 J 1 1 1 Ityrene 09-SEP-01 17:26 0.0483 0.14 J 1 1 1 Ityrene 09-SEP-01 17:26 0.0483 0.14 J 1 1 1 Ityrene	ALDON TECHACHIOTINE	09-SEP-01 17:26	0.0706	ND			1	1
Informerial 09-SEP-01 17:26 0.0405 ND 1 1 hloroform 09-SEP-01 17:26 0.0955 ND 1 1 hloromethane 09-SEP-01 17:26 0.0562 ND 1 1 hloromethane 09-SEP-01 17:26 0.0551 ND 1 1 httplbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 httplbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 httplbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 httplbenzene 09-SEP-01 17:26 0.0483 0.14 J 1 1 httplbenzene 09-SEP-01 17:26 0.0618 ND 1 1 1 httplbenzene 09-SEP-01 17:2	hloroothane	09-SEP-01 17:26	0.127	ND			1	1
Intervention 09-SEP-01 17:26 0.0955 ND 1 1 Phloromethane 09-SEP-01 17:26 0.0562 ND 1 1 Sthylbenzene 09-SEP-01 17:26 0.0551 ND 1 1 Sthylbenzene 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 Sthylene Chloride 09-SEP-01 17:26 0.0928 ND 1 1 1 Styrene 09-SEP-01 17:26 0.0928 ND 1 1 1 Styrene 09-SEP-01 17:26 0.0493 0.14 J 1 1 Styrene 09-SEP-01 17:26 0.0483 0.14 J 1 1 Styrene 09-SEP-01 17:26 0.0548 ND 1 1 1 Styrene 09-SEP-01 17:26 0.114 ND 1 1 1 Styrene 09-SEP-01 17:26 0.128 ND 1 1 1 Styrene 09-SEP-01 17:26 0.128 ND 1 1 1 Styrene 09-SEP-01 17:26 0.0667 <td>hloroform</td> <td>09-SEP-01 17:26</td> <td>0.0405</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>1</td>	hloroform	09-SEP-01 17:26	0.0405	ND			1	1
Informediate 09-SEP-01 17:26 0.0562 ND 1 1 Dibromochloromethane 09-SEP-01 17:26 0.0551 ND 1 1 Sthylbenzene 09-SEP-01 17:26 0.0551 ND 1 1 Iethylene Chloride 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 Styrene 09-SEP-01 17:26 0.0928 ND 1 1 'strachloroethene 09-SEP-01 17:26 0.0696 ND 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'oluene 09-SEP-01 17:26 0.0483 ND 1 1 'inyl Chloride 09-SEP-01 17:26 0.0618 ND 1 1 'ins-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 'ins-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1	morororin	09-SEP-01 17:26	0.0955	ND			1	1
D9-SEP-01 17:26 0.0551 ND 1 1 lethylene Chloride 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 lethylene Chloride 09-SEP-01 17:26 0.0928 ND 1 1 1 styrene 09-SEP-01 17:26 0.0928 ND 1 1 1 'etrachloroethene 09-SEP-01 17:26 0.0696 ND 1 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'oluene 09-SEP-01 17:26 0.0483 ND 1 1 1 'inchloroethene 09-SEP-01 17:26 0.114 ND 1 1 'ins-1,3-Dichloropropene 09-SEP-01 17:26 0.0618 ND 1 1 'ins-1,2-Dichloropropene 09-SEP-01 17:26 0.0667 ND 1 1 'ins-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 'ins-1,2-Dichloroethene 09-SEP-01 17:26	.nioromechane	09-SEP-01 17:26	0.0562	ND			1	1
Description Description Description BJ 1 1 dethylene Chloride 09-SEP-01 17:26 0.0491 0.34 BJ 1 1 Styrene 09-SEP-01 17:26 0.0928 ND 1 1 'etrachloroethene 09-SEP-01 17:26 0.0696 ND 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'richloroethene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'richloroethene 09-SEP-01 17:26 0.0483 ND 1 1 'richloroethene 09-SEP-01 17:26 0.114 ND 1 1 'is-1,3-Dichloropropene 09-SEP-01 17:26 0.0687 ND 1 1 'is-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 'is-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1<	Ithyl bonzone	09-SEP-01 17:26	0.0551	ND			1	1
istyrene 09-SEP-01 17:26 0.0928 ND 1 1 'etrachloroethene 09-SEP-01 17:26 0.0696 ND 1 1 'oluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'richloroethene 09-SEP-01 17:26 0.0483 0.14 J 1 1 'richloroethene 09-SEP-01 17:26 0.0548 ND 1 1 1 'richloroethene 09-SEP-01 17:26 0.0144 ND 1 1 1 'rinyl Chloride 09-SEP-01 17:26 0.0618 ND 1 1 1 'rins-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 1 'rans-1,2-Dichloropropene 09-SEP-01 17:26 0.0667 ND 1 1 1 'rans-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 1 'rans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 1 'o-Xylene 09-SEP-01 17:26 0.0451 ND 1 1 <td< td=""><td>Activitione Chloride</td><td>09-SEP-01 17:26</td><td>0.0491</td><td>0.34</td><td></td><td>BJ</td><td>1</td><td>1</td></td<>	Activitione Chloride	09-SEP-01 17:26	0.0491	0.34		BJ	1	1
Detrachloroethene 09-SEP-01 17:26 0.0696 ND 1 1 Poluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 Poluene 09-SEP-01 17:26 0.0483 0.14 J 1 1 Prichloroethene 09-SEP-01 17:26 0.0548 ND 1 1 Vinyl Chloride 09-SEP-01 17:26 0.114 ND 1 1 Vinyl Chloropropene 09-SEP-01 17:26 0.128 ND 1 1 crans-1, 3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0451 ND	Techytene chioride	09-SEP-01 17:26	0.0928	ND		<u> </u>	1	1
Best Science 09-SEP-01 17:26 0.0483 0.14 J 1 1 Poluene 09-SEP-01 17:26 0.0548 ND 1 1 1 Prichloroethene 09-SEP-01 17:26 0.0548 ND 1 1 1 Vinyl Chloride 09-SEP-01 17:26 0.114 ND 1 1 1 vinyl Chloropropene 09-SEP-01 17:26 0.0618 ND 1 1 1 crans-1, 3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 1 crans-1, 2-Dichloroptopene 09-SEP-01 17:26 0.0667 ND 1 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 1 crans-1, 2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 1 o-Xylene 09-SEP-01 17:26 0.136 ND 1 1 2	lotrachloroethene	09-SEP-01 17:26	0.0696	ND		1	1	1
Oriente 09-SEP-01 17:26 0.0548 ND 1 1 Vinyl Chloride 09-SEP-01 17:26 0.114 ND 1 1 Vinyl Chloride 09-SEP-01 17:26 0.114 ND 1 1 vinyl Chloropropene 09-SEP-01 17:26 0.0618 ND 1 1 crans-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 crans-1,2-Dichloropropene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1	etrachitoroethene	09-SEP-01 17:26	0.0483	0.14		<u>J</u>	1	
Offention Op-SEP-01 17:26 0.114 ND 1 1 Vinyl Chloride 09-SEP-01 17:26 0.0618 ND 1 1 cis-1,3-Dichloropropene 09-SEP-01 17:26 0.0618 ND 1 1 crans-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 cis-1,2-Dichloropthene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 c-Xylene 09-SEP-01 17:26 0.136 ND 1 2	Trichloroethene	09-SEP-01 17:26	0.0548	ND			1	<u> </u>
Initial Callor Op-SEP-01 17:26 0.0618 ND 1 1 crans-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 crans-1,3-Dichloropropene 09-SEP-01 17:26 0.128 ND 1 1 cis-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1	Linul Chloride	09-SEP-01 17:26	0.114	ND			1	1
Discription 09-SEP-01 17:26 0.128 ND 1 1 crans-1,3-Dichloropropene 09-SEP-01 17:26 0.0667 ND 1 1 cis-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 o-Xylene 09-SEP-01 17:26 0.136 ND 1 2	rig-1 3-Dichloropropene	09-SEP-01 17:26	0.0618	ND			1	1
Dis-1,2-Dichloroethene 09-SEP-01 17:26 0.0667 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0791 ND 1 1 crans-1,2-Dichloroethene 09-SEP-01 17:26 0.0451 ND 1 1 o-Xylene 09-SEP-01 17:26 0.136 ND 1 1	13-1,3-Dichloropropene	09-SEP-01 17:26	0.128	ND			11	1
Discription Discription <thdiscription< th=""> <thdiscription< th=""></thdiscription<></thdiscription<>	vic-1 2-Dichloroethene	09-SEP-01 17:26	0.0667	ND			1	1
Operation Operation <t< td=""><td>-range1 2-Dichloroethene</td><td>09-SEP-01 17:26</td><td>0.0791</td><td>ND</td><td></td><td></td><td>1</td><td>1</td></t<>	-range1 2-Dichloroethene	09-SEP-01 17:26	0.0791	ND			1	1
n p Viene 09-SEP-01 17:26 0.136 ND 1 2		09-SEP-01 17:26	0.0451	ND			1	1
	n n-Yvlene	09-SEP-01 17:26	0.136	ND			1 1	2

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com E-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1001011613199 Page 9

 DCL Sample Name...: 01E01960 DCL Report Group..: 01E-0300-01

.

Surrogate Recoveries

Analyta	Result	Spiked Amount	Percent Recovery
Analyce	10.1	10.0	101.
1,2-Dichloroechane-da	10.7	10.0	107.
4-Bromoriuorobenzene	10.6	10.0	106.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

012

 $\mathbb{L}_{\mathbb{T}^{n}}$

SAMPLE ANALYSIS DATA SHEET

te Printed...... 01-0CT-01 16:11

ient Ref Number....: Not Provided

mpling Site Not Provided

lease Number....: Not Provided

te Received...... 07-SEP-01 00:00

L Preparation Group: Not Applicable

ite Prepared..... Not Applicable

et Weight/Volume....: Not Required

ient Name.....: North Dakota State Water Commission

Client Sample Name: DUP 2 DCL Sample Name...: 01E01961 DCL Report Group..: 01E-0300-01

Matrix..... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type.....: DB 624 X Primary Confirmation

nalytical Results

reparation Method...: 5030

liquot Weight/Volume: 25 mL

	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 1 Maighlaraothana	09-SEP-01 11:42	0.0971	ND				1
1.2.2 Motrachloroethane	09-SEP-01 11:42	0.182	ND		L	↓	
1.2 Trichloroethane	09-SEP-01 11:42	0.116	ND		ļ	┟──┤──┼	
1 Dichloroethane	09-SEP-01 11:42	0.0585	ND		L		
1 Dichloroethene	09-SEP-01 11:42	0.0507	ND		L	$\downarrow 1$	
, 1-Dichloroothane	09-SEP-01 11:42	0.0395	ND		L		1
2-Dichioropenane	09-SEP-01 11:42	0.0752	ND			1	1
12-Dichtoropropane	09-SEP-01 11:42	1.40	ND	1 1			4
-Butanone	09-SEP-01 11:42	2.06	ND			\downarrow 1 \downarrow	4
-Hexanone	09-SEP-01 11:42	0.774	ND				4
-Metny1-2-Pencanone	09-SEP-01 11:42	2.16	5.4				4
cetone	09-SEP-01 11:42	0.0357	ND			1	1
enzene	09-SEP-01 11:42	0.0544	ND			1	1
romodichioromethane	09-SEP-01 11:42	0.0868	ND				1
romotorm	09-SEP-01 11.42	0.0629	ND			1	<u>· 1</u>
romomethane	09-SEP-01 11.42	0.0573	13.			1	1
arbon Disulfide	09-SEP-01 11.42	0.0888	ND			1	1
larbon Tetrachloride	09-SEP-01 11.42	0.0706	ND			1	1
hlorobenzene	09-SEP-01 11.42	0.127	ND			1	1
hloroethane	09-SEF-01 11.42	0.0405	ND			1	1
hloroform	00 CED-01 11.42	0.0955	ND			1	1
hloromethane	109-SEP-01 11:42	0.0562	ND			1	1
)ibromochloromethane	00 CEP 01 11:42	0.0551	ND			1	1
Sthylbenzene	00 CED 01 11:42	0.0491	0.37	1	BJ	1	1
1ethylene Chloride	U9-SEP-UI 11:42	0.0491		1	T	1	1
Styrene	U9-SEP-U1 11:42	0.0520	ND	1		1	1
Tetrachloroethene	09-SEP-01 11:42	0.0090	0 17		J	1	1
Toluene	09-SEP-01 11:42	0.0403	NTD			1	1
Frichloroethene	09-SEP-01 11:42	0.0548		+		1	1
Vinyl Chloride	09-SEP-01 11:42	0.114				1 1	1
cis-1,3-Dichloropropene	09-SEP-01 11:42	0.0618			+		1
trans-1,3-Dichloropropene	09-SEP-01 11:42	0.128			+		1
cis-1,2-Dichloroethene	09-SEP-01 11:42	0.000/		+	+	1 1	1
trans-1,2-Dichloroethene	09-SEP-01 11:42	0.0791				+ 1	1
o-Xylene	09-SEP-01 11:42	0.0451		+		1 1	2
m,p-Xylene	09-SEP-01 11:42	0.136		<u>ما ا</u> ین			

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 11 S018609Y

Date Printed..... 01-OCT-01 16:11 Client Name.....: North Dakota State Water Commission

DCL Sample Name...: 01E01961

DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
1 2 Dichloroothane-d4	9,95	10.0	99.5	
1, Z-Dichiorobenzene	10.4	10.0	104.	
4-Bromoridorobenzene	10.7	10.0	107.	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

ce Printed...... 01-OCT-01 16:11

ient Ref Number....: Not Provided

mpling Site Not Provided

lease Number....: Not Provided

te Received.....: 07-SEP-01 00:00

L Preparation Group: Not Applicable

te Prepared..... Not Applicable

t Weight/Volume....: Not Required

ient Name...... North Dakota State Water Commission

Client Sample Name: 3-SPRING DCL Sample Name...: 01E01962 DCL Report Group..: 01E-0300-01

Matrix..... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🖾 As Received 🗌 Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

alytical Results

eparation Method...: 5030

iquot Weight/Volume: 25 mL

-	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
lalyte	109_SEP_01 12.13	0.0971	ND			1	1
1,1-Trichloroethane	09-SEF-01 12.13	0.182	ND			1	<u> </u>
1,2,2-Tetrachloroethane	09-SEF-01 12.13	0.116	ND				1
1,2-Trichloroethane	09-SEP-01 12.13	0.0585	ND			1	1
1-Dichloroethane	09-SEP-01 12.13	0.0507	ND		1	1	1
1-Dichloroethene	09-SEP-01 12:13	0.0395	ND			1	1
2-Dichloroethane	09-SEP-01 12:13	0.0752	ND			1	1
2-Dichloropropane	09-SEP-01 12:13	1 40	ND			1	4
-Butanone	09-SEP-01 12:13	2.06	ND			1	4
-Hexanone	09-SEP-01 12:13	0 774	ND			1	4
-Methyl-2-Pentanone	09-SEP-01 12:13	2 16	8.2	1		11	4
cetone	09-SEP-01 12:13	0.0357	ND			1	1
enzene	09-SEP-01 12:13	0.0544	ND			1	1
romodichloromethane	09-SEP-01 12:13	0.0944	ND			1	1
romoform	09-SEP-01 12:13	0.0629	ND			1	1
romomethane	09-SEP-01 12:13	0.0023	0 068		J	1	1
arbon Disulfide	09-SEP-01 12:13	0.0373	ND			1	1
arbon Tetrachloride	09-SEP-01 12:13	0.0886	ND			1	. 1
hlorobenzene	09-SEP-01 12:13	0.0700	ND			1	1
hloroethane	09-SEP-01 12:13	0.127	ND			1	1
hloroform	09-SEP-01 12:13	0.0405	ND			1	1
hloromethane	09-SEP-01 12:13	0.0955	ND	+		1	1
ibromochloromethane	09-SEP-01 12:13	0.0562	ND			1	1
thylbenzene	09-SEP-01 12:13	0.0551	0.16		BJ	1	1
ethylene Chloride	09-SEP-01 12:13	0.0491				1	1
tvrene	09-SEP-01 12:13	0.0928	NT)			1	1
'etrachloroethene	09-SEP-01 12:13	0.0696	ND			1	1
'oluene	09-SEP-01 12:13	0.0483				1	1
'richloroethene	09-SEP-01 12:13	0.0548			1	1	1
Vinvl Chloride	09-SEP-01 12:13	0.114				1 1	1
is-1.3-Dichloropropene	09-SEP-01 12:13	0.0618			-	1 1	1
rans-1,3-Dichloropropene	09-SEP-01 12:13	0.128				1 1	1 1
is-1,2-Dichloroethene	09-SEP-01 12:13	0.0667				1	1
rans-1,2-Dichloroethene	09-SEP-01 12:13	0.0791			-		1
y-Xylene	09-SEP-01 12:13	0.0451		-	+	1	2
n-Xvlene	09-SEP-01 12:13	0.136	ND				

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

015

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1001011613199! Page 13 S018609Z

Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01962 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analvte	Result	Spiked Amount	Percent Recovery	
1.2-Dichloroethane-d4	10.4	10.0	104.	
A-Bromofluorobenzene	11.4	10.0	114.	
Toluene-d8	10.6	10.0	106.	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

Form RLIMS63A-V1.3 10010116131995

SAMPLE ANALYSIS DATA SHEET

S01860B0

Page 14

ate Printed: 01-002-01 16:11	Client Sample Name: 6-13101 DCL Sample Name: 01E01964
lient Name	DCL Report Group: 01E-0300-01
ampling Site: Not Provided elease Number: Not Provided	Matrix: WATER Date Sampled: 05-SEP-01 00:00 Reporting Units: ug/L

ate Received.....: 07-SE2-01 00:00

CL Preparation Group: Not Applicable ate Prepared..... Not Applicable reparation Method...: 5030 liquot Weight/Volume: 25 mL et Weight/Volume....: Not Required

Report Basis....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary []Confirmation

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 1-Trichloroethane	09-SEP-01 12:45	0.0971	ND			1	1
1 2 2-Tetrachloroethane	09-SEP-01 12:45	0.182	ND			1	1
1 2-Trichloroethane	09-SEP-01 12:45	0.116	ND			1	1
1-Dichloroethane	09-SEP-01 12:45	0.0585	ND			1	1
1-Dichloroethene	09-SEP-01 12:45	0.0507	ND			1	1
2-Dichloroethane	09-SEP-01 12:45	0.0395	ND			1	1
2-Dichloropropane	09-SEP-01 12:45	0.0752	ND			1	1
Butanone	09-SEP-01 12:45	1.40	ND			1	4
-Hexanone	09-SEP-01 12:45	2.06	ND		L	1	4
-Methvl-2-Pentanone	09-SEP-01 12:45	0.774	ND				4
retone	09-SEP-01 12:45	2.16	4.1			1	4
lenzene	09-SEP-01 12:45	0.0357	ND			<u> </u>	1
romodichloromethane	09-SEP-01 12:45	0.0544	ND			1	
romoform	09-SEP-01 12:45	0.0868	ND			1	1
romomethane	09-SEP-01 12:45	0.0629	ND			1	1
arbon Disulfide	09-SEP-01 12:45	0.0573	23.			1	1
arbon Tetrachloride	09-SEP-01 12:45	0.0888	ND	· · · · · · · · · · · · · · · · · · ·	[1
'hlorobenzene	09-SEP-01 12:45	0.0706	ND		<u> </u>	1	1
Thloroethane	09-SEP-01 12:45	0.127	ND			1 1	1
Thloroform	09-SEP-01 12:45	0.0405	ND			1	
Thloromethane	09-SEP-01 12:45	0.0955	ND		<u> </u>		1
Dibromochloromethane	09-SEP-01 12:45	0.0562	ND		<u> </u>	1 1	
Sthylbenzene	09-SEP-01 12:45	0.0551	ND	1	<u></u>		<u>_</u>
Methylene Chloride	09-SEP-01 12:45	0.0491	0.29		BJ_	+ +	1
Styrene	09-SEP-01 12:45	0.0928	ND		4	1	
Tetrachloroethene	09-SEP-01 12:45	0.0696	ND				1
Foluene	09-SEP-01 12:45	0.0483	ND	<u></u>			_
Frichloroethene	09-SEP-01 12:45	0.0548	ND			<u> </u>	<u> </u>
Vinvl Chloride	09-SEP-01 12:45	0.114	ND		120-000	1 1	<u> </u>
cis-1,3-Dichloropropene	09-SEP-01 12:45	0.0618	ND			1 1	
trans-1,3-Dichloropropene	09-SEP-01 12:45	0.128	ND	<u> </u>	-		<u> </u>
cis-1,2-Dichloroethene	09-SEP-01 12:45	0.0667	ND				
trans-1,2-Dichloroethene	09-SEP-01 12:45	0.0791	ND		+	+ +	<u>↓ </u>
o-Xylene	09-SEP-01 12:45	0.0451	ND		+	+ - +	
n,p-Xylene	09-SEP-01 12:45	0.136			<u></u>	<u>↓</u>	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com Phone (801) 266-7700 E-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 15 S01860B0

Date Printed...... 01-OCT-01 16:11 Client Name.....: North Dakota State Water Commission DCL Report Group..: 01E-0300-01

DCL Sample Name...: 01E01964 >

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
Analyce	11.1	10.0	111.	
1,2-Dichloroethane-us	11.2	10.0	112.	
4-Bromofluorobenzene	10.6	10.0	106.	
Toluene-d8	10.0			

960 West LeVoy Drive / Salt	Lake City, Utah 84123-2547
Phone (801) 266-7700	Web Page: www.datachem.com
FAX (801) 268-9992	E-mail: lab@datachem.com

1

Client Sample Name: 6-13102

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 16 .s01860B1

.te Printed..... 01-OCT-01 16:11

 ient Name.....: North Dakota State Water Commission
 DCL Sample Name...: 01E01965

 ient Ref Number....: Not Provided
 DCL Report Group..: 01E-0300-01

 umpling Site.....: Not Provided
 Matrix.....: WATER

 elease Number....: Not Provided
 Date Sampled.....: 05-SEP-01 00:00

 ite Received.....: 07-SEP-01 00:00
 Report Basis....: 🖾 As Received [] Dried

L Preparation Group: Not Applicable ate Prepared......: Not Applicable reparation Method...: 5030 liquot Weight/Volume: 25 mL at Weight/Volume....: Not Required DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type.....: DB 624 X Primary

nalytical Results

nalvte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 1-Trichloroethane	09-SEP-01 13:16	0.0971	ND				1
1 2 2-Tetrachloroethane	09-SEP-01 13:16	0.182	ND				1
1.2-Trichloroethane	09-SEP-01 13:16	0.116	ND				1
1-Dichloroethane	09-SEP-01 13:16	0.0585	ND				1
1-Dichloroethene	09-SEP-01 13:16	0.0507	ND				
2-Dichloroethane	09-SEP-01 13:16	0.0395	ND				1
2-Dichloropropane	09-SEP-01 13:16	0.0752	ND				1
-Butanone	09-SEP-01 13:16	1.40	ND			$\left \frac{1}{1} \right $	4
-Hexanone	09-SEP-01 13:16	2.06	ND		L		4
-Methyl-2-Pentanone	09-SEP-01 13:16	0.774	ND				4
cetone	09-SEP-01 13:16	2.16	3.0		Ţ		4
enzene	09-SEP-01 13:16	0.0357	ND		<u> </u>	1.1	1
romodichloromethane	09-SEP-01 13:16	0.0544	ND	L <u> </u>			<u> </u>
romoform	09-SEP-01 13:16	0.0868	ND				
romomethane	09-SEP-01 13:16	0.0629	ND			+ + +	
arbon Disulfide	09-SEP-01 13:16	0.0573	2.0				<u> </u>
arbon Tetrachloride	09-SEP-01 13:16	0.0888	ND				<u>↓</u>
hlorobenzene	09-SEP-01 13:16	0.0706	ND		1.2		4
hloroethane	09-SEP-01 13:16	0.127	ND				<u> </u>
hloroform	09-SEP-01 13:16	0.0405	ND	· · · · · ·		┝╴╪──┤	
hloromethane	09-SEP-01 13:16	0.0955	ND		+	1 <u>1</u>	<u> </u>
)ibromochloromethane	09-SEP-01 13:16	0.0562	ND				
thylbenzene	09-SEP-01 13:16	0.0551	ND			+ +	
lethylene Chloride	09-SEP-01 13:16	0.0491	0.29		RO BO	+ +	1
Styrene	09-SEP-01 13:16	0.0928	ND	<u> </u>	+		1
etrachloroethene	09-SEP-01 13:16	0.0696	ND	4	<u> </u>	╋╋	1
Toluene	09-SEP-01 13:16	0.0483	0.062		<u> </u>		1
Frichloroethene	09-SEP-01 13:16	0.0548	ND			+	1
/inyl Chloride	09-SEP-01 13:16	0.114	ND		+	+ +	
cis-1,3-Dichloropropene	09-SEP-01 13:16	0.0618	ND		+	+ +	
rans-1,3-Dichloropropene	09-SEP-01 13:16	0.128	ND		· 	╉╼╍╪╼╼╼╧	1
cis-1,2-Dichloroethene	09-SEP-01 13:16	0.0667	ND			+ + +	
rans-1,2-Dichloroethene	09-SEP-01 13:16	0.0791	ND	+		+ +	1
o-Xylene	09-SEP-01 13:16	0.0451			1	+	2
n,p-Xylene	09-SEP-01 13:16	0.136		1	1	<u>+</u>	<u> </u>

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1001011613199 Page 17 S01860B1

Date Printed..... 01-OCT-01 16:11 Client Name.....: North Dakota State Water Commission

DCL Sample Name...: 01E01965 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
1.2-Dichloroethane-d4	11.0	10.0	110.	
A-Bromofluorobenzene	11.2	10.0	112.	
Toluene-d8	10.6	10.0	106.	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

ate Printed..... 01-0CT-01 16:11

lient Ref Number....: Not Provided

ampling Site..... Not Provided

elease Number..... Not Provided

ate Received...... 07-SEP-01 00:00

CL Preparation Group: Not Applicable

ate Prepared..... Not Applicable

et Weight/Volume....: Not Required

lient Name...... North Dakota State Water Commission

Client Sample Name: 5-13098 DCL Sample Name...: 01E01966 DCL Report Group..: 01E-0300-01

Matrix.....: WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type.....: DB 624 X Primary Confirmation

nalytical Results

reparation Method...: 5030

liquot Weight/Volume: 25 mL

Inaryce 09-SEP-01 13:47 0.0971 ND ,1,1-Trichloroethane 09-SEP-01 13:47 0.182 ND ,1,2,2-Tetrachloroethane 09-SEP-01 13:47 0.182 ND ,1,2-Trichloroethane 09-SEP-01 13:47 0.116 ND ,1,2-Trichloroethane 09-SEP-01 13:47 0.0585 ND ,1-Dichloroethane 09-SEP-01 13:47 0.0507 ND		1 1 1 1 1 1 1	1 1 1 1 1
1,1,2,2-Tetrachloroethane 09-SEP-01 13:47 0.182 ND ,1,2,2-Tetrachloroethane 09-SEP-01 13:47 0.116 ND ,1,2-Trichloroethane 09-SEP-01 13:47 0.0585 ND ,1-Dichloroethane 09-SEP-01 13:47 0.0585 ND			1 1 1 1
11/2/2 12/2 <th12 2<="" th=""> 12/2 12/2 <t< td=""><td></td><td></td><td>1</td></t<></th12>			1
,1-Dichloroethane 09-SEP-01 13:47 0.0585 ND		$\frac{1}{1}$	1
12-DICHLOTOCHARCO 100 GPD-01 13:47 0 0507 ND		$\frac{1}{1}$	1
1-Dichloroethene IVJ-SEF-VI 13,4/ 0.000/ 1		1 1 1	<u>+</u>
2-Dichloroethane 09-SEP-01 13:47 0.0395 ND		+	1
2-Dichloropropage 09-SEP-01 13:47 0.0752 ND		<u> </u>	1
Butanone 09-SEP-01 13:47 1.40 ND		1 1	4
-Bucanone 09-SEP-01 13:47 2.06 ND		+	4
-Methyl-2-Pentanone 09-SEP-01 13:47 0.774 ND			4
09-SEP-01 13:47 2.16 3.7	J	<u> </u>	4
09-SEP-01 13:47 0.0357 ND		1	<u> </u>
romodichloromethane 09-SEP-01 13:47 0.0544 ND		1 1	1
09-SEP-01 13:47 0.0868 ND		1 1	1
3romomethane 09-SEP-01 13:47 0.0629 ND		1	1
Carbon Disulfide 09-SEP-01 13:47 0.0573 3.3		1	ļ <u>1</u>
Sarbon Tetrachloride 09-SEP-01 13:47 0.0888 ND			1
09-SEP-01 13:47 0.0706 ND		1	1
Devoethane 09-SEP-01 13:47 0.127 ND		1	1
Decomane 09-SEP-01 13:47 0.0405 ND		1 1	1
Decomethane 09-SEP-01 13:47 0.0955 ND			1
Dibromechloromethane 09-SEP-01 13:47 0.0562 ND		1_1	1
The server 09-SEP-01 13:47 0.0551 ND		1	1
Vethylene Chloride 09-SEP-01 13:47 0.0491 0.38	BJ	1	1
09-SEP-01 13:47 0.0928 ND		1	1
Totrachloroethene 09-SEP-01 13:47 0.0696 ND		1	<u> </u>
09-SEP-01 13:47 0.0483 0.13	J	1	1
Dicente 09-SEP-01 13:47 0.0548 ND		1	<u> </u>
Vinul Chloride 09-SEP-01 13:47 0.114 ND		1 1	1
13 - Dichloropropene 09-SEP-01 13:47 0.0618 ND		1	1
trans-1 3-Dichloropropene 09-SEP-01 13:47 0.128 ND		1 1	<u> </u>
ais-1 2-Dichloroethene 09-SEP-01 13:47 0.0667 ND			
trans_1_2_Dichloroethene 09-SEP-01 13:47 0.0791 ND		<u> </u>	
09-SEP-01 13:47 0.0451 ND			1
m.p-Xylene 09-SEP-01 13:47 0.136 ND			1 2

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1001011613199 Page 19

S01860B2

Date Printed.........: 01-OCT-01 16:11 Client Name...........: North Dakota State Water Commission DCL Sample Name...: 01E01966 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Analvte	Result	Spiked Amount	Percent Recovery	
1 2-Dichloroethane-d4	11.1	10.0	111.	
4-Bromofluorobenzene	11.2	10.0	112.	
Toluene-d8	10.6	10.0	106.	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

e Printed..... 01-OCT-01 16:11

ent Ref Number: Not Provided upling Site Not Provided ease Number.....: Not Provided

:e Received.....: 07-SEP-01 00:00

L Preparation Group: Not Applicable te Prepared..... Not Applicable eparation Method...: 5030 iquot Weight/Volume: 25 mL t Weight/Volume....: Not Required

Client Sample Name: DUP 1 DCL Sample Name...: 01E01967 DCL Report Group..: 01E-0300-01

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🖾 As Received 🗋 Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type ... : GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

alytical Results

	Date Analvzed	MDL	Result	Comment.	Qual.	Dilution	CRDL
alyte	09-SEP-01 15.21	0.0971	ND				
1,1-Trichloroethane	09-SEP-01 15.21	0.182	ND				1
1,2,2-Tetrachloroethane	09-SEP-01 15.21	0.116	ND			1	<u> </u>
1,2-Trichloroethane	09-SEP-01 15.21	0.0585	ND				1
1-Dichloroethane	09-SEP-01 15.21	0.0507	ND			1	1
1-Dichloroethene	09-SEP-01 15.21	0.0395	ND			1	1
2-Dichloroethane	09-SEP-01 15.21	0.0752	ND			1	1
2-Dichloropropane	09-SEP-01 15:21	1 40	ND			1	4
Butanone	09-SEP-01 15:21	2.06	ND			1	4
Hexanone	09-SEP-01 15:21	0 774	ND			1	4
Methyl-2-Pentanone	09-SEP-01 15:21	2 16	4.5			1	4
setone	09-SEP-01 15:21	0.0357	ND			1	<u> </u>
enzene	09-SEP-01 15:21	0.0544	NTD			1	1
comodichloromethane	09-SEP-01 15:21	0.0944	ND			1	1
comoform	09-SEP-01 15:21	0.0600	NTD			1	1
comomethane	09-SEP-01 15:21	0.0023	0 44	1	J	1	1
arbon Disulfide	09-SEP-01 15:21	0.0575	NTD			1	1
arbon Tetrachloride	09-SEP-01 15:21	0.0888	ND	1		1	1
hlorobenzene	09-SEP-01 15:21	0.0708	ND			1	. 1
hloroethane	09-SEP-01 15:21	0.127	ND			1	1
hloroform	09-SEP-01 15:21	0.0405	ND			1	1
hloromethane	09-SEP-01 15:21	0.0955	ND			1	1
ibromochloromethane	09-SEP-01 15:21	0.0562	ND	-		1	• 1
thylbenzene	09-SEP-01 15:21	0.0551	0.26		BIT	1	1
ethylene Chloride	09-SEP-01 15:21	0.0491	0.20	+		1	1
tyrene	09-SEP-01 15:21	0.0928				1.1	1
etrachloroethene	09-SEP-01 15:21	0.0696			T	1	1
aluene	09-SEP-01 15:21	0.0483	0.22		<u> </u>	1 7	1
richloroethene	09-SEP-01 15:21	0.0548				1 1	1
invl Chloride	09-SEP-01 15:21	0.114				1 1	1 1
ig_1 3-Dichloropropene	09-SEP-01 15:21	0.0618	ND				1,1
rang-1 3-Dichloropropene	09-SEP-01 15:21	0.128			+	1 - 7	1
ic_1 2-Dichloroethene	09-SEP-01 15:21	0.0667	ND			1 1	1
mang_1 2-Dichloroethene	09-SEP-01 15:21	0.0791	ND_		+		1 1
Willong	09-SEP-01 15:21	0.0451	ND			+	2
-AATelle	09-SEP-01 15:21	0.136	ND				<u>^_</u>

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 21 501860B5

 DCL Sample Name...: 01E01967

DCL Report Group..: 01E-0300-01

Surrogate Recoveries

	Result	Spiked Amount	Percent Recovery
Analyte	10.6	10.0	106.
1,2-Dichloroethane-d4		10.0	111.
4-Bromofluorobenzene	10.7	10.0	107.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

:e Printed..... 01-OCT-01 16:11

ient Ref Number....: Not Provided

npling Site Not Provided

lease Number....: Not Provided

te Received.....: 07-SEP-01 00:00

L Preparation Group: Not Applicable

te Prepared..... Not Applicable

t Weight/Volume....: Not Required

.ent Name...... North Dakota State Water Commission

Client Sample Name: LAKE COE DCL Sample Name...: 01E01970 DCL Report Group..: 01E-0300-01

Matrix...... WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type.....: DB 624 X Primary Confirmation

alytical Results

eparation Method...: 5030

iquot Weight/Volume: 25 mL

	Date	MDT	Result	Comment	Qual.	Dilution	CRDL
alyte	Analyzed	0.0071	ND			1	1
1.1-Trichloroethane	09-SEP-01 15:53	0.09/1	ND			1	1
1.2.2-Tetrachloroethane	09-SEP-01 15:53	0.182	ND			1	1
1.2-Trichloroethane	09-SEP-01 15:53	0.110	ND			1	1
1-Dichloroethane	09-SEP-01 15:53	0.0585	ND	1		1	1
1-Dichloroethene	09-SEP-01 15:53	0.0507	NTO			1 ·	1
2-Dichloroethane	09-SEP-01 15:53	0.0395	ND	<u> </u>	1	1	1
2-Dichloropropane	09-SEP-01 15:53	0.0752	ND			1	4
Butanone	09-SEP-01 15:53	1.40	ND			1	4
Hevanone	09-SEP-01 15:53	2.06		<u> </u>	1	1	4
Methyl-2-Pentanone	09-SEP-01 15:53	0.774				1	4
retone	09-SEP-01 15:53	2,16	4.3			1	1
072070	09-SEP-01 15:53	0.0357				1 1	1
romodichloromethane	09-SEP-01 15:53	0.0544				1 1	1
romoform	09-SEP-01 15:53	0.0868		+		1 1	1
romomethane	09-SEP-01 15:53	0.0629			+	1 1	1
arbon Disulfide	09-SEP-01 15:53	0.0573		+			1
arbon Tetrachloride	09-SEP-01 15:53	0.0888		+		1 1	1
hlorobenzene	09-SEP-01 15:53	0.0706		+		1 1	1
hloroothane	09-SEP-01 15:53	0.127			<u>-</u>	1	1
hleroform	09-SEP-01 15:53	0.0405				1 1	1
niorororim	09-SEP-01 15:53	0.0955	ND		+	+	1 1
intoromethane	09-SEP-01 15:53	0.0562	ND		+		1
hulbergere	09-SEP-01 15:53	0.0551	ND		D.T		1
thy Denzene	09-SEP-01 15:53	0.0491	0.17			1 1	1
lecnyrene chroride	09-SEP-01 15:53	0.0928	ND			1 1	1. 1
styrene	09-SEP-01 15:53	0.0696	ND		+		1 1
errachioroethene	09-SEP-01 15:53	0.0483	0.095			+	1 1
oluene	09-SEP-01 15:53	0.0548	ND		+	+	1 1
richloroethene	09-SEP-01 15:53	0.114	ND		+	+ - +	1 1
/inyl Chloride	09-SEP-01 15:53	0.0618	ND .	_			1
<u>218-1, 3-Dichloropropene</u>	09-SEP-01 15:53	0.128	ND			+ + - +	
rans-1,3-Dichloroothene	09-SEP-01 15:53	0.0667	ND				1 - 7
218-1,2-Dichloroethene	09-SEP-01 15:53	0.0791	ND			+	
trans-1,2-Dichioroechene	09-SEP-01 15:53	0.0451	ND			+	1 2
o-xylene	09-SEP-01 15:53	0.136	ND				44
n,p-Xylene							

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 23 S01860B6

Date Printed...... 01-0CT-01 16:11 Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01970

DCL Report Group..: 01E-0300-01

Surrogate Recoveries

Neelyte	Result	Spiked Amount	Percent Recovery	
Analyce di	10.3	10.0	103.	
1,2-Dichloroethane-u4	11.0	10.0	110.	
4-Bromofluorobenzene	10.6	10.0	106.	
Toluene-d8	7010			

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com Phone (801) 266-7700 E-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

e Printed...... 01-OCT-01 16:11

ent Ref Number....: Not Provided

upling Site Not Provided

ease Number Not Provided

ce Received.....: 07-SEP-01 00:00

L Preparation Group: Not Applicable

te Prepared..... Not Applicable

t Weight/Volume....: Not Required

ent Name...... North Dakota State Water Commission

Client Sample Name: 5-13197 DCL Sample Name...: 01E01972 DCL Report Group..: 01E-0300-01

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🖾 As Received 🗋 Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type ... : GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

alvtical Results

eparation Method...: 5030

iquot Weight/Volume: 25 mL

	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
alyte	09_SEP-01 16.24	0.0971	ND			1	
1,1-Trichloroethane	09-SEP-01 16.24	0.182	ND			<u>↓ </u>	<u> </u>
1,2,2-Tetrachloroethane	00_GEP_01 16.24	0.116	ND				
1,2-Trichloroethane	09-SEP-01 16.24	0.0585	ND		<u> </u>		<u> </u>
1-Dichloroethane	09-SEP-01 16.24	0.0507	ND				
1-Dichloroethene	09-SEP-01 16.24	0.0395	ND			1	1
2-Dichloroethane	09-SEP-01 16.24	0.0752	ND			1	1
2-Dichloropropane	09-SEP-01 16:24	1.40	ND			1 1	4
Butanone	09-SEF-01 16:24	2.06	ND			1	4
Hexanone	09-SEP-01 16:24	0.774	ND			1	4
-Methyl-2-Pentanone	09-SEP-01 16:24	2.16	3.0		J	1	4
cetone	09-SEP-01 16.24	0.0357	ND			1	1
enzene	09-SEP-01 10:24	0 0544	ND			1	1
romodichloromethane	09-SEP-01 16:24	0 0868	ND			1	1
romoform	09-SEP-01 10:24	0.0629	ND			1	1
romomethane	09-SEP-01 16:24	0.0573	0.64		J	1	1
arbon Disulfide	09-SEP-01 16:24	0.0373	ND			1	1
arbon Tetrachloride	09-SEP-01 16:24	0.0000	ND			1	1
hlorobenzene	09-SEP-01 16:24	0.0700	ND			1	<u> </u>
hloroethane	09-SEP-01 16:24	0.127	ND			1	1
hloroform	09-SEP-01 16:24	0.0405	ND			1	1
hloromethane	09-SEP-01 16:24	0.0555	ND			1.	1_1_
ibromochloromethane	09-SEP-01 16:24	0.0562	ND			1	1
thylbenzene	09-SEP-01 16:24	0.0351	0.23		BJ	1	1
ethylene Chloride	09-SEP-01 16:24	0.0491	ND	-		1	1
tyrene	09-SEP-01 16:24	0.0928	ND			•1	1
etrachloroethene	09-SEP-01 16:24	0.0696	0.094		J	1	1
oluene	09-SEP-01 16:24	0.0483	0.084	10		1	1
richloroethene	09-SEP-01 16:24	0.0548	ND ND		and and a	1	1
Vinyl Chloride	09-SEP-01 16:24	0.114	ND		-	1	1
is-1 3-Dichloropropene	09-SEP-01 16:24	0.0618				1.	1
rans-1.3-Dichloropropene	09-SEP-01 16:24	0.128				1	1
is-1.2-Dichloroethene	09-SEP-01 16:24	0.0667	ND			1	1
rans-1.2-Dichloroethene	09-SEP-01 16:24	0.0791				1	1
-Xvlene	09-SEP-01 16:24	0.0451				1	2
- n-Yulene	09-SEP-01 16:24	0.136	ND			and the second secon	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992

Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 25 s01860B7

Date Printed.........: 01-OCT-01 16:11 Client Name...........: North Dakota State Water Commission DCL Sample Name...: 01E01972

DCL Report Group..: 01E-0300-01

Surrogate Recoveries

hu a little	Result	Spiked Amount	Percent Recovery
Analyte	10.2	10.0	102.
1,2-Dichloroethane-d4	11.0	10.0	110.
4-Bromofluorobenzene	10.6	10.0	106.
Toluene-d8	10.0		

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 26

S01860B8

te Printed...... 01-0CT-01 16:11

ient Name.....: North Dakota State Water Commission ient Ref Number....: Not Provided mpling Site..... Not Provided lease Number..... Not Provided

te Received.....: 07-SEP-01 00:00

L Preparation Group: Not Applicable te Prepared..... Not Applicable eparation Method...: 5030 .iquot Weight/Volume: 25 mL t Weight/Volume....: Not Required

Client Sample Name: TRIP BLANK DCL Sample Name...: 01E01973 DCL Report Group..: 01E-0300-01

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: X As Received Dried

DCL Analysis Group: G0190017 Analysis Method...: 8260B 25mL Instrument Type ... : GC/MS VO Instrument ID....: 5971-L Column Type....: DB 624 X Primary □ Confirmation

nalytical Results

	Date		- 1.	Commont'	01121	Dilution	CRDL
nalvte	Analyzed	MDL	Result	Comment	Quar.	1	1
1 1-Trichloroethane	09-SEP-01 16:55	0.0971	ND	<u> </u>		1 1	1
1.2.2-Tetrachloroethane	09-SEP-01 16:55	0.182	ND				1
1.2-Trichloroethane	09-SEP-01 16:55	0.116	ND				1
1-Dichloroethane	09-SEP-01 16:55	0.0585	ND				<u> </u>
1-Dichloroethene	09-SEP-01 16:55	0.0507	ND				
2-Dichloroethane	09-SEP-01 16:55	0.0395	ND				1
2-Dichloropropane	09-SEP-01 16:55	0.0752	ND ND			1	4
-Butanone	09-SEP-01 16:55	1.40					4
-Hexanone	09-SEP-01 16:55	2.06	ND				4
-Methyl-2-Pentanone	09-SEP-01 16:55	0.774	ND			1 1	4
cetone	09-SEP-01 16:55	2.16	4.0		1	1- 1	1
enzene	09-SEP-01 16:55	0.0357			h	1 1	1
romodichloromethane	09-SEP-01 16:55	0.0544			<u> </u>	1	1
romoform	09-SEP-01 16:55	0.0868				1 1	1
romomethane	09-SEP-01 16:55	0.0629				$\frac{1}{1}$	1
arbon Disulfide	09-SEP-01 16:55	0.0573		+		1 1	1
arbon Tetrachloride	09-SEP-01 16:55	0.0888					1
hlorobenzene	09-SEP-01 16:55	0.0706		+		1 1	1
hloroethane	09-SEP-01 16:55	0.127			<u>├.</u>	1 1	1
hloroform	09-SEP-01 16:55	0.0405		+		1 1	1
'hloromethane	09-SEP-01 16:55	0.0955				1 1	1
)ibromochloromethane	09-SEP-01 16:55	0.0562				1 1	1
'thylbenzene	09-SEP-01 16:55	0.0551			B	1 1	1 1
Sethylene Chloride	09-SEP-01 16:55	0.0491	1.0			1	ī
styrene	09-SEP-01 16:55	0.0928				+	1
'etrachloroethene	09-SEP-01 16:55	0.0696			1 .7	$\frac{1}{1}$	1
'oluene	09-SEP-01 16:55	0.0483	0.25			1 1	1
'richloroethene	09-SEP-01 16:55	0.0548	ND ND	+		1 1	1
/invl Chloride	09-SEP-01 16:55	0.114		+	1	1 1	1
is-1.3-Dichloropropene	09-SEP-01 16:55	0.0618				+	1
rans-1,3-Dichloropropene	09-SEP-01 16:55	0.128				+	1 1
is-1.2-Dichloroethene	09-SEP-01 16:55	0.0667				1 1	1
rans-1,2-Dichloroethene	09-SEP-01 16:55	0.0791				1 1	1
o-Xvlene	09-SEP-01 16:55	0.0451				1 1	2
n.p-Xylene	09-SEP-01 16:55	0.136					

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com Phone (801) 266-7700 E-mail: lab@datachem.com FAX (801) 268-9992

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10010116131995 Page 27 S01860B8

Date Printed..... 01-0CT-01 16:11 Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01973 DCL Report Group..: 01E-0300-01

Surrogate Recoveries

	Result	Amount	Recovery
Analyte	10.1	10.0	101.
1,2-Dichloroethane-d4	10.7	10.0	107.
4-Bromofluorobenzene	10.3	10.0	103.
Toluene-d8	10.5		

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com Phone (801) 266-7700 FAX (801) 268-9992

E-mail: lab@datachem.com

	Date	Target	Result	Percent Recovery	Limits	Flag
alyte	00 CEP-01 10.08	10.0	10.8	108.	75.0/125.	
1-Dichloroethene	09-SEF-01 10.09	10.0	9.42	94.2	75.0/125.	
enzene	09-SEP-01 10.00	10.0	9.76	97.6	75.0/125.	
lorobenzene	09-SEP-01 10:00	10.0	9.28	92.8	74.0/125.	
oluene	09-SEP-01 10:08	10.0	9.27	92.7	71.0/125.	
richloroethene	09-SEP-01 10:04	10.0				

QUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE MATRIX SPIKE DUPLICATE SAMPLE

Client Name.....: North Dakota State Water Commission Release Number.....: Not Provided

Matrix..... 25ML Reporting Units..... ug/L

DCL Preparation Group: Not Applicable Date Prepared...... Not Applicable Preparation Method...: 5030 DCL Sample Name...: 01E01966MS Date Printed.....: 01-OCT-01 16:11

DCL Analysis Group: G0190017 Analysis Method...: SW 8260B Instrument Type...: GC/MS VO Instrument ID....: 5971-L Column Type.....: DB 624 X Primary Confirmation

QC Limit Type : Method

Analytical Results

Analyte	Date Analyzed	Sample Result	Spiked Result	Spike Added	Percent Recovery	QC Limits	QC Flag
1 1-Dichloroethene	09-SEP-01 14:18	ND	10.2	10.0	102.	75.0/125.	
Ponzene	09-SEP-01 14:18	ND	9.02	10.0	90.3	75.0/125.	
Chlorobenzene	09-SEP-01 14:18	ND	9.17	10.0	91.7	75.0/125.	
Toluene	09-SEP-01 14:18	0.128	8.78	10.0	86.5	74.0/125.	
Trichloroethene	09-SEP-01 14:18	ND	8.74	10.0	87.4	71.0/125.	

DCL Sample Name...: 01E01966MSD

Analytical Results

Analyte	Date Analyzed	Duplicate Result	Percent Recovery	Mean	Range	RPD	QC Limits	QC Flag
1 1-Dichloroethene	09-SEP-01 14:50	9.69	96.9	9.95	0.515	5.2	0.00/20.0	
Panzana	09-SEP-01 14:50	8.78	87.8	8.90	0.248	2.8	0.00/20.0	
Chlorobenzene	09-SEP-01 14:50	9.21	92.1	9.19	0.0360	0.39	0.00/20.0	
Toluene	09-SEP-01 14:50	8.65	85.2	8.71	0.138	1.6	0.00/20.0	
Trichloroethene	09-SEP-01 14:50	8.45	84.5	8.60	0.288	3.4	0.00/20.0	

QUALITY CONTROL DATA SHEET SURROGATE SUMMARY

Client Name.....: North Dakota State Water Commission Release Number.....: Not Provided

Matrix..... 25ML, Reporting Units..... ug/L Date Printed....: 01-OCT-01 16:11

DCL Analysis Group: G0190017 Analysis Method...: SW 8260B

DCL Prep Group....: Not Applicable Preparation Method: 5030

QC Limit Type....: Method

Surr. ID	1,2-Dichloroethane-d4				4-Bromo	ofluoroben	zene	Тс	luene-d8	
QC Limits		62.0/139.				75.0/125.		5.000 A. 12 A.	5.0/125.	
DCL Sample Number	Analyte Result	Spiked Amount	Rec.	0	Analyte Result	Spiked Amount	Rec.Q	Analyte Result	Spiked Amount	Rec. 0
01E01959	10.2	10.0	102.		10.9	10.0	109.	10.6	10.0	106.
01E01960	10.1	10.0	101.		10.7	10.0	107.	10.6	10.0	106.
01E01961	9.95	10.0	99.5		10.4	10.0	104.	10.7	10.0	107.
01E01962	10.4	10.0	104.		11.4	10.0	114.	10.6	10.0	106.
01E01964	11.1	10.0	111.		11.2	10.0	112.	10.6	10.0	106.
01E01965	11.0	10.0	110.		11.2	10.0	112.	10.6	10.0	106.
01E01966	11.1	10.0	111.		11.2	10.0	112.	10.6	10.0	106.
01E01966MS	10.5	10.0	105.		10.7	10.0	107.	10.8	10.0	108.
01E01966MSD	10.9	10.0	109.		11.4	10.0	114.	10.8	10.0	108.
01E01967	10.6	10.0	106.		11.1	10.0	111.	10.7	10.0	107.
01E01970	10.3	10.0	103.		11.0	10.0	110.	10.6	10.0	106.
01E01972	10.2	10.0	102.		11.0	10.0	110.	10.6	10.0	106.
01E01973	10.1	10.0	101.		10.7	10.0	107.	10.3	10.0	103.
BL-188052-1	10.2	10.0	102.		10.9	10.0	109.	10.8	10.0	108.
QC-188052-1	10.3	10.0	103.	T	10.9	10.0	109.	10.7	10.0	107

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

033

jî ₹,

Surrogate Recoveries

DataChem Laboratories CHAIN-OF-CUSTODY

Earliest Sampling Date: 4-Sep-2001

	/T L D0186001		Split: Root Set ID: 01E-0300 * R					rting Group	01	_		 	#
Project/Job/	/ lask: P0100001	Les Commission	<u> </u>			Account: 08001			Vola				B
Client: Nor	th Dakota State Wa	ater Commission						Analysis	tile				t
Comments:	,	r					×		ýq s				l i l
Verified: 🎜	5 9/7/0	21							8260				e s
Date Sampled	Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2		<u> </u>	B		+-+	 	2
5-Sep-2001	7-13086	01E01959			WATER			+	1 0				3
5-Sep-2001	7-13087	01E01960			WATER				$\left \begin{array}{c} \\ \\ \\ \end{array} \right $				3
5 Sep-2001	DUP 2	01E01961			WATER								
5-Sep-2001	3-SPRING	01E01962			WATER			<u> </u>				 ++	- 3
5-Sep-2001	6-13101	01E01964			WATER			<u></u>	X			 +	12
5-Sep-2001	6-13102	01E01965			WATER				X			 	
5-Sep-2001	5 12008	01E01966			WATER				X			 	
4-Sep-2001	5-13098	01E01966MS		MS	WATER				X			 ++	- 3
4-Sep-2001	5-13098	01E01900MS	+	MSD	WATER				X			┥╌╌┝	0
4-Sep-2001	5-13098	ULEUI900MSD		1.00	WATER				X				3
4-Sep-2001	DUP 1	01E01967		<u></u>	WAIDIC			and a second second					

ORIGIN	AL FIELD SAM	PLE CHAIN-OF-CUSTO	DY a	SAMPLE PRE Sample Prep/Analysis for Prepared/Analyzed by:	ANALYSIS CHAIN-OF-CU Lab Noteboo Date/Time: .	JSTODY k No.:	
Duling without By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location
Walk-in/ Boom Shelf/ Fridge	5/2/1606	R-24-258	Labeling/Shelving>		<u></u>		
Store Bith un	1 1930	Walk/in/Room/Shelf/Fridge	Storage: 12 aug				
1							
			<u> </u>		L		Printed 9/7/2001 16:0

Check box if there is a continuation page

Page 1 of 2

Results due by: 28-Sep-2001

DataChem Laboratories CHAIN-OF-CUSTODY

Earliest Sampling Date: 4-Sep-2001

			Solit:		Root Set	D: 01E-0300 *	Re	portin	g Group	01		 			<u> </u>	+#-
Project/Job	lask: P0186001		<u>opini</u>			Account: 08001				Vo.						B
Client: Nor	th Dakota State W	ater Commission					······································		alvsis	Lile					4	t
Comments:									larysis	5						
																e
Verified: P.	<u>s 9/7/01</u>		DCI Samela			C				260]						5
Date	Field	DCL Sample	ID ID	QC	Matrix	Customer ID 2					<u>+</u> †	 	+ - +			3
Sampled	TAKE COE	01E01970		-	WATER							 	+		-	2
4-Sep-2001	LAKE COD	01E01072			WATER							 				+
4-Sep-2001	5-13197	01201972			WATER					X		 				
4-Sep-2001	TRIP BLANK	01E01973			THIDE										_	
												-				
											+	 		-		
						<u></u>						 	+-+			-
											1	 				
		<u></u>														

ORIGIN	AL FIELD SAM	PLE CHAIN-OF-CUSTO	ΟY	SAMPLE PRE Sample Prep/Analysis for: Prepared/Analyzed by:	PARATION / A	I / ANALYSIS CHAIN-OF-CUSTODY Lab Notebook No.: Date/Time:			
Relinquished By: (Signature) Walk-in/Reary/Shelf/Fridge Stong-R-U4-Lua	Date/Time 4/7/01 1000 9.3 09	Received By: (Signature)	Reason for Transfer/ Storage Location Labeling(Shelving Storage: ?""LO?"/ MA. May 1:	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location		
							D		

.

Printed 9/7/2001 16:04

Page 2 of 2

#

Results due by: 28-Sep-2001

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State V 900 East Boulevard Bismarck, ND 5850 Dates Sampled: Change of Custody Change of Custody Date Shipped: Carrier	Water Commission 5 7: Date 77 7:	Nor 900 Bisr 	th Dako East B narck	ta State oulevard 5850	Water Cor	nmission	
v	Analysis Requested:	8260B	8270	8330	0332		

	No	Location	No.	Sample		Test	For		Comments	
			Bottles	Date	8260	8270	8330	8332		
		<u></u>			B	OL. O	0000	0001		1
)1959	1	101 13086	312				11	12	1 ytora	1-0
			3-404	0	3400	2				
	2									
					-	ļ				
	3					<u> </u>				
		7			<u> </u>	<u> </u>	15	11	<u> </u>	
60	4	30	21-1	1	Burn		110	10		
			3 1104	1	140					
	5		- 		<u> </u>		1.00 3.0			
	6				<u> </u>	†				
1	ا ا									
1 61	7	DUNO	21-1		21-1		12	11		
WI WI		- aya	34 404	0	RIVAL	1				
	8									
				<u> </u>						
	9	Art								
		THIN Black					ļ			
	10	1 10 11 11				<u> </u>				
	11				-			<u> </u>		
	12				<u> </u>					
	12									
	13	······································								
	H									
	14									
	Ber 10.000			2 1994 - 1 997, 1998, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997,						

Blank Temperature at time of shipping_____

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission	North Dakota State Water Commission
900 East Boulevard	900 East Boulevard
Bismarck, ND 58505	Bismarck, ND 58805
Dates Sampled: 9/9	By:
Change of Custody: Date 1/7	_ By:
Change of Custody: Date	_ By:
Date Shipped:9 [6	By: Jul
Carrier / B / A / B /	ио ило и с
V TE DAT	v.
Analysis Requested:	8260B 8270 8330 8332

Analysis Requested: 8260B 8270 8330

	No	Location	No. Bottles	Sample Date		Tes	t For		Comments	
					8260 B	8270	8330	8332		
162	1	3-5 pring	#31L	919	Q	1	1	1	1x Jar 1 R	boyl
1-		6	3 40 1	915	3					U
63	2	4 - R - 5+0 VOID	414	915			/			
	3		13 40hp	115	63					. ~
	-	0/2-13/01				<u></u>			11. Extra X	Bodk
	4									
	5									
	6	2 							· · · · · · · · · · · · · · · · · · ·	
	0			<u></u>						
	7	and the second se								
	8									
						6 a a ano -				
	9									
a 	10				<u> </u>	<u> </u>				
	11									
				-						
	12					ļ	-			
	12				<u> </u>					
	13	and the second sec								
	14									
				the subscript scores	1		202			

Blank Temperature at time of shipping____

Sampl	les To: North 900 E Bisma Dates Chan Date Chan Date	DATA CHEM 960 WEST LE SALT LAKE C TEL. (801 Dakota State W ast Boulevard arck, ND 58505 Sampled: ge of Custody: ge of Custody: Shipped:	LABORATOR VOY DRIVE ITY, UTAH ater Commiss Q / S Date Q / G	RIES 8412 sion $\frac{5}{7}$	OIE- 3-2547 By: By: By: By: By: By: By: By:	03	kota S t Bould	tate Wevard 58505	ater Co	ommission	
			Analysis Re	quest	ed: 8260	B 827	08	330	8332		14. 16
		Leastion		o. T	Sample		Test	For		Comments	
No		Location	Bot	tles	Date	8260	8270	8330	8332		<i>a</i>
		· 0 · Pr I	Bar	11_	915	В	X	X	Y	anditional	
64 1	le	- 3/01	.3/90	own	9/5	X	X	X	X		1501
52	6-	13102	3/	yond	4/5	x					
3	6		1 1	$\overline{}$	and						- 00
	1 Fm	ip Blan	n U	24		—					- (13
											-1
5											\Box
6						1		1	1		
7						+	+		1		
								1-			
						+	+				
9											
1	0							1			
F	-								+		
Ľ							士				
1	2								_	-	
	13						1	1			
+	14							-			
۲ F								4-30			

L A r 1

					DIF	-03	307	>			
Sample	es To: North	DATA CHEM L 960 WEST LEV SALT LAKE C TEL. (801 Dakota State Wa	ABORATO VOY DRIVE ITY, UTAH ater Commis	RIES 84123 ssion	3-2547 N 9	orth Da	kota S	tate Wa	ater Cor	mmission	a *
	900 E Bisma Dates Chan Chan Date Carrie	ast Boulevald arck, ND 58505 s Sampled: ge of Custody: Shipped: er	Date Date 7 Analysis Re		By By By By: By: ed: 8260	DB 827		330	8332		
No		Location	Bo	lo. Ittles	Sample Date		Test	For	8332	Comments	
\vdash					atu	8260 B	8270	8330	1		
· E	5-1	309.8		3	414	1					4
2	5-	13098		-		Ø	1			BZMore	e othe
4		MAGM					<u> </u>		1,-		
5	P	up1		3	914	3	+	+-			-
6						+-	+	1-			4
7						+-					1
8											
9											
· []	0								<u> </u>		
티	1										
F	12						-				
F	13				+	-					
F	14										

Blank Temperature at time of shipping_____

:	Samp	oles To:	DATA CHEM 960 WEST LI SALT LAKE (TEL. (801	LABOR EVOY D CITY, U	ATORIES RIVE FAH 8412	3 23-2547	2-0	300	C				
		North I 900 Ea Bisma Dates Chang Date Carrie	Dakota State W ast Boulevard rck, ND 58505 Sampled: ge of Custody: ge of Custody: Shipped:	Analysis	mmission	By By By By By By:By:By: By:	North D 200 Eas Bismare /: y: y: 0B 82	akota S st Boul te NB	State V evard 59505	Vater C	ommission -		
ļ	No		Location		No. Bottles	Sample Date		Test	For		Cor	nments	
							8260 B	8270	8330	8332		a.	×
	4	5-	13.98		3	914		X	X	X	R.	12 9	Kra th
1960			MSMS	D		6.41	1/2						Ott
4.0	2				3	914	103						
	_	12	12 An	>	<u> </u>	<u> </u>							- Cae
	<u> </u>	137						- 00				1/100	- L
18	4	1-1	310 4		2	<u> </u>		X			16	XOUD	-
•					<u> </u>								
*1	5	<u> </u>										BUT	
69	6	En 1	-1310	4	2	-		XI			16	CXP	
	7										<u> </u>		
				<u> </u>	<u> </u>		+	+	-				
	8	<u></u>										<u></u>	
	9									+			
							-						
	11												
	12	2											
	18	3					1	1	-			<u></u>	

Blank Temperature at time of shipping_____

DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 2-13/05 TEL. (801 Samples To: 0 Jorth Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard 900 East Boulevard Bismarck, ND 58505 Bismarck, ND 58505 By: Dates Sampled: By: Change of Custody: Date By Change of Custody: Date By: Date Shipped: _ 0 Carrier

Analysis Requested: 8260B 8270 8330 8332

ſ	No	Location	No. Bottles	Sample Date		Test	For		Comments
ł			Dottioo	45	8260 B	8270 C	8330	8332	
10	1	lake loc	3			11	16	K	
Ĩ	2	art	3	9/4	low				
	-			0.10		-17			
71	3	2-13/05		414		-μ			
8	4			<u> </u>					
27	5	8-12197	3	914		10	16	16	
ræ			3	914	40KR				
2	6	Trip Blank			40mL				
/	7								
	8								
	9								
	10								· · · · · · · · · · · · · · · · · · ·
	11								
	12								
•	13								
	14						1		
					<u> </u>	1		<u> </u>	

Blank Temperature at time of shipping_____

Appendix B-2, EPA Method 8270C

September 17, 2001

A SORENSON COMPANY

Mr. William Schuh North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505

Dear Mr. Schuh:

Enclosed is a copy of the analytical report for DCL Set Id #: 01E-0300-04.

Should you have any questions about the enclosed data package, please feel free to contact Mr. Kevin Griffiths, Project Manager, at (801) 266-7700. We would welcome any suggestions that you believe would help us serve you better.

Sincerely,

Heather Taysom **Document Control**

CINCINNATI LABORATORY 4388 Glendale-Milford Road Cincinnati, Ohio 45242-3706 513-733-5336. Fax 513-733-5347

CORPORATE OFFICE SALT LAKE CITY LABORATORY 960 West LeVoy Drive Salt Lake City, Utah 84123-2547 801-266-7700, Fax 801-268-9992 www.datachem.com

NOVATO OFFICE 11 Santa Yorma Court Novato, California 94945-1123 415-897-9471, Fax 415-893-9469

C:\Documents and Settings\taysom\My Documents\Cover Letters\cvrltrs A-Q\NDSWC.doc

Case Narrative

Method: 8270C Analysis: Semivolatiles by GC/MS DCL SOP ref: OE-SW-3510, 0S-SW-8270C DCL Set ID: 01E-0300-04 Client: North Dakota State Water Commission Matrix: Water

General Set Information: There are eleven field samples plus MS/MSD in this batch.

Method Summary : This is a GC/MS method for determination of semivolatile organic compounds in water according to the SW-846 Guidelines. A 1-liter portion of the sample is spiked with surrogates, extracted by separatory funnel and then concentrated to a final volume of 1.0 mL. The resulting extract is analyzed using a Hewlett Packard model 5972 GC/MS system with an electron impact ionization source and a quadrapole mass-filter detector.

Sample Preparation: All samples were prepared in accordance with method 3510. All samples had final extract volumes of 1.0 mL.

Holding Times: All preparation and analysis holding times were met for this sample.

Dilution(s): None.

Method and Sample QC data: All samples met surrogate recovery and internal standards area OC limits.

MS/MSD Analysis: Matrix spiking was performed on sample 01E01996 (5-13098). Most recoveries and reproducibilities were within QC limits.

Instrument QC: The instrument is tuned with 50 ng DFTPP at the beginning of every twelve hour period of analysis. A five point initial calibration curve is analyzed prior to sample analysis. The concentrations of the standards for most analytes are: 100, 75, 50, 25 and 5 μ g/mL. Five analytes are clalibrated from 25 to 125 ug/mL. The initial calibration curve passed all required QC criteria. A calibration verification standard at a concentration of 50 μ g/mL is analyzed at the beginning of sample analysis for each twelve hour period. The calibration verification standard passed all required QC criteria.

Miscellaneous Comments: None.

This repor	t contains
47	pages

9-17-01 001

Reed A. Hendricks

Date

Datapackage Table of Contents

Information pertaining to this datapackage is divided into the four categories listed below. A Case Narrative immediately precedes this Table of Contents and contains pertinent information about this datapackage.

Analytical Results	Yellow
Sample Tracking Documentation	Pink
Analytical Documentation	. Blue
Raw Data	. Green

Analytical Results

North Dakota State Water Commission

Attention: William M. Schuh

900 East Boulevard Bismark, ND 58505

COVER PAGE

ANALYTICAL REPORT FOR North Dakota State Water Commission Phone(701) 328-2739 Fax(701) 328-3696

Form	COVER-V1.3
	09140115030957
Page	1
	G018601G

DCL Report Group..: 01E-0300-04

Date Printed....: 14-SEP-01 15:03

Project Protocol #: P0186001 Client Ref Number.: Not Provided Release Number...: Not Provided

Analysis Method(s): 8270C

Client <u>Sample Name</u>	Laboratory Sample Name	Date Sampled	Date <u>Received</u>
Method Blank LCS LCS Dup 3-SPRING 4-RESERVOIR 6-13101 6-13102 5-13098 5-13098 5-13098 DUP 1	BL-188055-1 QC-188055-1 QD-188055-1 01E01962 01E01963 01E01964 01E01965 01E01966 01E01966MSD 01E01967	NA NA 05-SEP-01 05-SEP-01 05-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01	NA NA NA 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01
1-13103 1-13104 LAKE COE 2-13105	01E01968 01E01969 01E01970 01E01971	04-SEP-01 04-SEP-01 04-SEP-01 04-SEP-01	07-SEP-01 07-SEP-01 07-SEP-01 07-SEP-01
5-13197	01E01972	04-SEP-01	07-SEP-01

9 Date Analyst: Reed A. Hendrig G Dat Reviewer Anderson 110 , 0 Lab Supervisor: Richard W. Wade Dat

003

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE GROUP COMMENTS

Form RLIMS63H-V1.3 0914011503095 Page 2

DCL Report Group..: **01E-0300-04** Date Printed.....: 14-SEP-01 15:03

Client Name...: North Dakota State Water Commission

Release Number...: Not Provided

General Information

The DCL QC Database maintains all numerical figures which are input from the pertinent data source. These data have not been rounded to significant figures nor have they been moisture corrected. Reports generated from the system, however, list data which have been rounded to the number of significant figures requested by the client or deemed appropriate for the method. This may create minor discrepancies between data which appear on the QC Summary Forms (Forms B-G) and those that would be calculated from rounded analytical results. Additionally, if a moisture correction is performed, differences will be observed between the QC data and the surrogate data reported on Form A (or other report forms) and corresponding data reported on QC Summary Forms. In these cases, the Form A will indicate the "Report Basis" as well as the moisture value used for making the correction. Report generation options: X

Result Symbol Definitions

- ND Not Detected above the MDL or IDL (LLD or MDC for radiochemistry).
- ** No result could be reported, see sample comments for details.

Qualifier Symbol Definitions

- U Not Detected above the MDL or IDL (LLD or MDC for radiochemistry). For radiochemistry the nuclide was not identified by the Canberra Nuclear NID program, activity values reported are calculated using the Canberra Nuclear MINACT program.
- B For organic analysis the qualifier indicates that this analyte was found in the method blank.
 For inorganic analysis the qualifier signifies the value is between the IDL and PQL.
 J The qualifier indicates that the value is between the MDL and the PQL. It is also
 - used for indicating an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.

960 West LeVoy Drive / Salt	Lake City, Utah 84123-2547
Phone (801) 266-7700	Web Page: www.datachem.com
FAX (801) 268-9992	E-mail: lab@datachem.com

004

: :

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 09140115030957 Page 3 S018903G

te Printed.....: 14-SEF-01 15:03

ient Name North Dakota State Water Commission	DCL Rep
ient Ref Number: Not Provided	
mpling Site Not Applicable	Matrix.
lease Number: Not Provided	Date Sa
constructions in a sub-on-sector is and	Reporti

te Received..... Not Applicable

L Preparation Group: G018B007 te Prepared.....: 11-SEP-01 00:00 eparation Method...: 3510B .iquot Weight/Volume: 1000 mL st Weight/Volume....: Not Required

Client Sample Name: BL-188055-1 DCL Sample Name...: BL-188055-1 ort Group ...: 01E-0300-04

..... WATER mpled....: Not Applicable ng Units...: ug/L

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary □ Confirmation

nalytical Results

nalvte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 12:45	0.315	ND			1	5
neno]	13-SEP-01 12:45	0.0525	ND		n	1	5
s(2-chloroethvl)ether	13-SEP-01 12:45	0.262	ND			1	5
-Chlorophenol	13-SEP-01 12:45	0.0851	ND			1	5
3-Dichlorobenzene	13-SEP-01 12:45	0.0369	ND			1	5 "
4-Dichlorobenzene	13-SEP-01 12:45	0.0622	ND			1	5
enzyl Alcohol	13-SEP-01 12:45	0.0699	ND			1	5
2-Dichlorobenzene	13-SEP-01 12:45	0.0638	ND	18		1	5
-Methylphenol	13-SEP-01 12:45	0.113	ND			11	5
is(2-chloroisopropyl)ether	13-SEP-01 12:45	0.0967	ND			1	5
-Methylphenol	13-SEP-01 12:45	0.0552	ND			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 12:45	0.109	ND			1	5
exachloroethane	13-SEP-01 12:45	0.0773	ND			1	5
itrobenzene	13-SEP-01 12:45	0.0924	ND			1	5
sophorone	13-SEP-01 12:45	0.114	ND		p. 519 - 5	1	5
-Nitrophenol	13-SEP-01 12:45	0.0830	ND			1	5
4-Dimethylphenol	13-SEP-01 12:45	0.285	ND			1	5
enzoic acid	13-SEP-01 12:45	4.37	ND			1	25
is(2-Chloroethoxy)methane	13-SEP-01 12:45	0.0508	ND			1	5
.4-Dichlorophenol	13-SEP-01 12:45	0.144	ND			1	5
.2.4-Trichlorobenzene	13-SEP-01 12:45	0.0492	ND			1	5
aphthalene	13-SEP-01 12:45	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 12:45	0.155	ND		1	1	5
exachlorobutadiene	13-SEP-01 12:45	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 12:45	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 12:45	0.0687	ND	<u> </u>		1	5
exachlorocyclopentadiene	13-SEP-01 12:45	0.0864	ND	ļ		1	5
,4,6-Trichlorophenol	13-SEP-01 12:45	0.0925	ND			1	5
,4,5-Trichlorophenol	13-SEP-01 12:45	0.112	ND				5
-Chloronaphthalene	13-SEP-01 12:45	0.0769	ND			<u> </u>	5
-Nitroaniline	13-SEP-01 12:45	0.140	ND			1	5
imethylphthalate	13-SEP-01 12:45	0.0766	ND			1 1	5
,6-Dinitrotoluene	13-SEP-01 12:45	0.152	ND				<u> </u>
cenaphthylene	13-SEP-01 12:45	0.0467	ND			+	
-Nitroaniline	13-SEP-01 12:45	0.313	ND				<u>></u>
cenaphthene	13-SEP-01 12:45	0.0680	ND			$\frac{1}{1}$	2
,4-Dinitrophenol	13-SEP-01 12:45	1.24	ND			+ +	· 25
-Nitrophenol	13-SEP-01 12:45	0.715		<u> </u>	<u> </u>	╉╼╪╼┶╤	<u>20</u>
<u>ibenzofuran</u>	13-SEP-01 12:45	0.0519	ND		+	1 1	5
,4-Dinitrotoluene	13-SEP-01 12:45	0.0981			+	+ +	5
iethylphthalate	13-SEP-01 12:45	0.140		1	1		<u> </u>

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 4 S018903G

Date Printed..... : 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission DCL Report Group..: 01E-0300-04

DCL Sample Name...: BL-188055-1

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
A Chlorophonyl Phonyl Ether	13-SEP-01 12:45	0.0478	ND			1	5
g-chiorophenyi Phenyi Acher	13-SEP-01 12:45	0.0737	ND			1	5
A Nitroppilipo	13-SEP-01 12.45	0.341	ND			1	5
4-Nitroaniiine	13-SEP-01 12:45	1.48	ND			1	25
A, 0-Dinitro-2-Methyiphenoi	13-SEP-01 12:45	0.0865	ND			1	5
A Promonhonyl Phenyl Ether	13-SEP-01 12:45	0.108	ND			1	5
4-Bromophenyi rhenyi Bener	13-SEP-01 12:45	0.151	ND .	5 545 54		1	5
Pontachlorophenol	13-SEP-01 12:45	1.03	ND			1	25
Phonanthrana	13-SEP-01 12:45	0.0582	ND			1	5
Anthracono	13-SEP-01 12:45	0.0880	ND			1	5
Carbazole	13-SEP-01 12:45	0.0726	ND			1	5
Di-n-butylohthalate	13-SEP-01 12:45	0.347	ND			1	5
Fluoranthene	13-SEP-01 12:45	0.0723	ND			1	5
Pyrene	13-SEP-01 12:45	0.0836	ND	18.		1	5
Butylbenzylphthalate	13-SEP-01 12:45	0.204	ND			1	5
3.3'-Dichlorobenzidine	13-SEP-01 12:45	0.372	ND			1 1	5
Benzo(a) anthracene	13-SEP-01 12:45	0.0750	ND			1	5
Chrysene	13-SEP-01 12:45	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 12:45	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 12:45	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 12:45	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 12:45	0.132	ND			1.	5
Benzo(a)pyrene	13-SEP-01 12:45	0.0772	ND			1 1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 12:45	0.318	ND			1 1	5
Dibenz(a,h)Anthracene	13-SEP-01 12:45	0.287	ND			1 1	5
Benzo(g,h,i)perylene	13-SEP-01 12:45	0.276	ND		L	1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Polycyclic hydrocarbon(18.36)	13-SEP-01 12:45	16.		J	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	49.0	50.0	98.0
2-Fluorobiphenvl	41.6	50.0	83.3
2-Fluorophenol	26.1	50.0	52.1
Nitrobenzene-d5	43.3	50.0	86.7
Phenol-d5	19.2	50.0	38.3
Terphenyl-d14	47.1	50.0	94.2

8.1

SAMPLE ANALYSIS DATA SHEET

ite Printed.....: 14-SEP-01 15:03

			-
lient Name North Da	kota State W	Water Commission	DCL Report Grou
lient Ref Number: Not Prov	ided		
ampling Site Not App.	icable		Matrix
elease Number: Not Prov	ided		Date Sampled
			Reporting Units

ate Received..... Not Applicable

CL Preparation Group: G018B007 ate Prepared.....: 11-SEP-01 00:00 reparation Method...: 3510B liquot Weight/Volume: 1000 mL et Weight/Volume....: Not Required

Clie	ent S	ample	Name	:	QC-188055-1
DCL	Samp	le Na	me	:	QC-188055-1
DCL	Repo	rt Gr	oup	:	01E-0300-04

...: WATER ...: Not Applicable ...: ug/L

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary □ Confirmation

nalytical Results

nalvte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
ridine	13-SEP-01 13:16	0.315	19.			1	5
nenol	13-SEP-01 13:16	0.0525	18.			1	5
is(2-chloroethyl)ether	13-SEP-01 13:16	0.262	38.			1	5
-Chlorophenol	13-SEP-01 13:16	0.0851	45.			1	5
3-Dichlorobenzene	13-SEP-01 13:16	0.0369	36.			1	5
4-Dichlorobenzene	13-SEP-01 13:16	0.0622	37.			1	5
enzyl Alcohol	13-SEP-01 13:16	0.0699	44.			1	5
2-Dichlorobenzene	13-SEP-01 13:16	0.0638	42.			1	5
-Methylphenol	13-SEP-01 13:16	0.113	34.			1	5
is(2-chloroisopropyl)ether	13-SEP-01 13:16	0.0967	39.			1	5
-Methylphenol	13-SEP-01 13:16	0.0552	33.			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 13:16	0.109	40.			1	5
exachloroethane	13-SEP-01 13:16	0.0773	34.			1	5
itrobenzene	13-SEP-01 13:16	0.0924	45.	-		1	5
sophorone	13-SEP-01 13:16	0.114	46.			1	5
-Nitrophenol	13-SEP-01 13:16	0.0830	51.			1	5
4-Dimethylphenol	13-SEP-01 13:16	0.285	41.			1	5
enzoic acid	13-SEP-01 13:16	4.37	11.		J	1	25
is(2-Chloroethoxy)methane	13-SEP-01 13:16	0.0508	46.			1	5
4-Dichlorophenol	13-SEP-01 13:16	0.144	49.				5
.2.4-Trichlorobenzene	13-SEP-01 13:16	0.0492	44.			1	5
aphthalene	13-SEP-01 13:16	0.0532	40.			1	5
-Chloroaniline	13-SEP-01 13:16	0.155	45.			1	5
exachlorobutadiene	13-SEP-01 13:16	0.112	41.			1	5
-Chloro-3-methylphenol	13-SEP-01 13:16	0.0794	56.			1	5
-Methylnaphthalene	13-SEP-01 13:16	0.0687	49.			1 1	5
exachlorocyclopentadiene	13-SEP-01 13:16	0.0864	33.			1	5
4,6-Trichlorophenol	13-SEP-01 13:16	0.0925	49.		ļ	1	5
4,5-Trichlorophenol	13-SEP-01 13:16	0.112	47.		ļ	1	5
-Chloronaphthalene	13-SEP-01 13:16	0.0769	45.		I	1	5
-Nitroaniline	13-SEP-01 13:16	0.140	54.	ļ		1	5
imethylphthalate	13-SEP-01 13:16	0.0766	52.			1	5
,6-Dinitrotoluene	13-SEP-01 13:16	0.152	54.	·		1 1	5
cenaphthylene	13-SEP-01 13:16	0.0467	47.			1	5
-Nitroaniline	13-SEP-01 13:16	0.313	60.		ļ	1	5
cenaphthene	13-SEP-01 13:16	0.0680	50.			<u>↓ </u>	5
,4-Dinitrophenol	13-SEP-01 13:16	1.24	54.		<u> </u>		25
-Nitrophenol	13-SEP-01 13:16	0.715	23.	ļ	1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>25</u>
ibenzofuran	13-SEP-01 13:16	0.0519	48.	l		<u></u>	<u> </u>
,4-Dinitrotoluene	13-SEP-01 13:16	0.0981	53.			1 1	<u> </u>
iethylphthalate	13-SEP-01 13:16	0.140	55.		1		2

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 6 5018903H

Date Printed.....: 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission DCL Sample Name...: QC-188055-1 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 13:16	0.0478	54.			1	5
Fluorene	13-SEP-01 13:16	0.0737	51.			1	5
4-Nitroaniline	13-SEP-01 13:16	0.341	46.			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 13:16	1.48	55.			1	25
N-nitrosodiphenylamine	13-SEP-01 13:16	0.0865	52.			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 13:16	0.108	47.			1	5
Hexachlorobenzene	13-SEP-01 13:16	0.151	50.			1	5
Pentachlorophenol	13-SEP-01 13:16	1.03	61.			1	25
Phenanthrene	13-SEP-01 13:16	0.0582	53.			1	5
Anthracene	13-SEP-01 13:16	0.0880	55.			1	5
Carbazole	13-SEP-01 13:16	0.0726	63.			1	5
Di-n-butylphthalate	13-SEP-01 13:16	0.347	54.			1	5
Fluoranthene	13-SEP-01 13:16	0.0723	55.			1	5
Pyrene	13-SEP-01 13:16	0.0836	58.			1	5
Butylbenzylphthalate	13-SEP-01 13:16	0.204	58.			1	5
3,3'-Dichlorobenzidine	13-SEP-01 13:16	0.372	48.			1	5
Benzo(a)anthracene	13-SEP-01 13:16	0.0750	52.			1	5
Chrysene	13-SEP-01 13:16	0.0760	60.			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 13:16	2.49	64.			1	5
Di-n-octylphthalate	13-SEP-01 13:16	0.126	68.			1	5
Benzo(b)fluoranthene	13-SEP-01 13:16	0.105	49.			1	5
Benzo(k)fluoranthene	13-SEP-01 13:16	0.132	60.		201 M 100 100	1	5
Benzo(a)pyrene	13-SEP-01 13:16	0.0772	53.			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 13:16	0.318	53.			1	5
Dibenz(a,h)Anthracene	13-SEP-01 13:16	0.287	52.			1	5
Benzo(g,h,i)perylene	13-SEP-01 13:16	0.276	53.	Part Part and		1	5

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	59.1	50.0	118.
2-Fluorobiphenyl	44.0	50.0	88.1
2-Fluorophenol	23.4	50.0	46.7
Nitrobenzene-d5	43.3	50.0	86.6
Phenol-d5	16.8	50.0	33.6
Terphenyl-d14	58.4	50.0	117.

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 09140115030957 Page 7 5018903J

ate Printed.....: 14-SEP-01 15:03

lient Ref Number....: Not Provided

elease Number : Not Provided

CL Preparation Group: G018B007

'reparation Method...: 3510B

liquot Weight/Volume: 1000 mL

ate Received..... Not Applicable

)ate Prepared..... 11-SEP-01 00:00

let Weight/Volume....: Not Required

lient Name..... North Dakota State Water Commission

Client Sample Name: QD-188055-1 DCL Sample Name...: QD-188055-1 DCL Report Group..: 01E-0300-04

Matrix..... WATER Date Sampled.....: Not Applicable Reporting Units...: ug/L

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Inalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
Pyridine	13-SEP-01 13:46	0.315	23.			1	5
henol	13-SEP-01 13:46	0.0525	19.			1	5
is(2-chloroethvl)ether	13-SEP-01 13:46	0.262	43.			1	5
-Chlorophenol	13-SEP-01 13:46	0.0851	42.			1	5
.3-Dichlorobenzene	13-SEP-01 13:46	0.0369	36.			1	5
4-Dichlorobenzene	13-SEP-01 13:46	0.0622	36.			1	5
Renzyl Alcohol	13-SEP-01 13:46	0.0699	45.			1	5
2-Dichlorobenzene	13-SEP-01 13:46	0.0638	38.			1	5
P-Methylphenol	13-SEP-01 13:46	0.113	39.			1	5
Ris(2-chloroisopropyl)ether	13-SEP-01 13:46	0.0967	38.			1	5
-Methylphenol	13-SEP-01 13:46	0.0552	34.			1	5
J-Nitrosodi-n-propyl amine	13-SEP-01 13:46	0.109	43.			1	5
fexachloroethane	13-SEP-01 13:46	0.0773	31.			1	5
litrobenzene	13-SEP-01 13:46	0.0924	48.			1	5
sophorone	13-SEP-01 13:46	0.114	50.			1	5
-Nitrophenol	13-SEP-01 13:46	0.0830	51.			1	5
.4-Dimethylphenol	13-SEP-01 13:46	0.285	43.			1	5
Senzoic acid	13-SEP-01 13:46	4.37	11.		J	1	25
bis(2-Chloroethoxy)methane	13-SEP-01 13:46	0.0508	50.			1	5
.4-Dichlorophenol	13-SEP-01 13:46	0.144	50.			1	5
.2.4-Trichlorobenzene	13-SEP-01 13:46	0.0492	43.			1	5
Japhthalene	13-SEP-01 13:46	0.0532	39.			1	5
l-Chloroaniline	13-SEP-01 13:46	0.155	48.			11	5
lexachlorobutadiene	13-SEP-01 13:46	0.112	41.			1	5
I-Chloro-3-methylphenol	13-SEP-01 13:46	0.0794	55.			1	5
-Methylnaphthalene	13-SEP-01 13:46	0.0687	48.			1	5
[exachlorocyclopentadiene	13-SEP-01 13:46	0.0864	32.		L	1	5
2,4,6-Trichlorophenol	13-SEP-01 13:46	0.0925	47.			1	5
4,5-Trichlorophenol	13-SEP-01 13:46	0.112	46.			1	5
2-Chloronaphthalene	13-SEP-01 13:46	0.0769	46.	-	L	1	5
2-Nitroaniline	13-SEP-01 13:46	0.140	53.			1	5
)imethylphthalate	13-SEP-01 13:46	0.0766	52.			1	5
2,6-Dinitrotoluene	13-SEP-01 13:46	0.152	53.			1	5
Acenaphthylene	13-SEP-01 13:46	0.0467	48.			1	5
3-Nitroaniline	13-SEP-01 13:46	0.313	56.			1	5
Acenaphthene	13-SEP-01 13:46	0.0680	49.			1	5
2,4-Dinitrophenol	13-SEP-01 13:46	1.24	54.		ļ	1	1 25
1-Nitrophenol	13-SEP-01 13:46	0.715	21.		J	1	25
Dibenzofuran	13-SEP-01 13:46	0.0519	50.			1	5
2,4-Dinitrotoluene	13-SEP-01 13:46	0.0981	55.			$\frac{1}{1}$	5
Diethylphthalate	13-SEP-01 13:46	0.140	57.	<u> </u>		11	5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.: 0914011503095 Page 8

S018903J

Date Printed.....: 14-SEP-01 15:03 Client Name...... North Dakota State Water Commission DCL Sample Name...: QD-188055-1 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 13:46	0.0478	55.			1	5
Fluorene	13-SEP-01 13:46	0.0737	55.			1	5_
4-Nitroaniline	13-SEP-01 13:46	0.341	49.			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 13:46	1.48	53.			1	25
N-nitrosodiphenylamine	13-SEP-01 13:46	0.0865	48.			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 13:46	0.108	48.			1	5
Hexachlorobenzene	13-SEP-01 13:46	0.151	49.			1	5
Pentachlorophenol	13-SEP-01 13:46	1.03	59.				25
Phenanthrene	13-SEP-01 13:46	0.0582	54.		NARONE INVIL	1	5
Anthracene	13-SEP-01 13:46	0.0880	55.			1	5
Carbazole	13-SEP-01 13:46	0.0726	60.			1	5
Di-n-butylphthalate	13-SEP-01 13:46	0.347	56.			1	5
Fluoranthene	13-SEP-01 13:46	0.0723	54.			1	5
Pyrene	13-SEP-01 13:46	0.0836	53.			1	5
Butylbenzylphthalate	13-SEP-01 13:46	0.204	54.			1	5
3,3'-Dichlorobenzidine	13-SEP-01 13:46	0.372	51.			1	5
Benzo(a)anthracene	13-SEP-01 13:46	0.0750	50.			1	5
Chrysene	13-SEP-01 13:46	0.0760	57.			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 13:46	2.49	57.			1	5
Di-n-octylphthalate	13-SEP-01 13:46	0.126	55.			1	5
Benzo(b)fluoranthene	13-SEP-01 13:46	0.105	49.	2		1	5
Benzo(k)fluoranthene	13-SEP-01 13:46	0.132	56.			1	5
Benzo(a)pyrene	13-SEP-01 13:46	0.0772	53.			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 13:46	0.318	52.			1	5
Dibenz(a,h)Anthracene	13-SEP-01 13:46	0.287	51.			1	5
Benzo(g,h,i)perylene	13-SEP-01 13:46	0.276	54.			1	5

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	57.7	50.0	115.
2-Fluorobiphenyl	45.3	50.0	90.6
2-Fluorophenol	24.2	50.0	48.4
Nitrobenzene-d5	41.9	50.0	83.9
Phenol-d5	17.9	50.0	35.7
Terphenyl-d14	53.6	50.0	107.

010

. .

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 09140115030957 Page 9 S01860C3

Date Printed....: 14-SEP-01 15:03

Client Name: North Dakota State Water Commission	DCL Sample Name: 01E01962 DCL Report Group: 01E-0300-04
Client Ref Number: Not Provided	and an formula of the
Sampling Site Not Provided	Matrix WATER
Release Number: Not Provided	Date Sampled: 05-SEP-01 00:00
	Reporting Units: ug/L
Date Received: 07-SEP-01 00:00	Report Basis: X As Received Dried

DCL Preparation Group: G018B007 Date Prepared..... 11-SEP-01 00:00 Preparation Method...: 3510B Aliquot Weight/Volume: 1000 mL Net Weight/Volume....: Not Required

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Client Sample Name: 3-SPRING

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
Pyridine	13-SEP-01 14:17	0.315	ND			1	5
Phenol	13-SEP-01 14:17	0.0525	ND			1	5
Bis(2-chloroethyl)ether	13-SEP-01 14:17	0.262	ND			1	5
2-Chlorophenol	13-SEP-01 14:17	0.0851	ND			1	5
1,3-Dichlorobenzene	13-SEP-01 14:17	0.0369	ND			1	5
l,4-Dichlorobenzene	13-SEP-01 14:17	0.0622	ND			1	5
Benzyl Alcohol	13-SEP-01 14:17	0.0699	ND			1	5
l,2-Dichlorobenzene	13-SEP-01 14:17	0.0638	ND			1	5
2-Methylphenol	13-SEP-01 14:17	0.113	ND			1	5
Bis(2-chloroisopropyl)ether	13-SEP-01 14:17	0.0967	ND			1	5
l-Methylphenol	13-SEP-01 14:17	0.0552	ND			1	5
I-Nitrosodi-n-propyl amine	13-SEP-01 14:17	0.109	ND			1	5
lexachloroethane	13-SEP-01 14:17	0.0773	ND			1	5
Jitrobenzene	13-SEP-01 14:17	0.0924	ND			1	5
Isophorone	13-SEP-01 14:17	0.114	ND		100-10-00 - 100 ⁻⁰	1	5
2-Nitrophenol	13-SEP-01 14:17	0.0830	ND			1	5
2,4-Dimethylphenol	13-SEP-01 14:17	0.285	ND			1	5
Benzoic acid	13-SEP-01 14:17	4.37	ND			1	25
bis(2-Chloroethoxy)methane	13-SEP-01 14:17	0.0508	ND			1	5
2,4-Dichlorophenol	13-SEP-01 14:17	0.144	ND		31	1	5
.,2,4-Trichlorobenzene	13-SEP-01 14:17	0.0492	ND			1	5
Japhthalene	13-SEP-01 14:17	0.0532	ND			1	5
l-Chloroaniline	13-SEP-01 14:17	0.155	ND			1	5
Iexachlorobutadiene	13-SEP-01 14:17	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 14:17	0.0794	ND		1	1	5
-Methylnaphthalene	13-SEP-01 14:17	0.0687	ND		-	1	5
Iexachlorocyclopentadiene	13-SEP-01 14:17	0.0864	ND			1	5
4,6-Trichlorophenol	13-SEP-01 14:17	0.0925	ND	1 12 ALCONOM - 1		1	5
4,5-Trichlorophenol	13-SEP-01 14:17	0.112	ND		inter tente secolar	1	5
-Chloronaphthalene	13-SEP-01 14:17	0.0769	ND			1	5
-Nitroaniline	13-SEP-01 14:17	0.140	ND			1	5
imethylphthalate	13-SEP-01 14:17	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 14:17	0.152	ND			1	5
cenaphthylene	13-SEP-01 14:17	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 14:17	0.313	ND			1	5
cenaphthene	13-SEP-01 14:17	0.0680	ND			1	5
,4-Dinitrophenol	13-SEP-01 14:17	1.24	ND			1	25
-Nitrophenol	13-SEP-01 14:17	0.715	ND			1	25
ibenzofuran	13-SEP-01 14:17	0.0519	ND			1	5
,4-Dinitrotoluene	13-SEP-01 14:17	0.0981	ND			1	5
iethylphthalate	13-SEP-01 14:17	0.140	ND			1	. 5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

011

.

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.1 0914011503095 Page 10 S01860C3

Date Printed..... 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01962 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 14:17	0.0478	ND			1	5
Fluorene	13-SEP-01 14:17	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 14:17	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 14:17	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 14:17	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 14:17	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 14:17	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 14:17	1.03	ND			1	25
Phenanthrene	13-SEP-01 14:17	0.0582	ND			1	5
Anthracene	13-SEP-01 14:17	0.0880	ND			1	5
Carbazole	13-SEP-01 14:17	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 14:17	0.347	ND			1	5
Fluoranthene	13-SEP-01 14:17	0.0723	ND			1	5
Pyrene	13-SEP-01 14:17	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 14:17	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 14:17	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 14:17	0.0750	ND			1	5
Chrysene	13-SEP-01 14:17	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 14:17	2.49	ND			11	5
Di-n-octylphthalate	13-SEP-01 14:17	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 14:17	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 14:17	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 14:17	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 14:17	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 14:17	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 14:17	0.276	ND			1	5

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	56.0	50.0	112.
2-Fluorobiphenyl	44.0	50.0	88.1
2-Fluorophenol	26.4	50.0	52.8
Nitrobenzene-d5	44.2	50.0	88.4
Phenol-d5	21.0	50.0	42.1
Terphenyl-d14	51.9	50.0	104.

 960 West LeVoy Drive / Salt Lake City, Utah 84123-2547

 Phone (801) 266-7700
 Web Page: www.datachem.com

 FAX (801) 268-9992
 E-mail: lab@datachem.com

FODM A (TT JOT T)

SINC Benzoic acid SAMPLI

)ate Printed....: 14-SEP-01 15:03

lient Name.....: North Dakota State Wai :lient Ref Number...: Not Provided Sampling Site Not Provided elease Number..... Not Provided

)ate Received.....: 07-SEP-01 00:00

)CL Preparation Group: G018B007)ate Prepared.....: 11-SEP-01 00:00 reparation Method...: 3510B liquot Weight/Volume: 1000 mL Iet Weight/Volume....: Not Required

19 Pear	A	/	501
Al	ficri	mple Name:	4-RESERVOIR
noria	Black	a Name:	01E01963
	10100	t Group:	01E-0300-04

Matrix....: WATER Date Sampled....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary [Confirmation

Inalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 14:48	0.315	ND			1	5
'henol	13-SEP-01 14:48	0.0525	ND			1	5
is(2-chloroethyl)ether	13-SEP-01 14:48	0.262	ND			1	5
-Chlorophenol	13-SEP-01 14:48	0.0851	ND			1	5
.,3-Dichlorobenzene	13-SEP-01 14:48	0.0369	ND			1	5
,4-Dichlorobenzene	13-SEP-01 14:48	0.0622	ND			1	5
lenzyl Alcohol	13-SEP-01 14:48	0.0699	ND			1	5
.,2-Dichlorobenzene	13-SEP-01 14:48	0.0638	ND			1	5
-Methylphenol	13-SEP-01 14:48	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 14:48	0.0967	ND			1	5
-Methylphenol	13-SEP-01 14:48	0.0552	ND		-	1	5
I-Nitrosodi-n-propyl amine	13-SEP-01 14:48	0.109	ND			1	5
lexachloroethane	13-SEP-01 14:48	0.0773	ND		2	1	5
litrobenzene	13-SEP-01 14:48	0.0924	ND			1	5
sophorone	13-SEP-01 14:48	0.114	ND			1	5
-Nitrophenol	13-SEP-01 14:48	0.0830	ND			1	5
4-Dimethylphenol	13-SEP-01 14:48	0.285	ND			1	5
Senzoic acid	13-SEP-01 14:48	4.37	5.7		JB	1	25
ois(2-Chloroethoxy)methane	13-SEP-01 14:48	0.0508	ND			1	5
4-Dichlorophenol	13-SEP-01 14:48	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 14:48	0.0492	ND			1	5
Japhthalene	13-SEP-01 14:48	0.0532	ND		3	1	5
-Chloroaniline	13-SEP-01 14:48	0.155	ND			1	5
lexachlorobutadiene	13-SEP-01 14:48	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 14:48	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 14:48	0.0687	ND			1	5
lexachlorocyclopentadiene	13-SEP-01 14:48	0.0864	ND			1	5
,4,6-Trichlorophenol	13-SEP-01 14:48	0.0925	ND			1	5
.,4,5-Trichlorophenol	13-SEP-01 14:48	0.112	ND			1	5
-Chloronaphthalene	13-SEP-01 14:48	0.0769	ND			1	5
-Nitroaniline	13-SEP-01 14:48	0.140	ND			1	5
)imethylphthalate	13-SEP-01 14:48	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 14:48	0.152	ND			1	5
cenaphthylene	13-SEP-01 14:48	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 14:48	0.313	ND			1	5
cenaphthene	13-SEP-01 14:48	0.0680	ND			1	5
,4-Dinitrophenol	13-SEP-01 14:48	1.24	ND			1	25
-Nitrophenol	13-SEP-01 14:48	0.715	ND			1	
libenzofuran	13-SEP-01 14:48	0.0519	ND			1 .	· 5
,4-Dinitrotoluene	13-SEP-01 14:48	0.0981	ND			1	5
iethylphthalate	13-SEP-01 14:48	0.140	ND				5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 14-SEP-01 15:35 Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01963 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 14:48	0.0478	ND			1	5
Fluorene	13-SEP-01 14:48	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 14:48	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 14:48	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 14:48	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 14:48	0.108	ND		11	1	5
Hexachlorobenzene	13-SEP-01 14:48	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 14:48	1.03	ND			1	25
Phenanthrene	13-SEP-01 14:48	0.0582	ND			1	5
Anthracene	13-SEP-01 14:48	0.0880	ND			1	5
Carbazole	13-SEP-01 14:48	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 14:48	0.347	ND			1	5
Fluoranthene	13-SEP-01 14:48	0.0723	ND		0	1	5
Pyrene	13-SEP-01 14:48	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 14:48	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 14:48	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 14:48	0.0750	ND			1	5
Chrysene	13-SEP-01 14:48	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 14:48	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 14:48	0.126	ND	0	50 - 50465CV	1	5
Benzo(b)fluoranthene	13-SEP-01 14:48	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 14:48	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 14:48	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 14:48	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 14:48	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 14:48	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown ALkane(4.59)	13-SEP-01 14:48	5.4		J	1
Unknown Acid(13.51)	13-SEP-01 14:48	4.4		J	
Unsaturated Hydrocarbon(16.21)	13-SEP-01 14:48	5.6		J	1
Polycyclic hydrocarbon(18.37)	13-SEP-01 14:48	19.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	49.3	50.0	98.7
2-Fluorobiphenyl	40.0	50.0	80.0
2-Fluorophenol	21.6	50.0	43.1
Nitrobenzene-d5	44.2	50.0	88.4
Phenol-d5	19.4	50.0	38.8
Terphenyl-d14	50.2	50.0	100.

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

)ate Printed.....: 14-SEP-01 15:03

		1	JCL Sample Name:
:lient Name: North	1 Dakota State V	Water Commission I	OCL Report Group:
:lient Ref Number: Not H	rovided		
Sampling Site Not H	rovided	1	fatrix
elease Number: Not H	rovided	I	Date Sampled:
		I	Reporting Units:
Date Received 07-SH	SP-01 00:00	I	Report Basis

)CL Preparation Group: G018E007)ate Prepared.....: 11-SEP-01 00:00 'reparation Method...: 3510E liquot Weight/Volume: 1000 mL Iet Weight/Volume....: Not Required

Client Sample Name: 6-13101 DCL Sample Na 01E01964 01E-0300-04

WATER 05-SEP-01 00:00 ug/L X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ... : GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary [Confirmation

inalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 15:19	0.315	ND			1	5
'henol	13-SEP-01 15:19	0.0525	ND		n kolonio de la defen	1	5
is(2-chloroethyl)ether	13-SEP-01 15:19	0.262	ND			1	5
:-Chlorophenol	13-SEP-01 15:19	0.0851	ND			1	5
.,3-Dichlorobenzene	13-SEP-01 15:19	0.0369	ND			1	5
.4-Dichlorobenzene	13-SEP-01 15:19	0.0622	ND			1	5
Senzyl Alcohol	13-SEP-01 15:19	0.0699	ND			1	5
,2-Dichlorobenzene	13-SEP-01 15:19	0.0638	ND			1	5
-Methylphenol	13-SEP-01 15:19	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 15:19	0.0967	ND			1	5
-Methylphenol	13-SEP-01 15:19	0.0552	ND			1	5
I-Nitrosodi-n-propyl amine	13-SEP-01 15:19	0.109	ND			1	5
Iexachloroethane	13-SEP-01 15:19	0.0773	ND			1	5
litrobenzene	13-SEP-01 15:19	0.0924	ND			1	5
sophorone	13-SEP-01 15:19	0.114	ND			1	5
-Nitrophenol	13-SEP-01 15:19	0.0830	ND			1	5
4-Dimethylphenol	13-SEP-01 15:19	0.285	ND			1	5
Senzoic acid	13-SEP-01 15:19	4.37	ND			1	25
bis(2-Chloroethoxy)methane	13-SEP-01 15:19	0.0508	ND			1	5
4-Dichlorophenol	13-SEP-01 15:19	0.144	ND			1	5
.,2,4-Trichlorobenzene	13-SEP-01 15:19	0.0492	ND			1	5
Japhthalene	13-SEP-01 15:19	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 15:19	0.155	ND			1	5
Iexachlorobutadiene	13-SEP-01 15:19	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 15:19	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 15:19	0.0687	ND			1	5
Iexachlorocyclopentadiene	13-SEP-01 15:19	0.0864	ND			1	5
4,6-Trichlorophenol	13-SEP-01 15:19	0.0925	ND			1	5
4,5-Trichlorophenol	13-SEP-01 15:19	0.112	ND			1	5
-Chloronaphthalene	13-SEP-01 15:19	0.0769	ND			1	5
-Nitroaniline	13-SEP-01 15:19	0.140	ND			1	5
)imethylphthalate	13-SEP-01 15:19	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 15:19	0.152	ND			1	5
cenaphthylene	13-SEP-01 15:19	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 15:19	0.313	ND			1	5
cenaphthene	13-SEP-01 15:19	0.0680	ND			1	5
,4-Dinitrophenol	13-SEP-01 15:19	1.24	ND			1	25
-Nitrophenol	13-SEP-01 15:19	0.715	ND			1 * *	25
)ibenzofuran	13-SEP-01 15:19	0.0519	ND			1	5
,4-Dinitrotoluene	13-SEP-01 15:19	0.0981	ND			1	5
)iethylphthalate	13-SEP-01 15:19	0.140	ND			<u> </u>	5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 14 s01860c5

Date Printed.....: 14-SEP-01 15:03 Client Name......: North Dakota State Water Commission DCL Sample Name...: 01E01964 DCL Report Group..: 01E-0300-04

Analytical Results

Analytto	Date Analyzed	MDI.	Result	Comment	Oual.	Dilution	CRDL
Analyce	12 CED 01 1E-10	0 0479	NID			1	5
4-Chiorophenyi Phenyi Ether	12 CED 01 15:19	0.04/0	ND	,	100 - 100 - 100 100 - 100		<u> </u>
Fluorene	13-SEP-01 15:19	0.0/3/	ND	·····		1	5
4-Nitroaniline	13-SEP-01 15:19	0.341		a i interiori		1	2
4,6-Dinitro-2-Methylphenol	13-SEP-01 15:19	1.48	ND				25
N-nitrosodiphenylamine	13-SEP-01 15:19	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 15:19	0.108	ND				5
Hexachlorobenzene	13-SEP-01 15:19	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 15:19	1.03	ND				25
Phenanthrene	13-SEP-01 15:19	0.0582	ND			1	5
Anthracene	13-SEP-01 15:19	0.0880	ND			1	5
Carbazole	13-SEP-01 15:19	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 15:19	0.347	ND		La L		5
Fluoranthene	13-SEP-01 15:19	0.0723	ND			1 1	5
Pyrene	13-SEP-01 15:19	0.0836	ND				5
Butylbenzylphthalate	13-SEP-01 15:19	0.204	ND			11	5
3,3'-Dichlorobenzidine	13-SEP-01 15:19	0.372	ND				5
Benzo(a)anthracene	13-SEP-01 15:19	0.0750	ND				5
Chrysene	13-SEP-01 15:19	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 15:19	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 15:19	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 15:19	0.105	ND		R	1	5
Benzo(k)fluoranthene	13-SEP-01 15:19	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 15:19	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 15:19	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 15:19	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 15:19	0.276	ND				5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Polycyclic hydrocarbon(18.36)	13-SEP-01 15:19	16.	[JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	60.6	50.0	121.
2-Fluorobiphenyl	42.3	50.0	84.7
2-Fluorophenol	29.1	50.0	58.2
Nitrobenzene-d5	43.6	50.0	87,2
Phenol-d5	21.2	50.0	42.3
Terphenyl-d14	41.2	50.0	82.4

SAMPLE ANALYSIS DATA SHEET

ate Printed....: 14-SEP-01 15:03

lient Ref Number....: Not Provided ampling Site.....: Not Provided

elease Number....: Not Provided

CL Preparation Group: G018B007

reparation Method...: 3510B

liquot Weight/Volume: 1000 mL

ate Received....: 07-SEP-01 00:00

ate Prepared....: 11-SEP-01 00:00

et Weight/Volume....: Not Required

lient Name.....: North Dakota State Water Commission

Client Sample Name: 6-13102 DCL Sample Name...: 01E01965 DCL Report Group..: 01E-0300-04

Matrix.....: WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary

. . . .

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
yridine	13-SEP-01 15:49	0.315	ND			1	5
henol	13-SEP-01 15:49	0.0525	ND			1	5
is(2-chloroethyl)ether	13-SEP-01 15:49	0.262	ND			1	5
-Chlorophenol	13-SEP-01 15:49	0.0851	ND			1	5
,3-Dichlorobenzene	13-SEP-01 15:49	0.0369	ND			1	5
,4-Dichlorobenzene	13-SEP-01 15:49	0.0622	ND			1	5
enzyl Alcohol	13-SEP-01 15:49	0.0699	ND		August 1781	1	5
,2-Dichlorobenzene	13-SEP-01 15:49	0.0638	ND			1	5
-Methylphenol	13-SEP-01 15:49	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 15:49	0.0967	ND			1	5
-Methylphenol	13-SEP-01 15:49	0.0552	ND			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 15:49	0.109	ND			1	5
exachloroethane	13-SEP-01 15:49	0.0773	ND			1	5
itrobenzene	13-SEP-01 15:49	0.0924	ND			1	5
sophorone	13-SEP-01 15:49	0.114	ND			1	5
-Nitrophenol	13-SEP-01 15:49	0.0830	ND			1	5
,4-Dimethylphenol	13-SEP-01 15:49	0.285	ND			1	5
enzoic acid	13-SEP-01 15:49	4.37	ND			1	25
is(2-Chloroethoxy)methane	13-SEP-01 15:49	0.0508	ND			1	5
,4-Dichlorophenol	13-SEP-01 15:49	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 15:49	0.0492	ND			1	5
aphthalene	13-SEP-01 15:49	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 15:49	0.155	ND			1	5
exachlorobutadiene	13-SEP-01 15:49	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 15:49	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 15:49	0.0687	ND			1	5
exachlorocyclopentadiene	13-SEP-01 15:49	0.0864	ND			1	5
,4,6-Trichlorophenol	13-SEP-01 15:49	0.0925	ND		A 100 100 111	1	5
,4,5-Trichlorophenol	13-SEP-01 15:49	0.112	ND		1.1	1	5
-Chloronaphthalene	13-SEP-01 15:49	0.0769	ND			1	5
-Nitroaniline	13-SEP-01 15:49	0.140	ND			1	5
imethylphthalate	13-SEP-01 15:49	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 15:49	0.152	ND			1	5
cenaphthylene	13-SEP-01 15:49	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 15:49	0.313	ND			1 .	5
cenaphthene	13-SEP-01 15:49	0.0680	ND		- 1 - 184 - 184 - 18 - 18 - 18 - 18 - 18	1	5
,4-Dinitrophenol	13-SEP-01 15:49	1.24	ND			1 .	25
-Nitrophenol	13-SEP-01 15:49	0.715	ND			1	25
ibenzofuran	13-SEP-01 15:49	0.0519	ND			1	5
,4-Dinitrotoluene	13-SEP-01 15:49	0.0981	ND			1	5
iethylphthalate	13-SEP-01 15:49	0.140	ND			1 ~	- 5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.1 0914011535019 Page 16 s01860c6

Date Printed.....: 14-SEP-01 15:35 Client Name......: North Dakota State Water Commission

DCL Sample Name...: 01E01965 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 15:49	0.0478	ND			1	5
Fluorene	13-SEP-01 15:49	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 15:49	0.341	ND			1	5
4.6-Dinitro-2-Methylphenol	13-SEP-01 15:49	1.48	ND			1	25
N-nitrosodiphenvlamine	13-SEP-01 15:49	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 15:49	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 15:49	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 15:49	1.03	ND				25
Phenanthrene	13-SEP-01 15:49	0.0582	ND			1	5
Anthracene	13-SEP-01 15:49	0.0880	ND			1	5
Carbazole	13-SEP-01 15:49	0.0726	ND		ļ	$\frac{1}{1}$	5
Di-n-butylphthalate	13-SEP-01 15:49	0.347	ND		<u> </u>		5
Fluoranthene	13-SEP-01 15:49	0.0723	ND		ļ	1 1	5
Pyrene	13-SEP-01 15:49	0.0836	ND		ļ		5
Butylbenzylphthalate	13-SEP-01 15:49	0.204	ND	L			<u> </u>
3,3'-Dichlorobenzidine	13-SEP-01 15:49	0.372	ND				5
Benzo(a)anthracene	13-SEP-01 15:49	0.0750	ND			<u>↓ 1</u> ↓	5
Chrysene	13-SEP-01 15:49	0.0760	ND				5
Bis(2-ethylhexyl)phthalate	13-SEP-01 15:49	2.49	ND			$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	<u> </u>
Di-n-octylphthalate	13-SEP-01 15:49	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 15:49	0.105	ND				5
Benzo(k)fluoranthene	13-SEP-01 15:49	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 15:49	0.0772	ND				5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 15:49	0.318	ND		L	1	<u>· 5</u>
Dibenz(a,h)Anthracene	13-SEP-01 15:49	0.287	ND			1 1	5
Benzo(g,h,i)perylene	13-SEP-01 15:49	0.276	ND		L		5

Tentatively Identified Compound Results

Analvte (Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown Acid(9.22)	13-SEP-01 15:49	5.5		J	
Polycyclic hydrocarbon(18.37)	13-SEP-01 15:49	18.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	58.3	50.0	117.
2-Fluorobiphenyl	45.8	50.0	91.5
2-Fluorophenol	24.6	50.0	49.2
Nitrobenzene-d5	40.8	50.0	81.6
Phenol-d5	19.2	50.0	38.4
Terphenyl-d14	43.4	50.0	86.8

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

018

SAMPLE ANALYSIS DATA SHEET

ate Printed.....: 14-SEP-01 15:03

lient Name:	North	Dakota	State	Water	Commission	DCL
lient Ref Number:	Not P:	rovided				
ampling Site	Not P	rovided				Matr
elease Number:	Not P:	rovided				Date
						Repo
Date Received	07-SE	P-01 00	:00		(5)	Repo

)CL Preparation Group: G018B007)ate Prepared.....: 11-SEP-01 00:00 'reparation Method...: 3510B .liquot Weight/Volume: 1000 mL let Weight/Volume....: Not Required

Client Sample Name: 5-13098 DCL Sample Name...: 01E01966 Report Group..: 01E-0300-04

ix....: WATER Sampled....: 04-SEP-01 00:00 orting Units...: ug/L Report Basis.....: X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Inalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 16:20	0.315	ND			1	5
'henol	13-SEP-01 16:20	0.0525	ND			1	5
is(2-chloroethvl)ether	13-SEP-01 16:20	0.262	ND			1	5
-Chlorophenol	13-SEP-01 16:20	0.0851	ND			1	5
3-Dichlorobenzene	13-SEP-01 16:20	0.0369	ND			1	5
4-Dichlorobenzene	13-SEP-01 16:20	0.0622	ND			1	5
Jenzyl Alcohol	13-SEP-01 16:20	0.0699	ND			1	5
2-Dichlorobenzene	13-SEP-01 16:20	0.0638	ND			1	5
-Methylphenol	13-SEP-01 16:20	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 16:20	0.0967	ND			1	5
-Methylphenol	13-SEP-01 16:20	0.0552	ND			1	5
J-Nitrosodi-n-propyl amine	13-SEP-01 16:20	0.109	ND			1	5
Iexachloroethane	13-SEP-01 16:20	0.0773	ND			1	5
Jitrobenzene	13-SEP-01 16:20	0.0924	ND			1	5
sophorone	13-SEP-01 16:20	0.114	ND			1	5
-Nitrophenol	13-SEP-01 16:20	0.0830	ND			1	5
2.4-Dimethylphenol	13-SEP-01 16:20	0.285	ND			1	5
Senzoic acid	13-SEP-01 16:20	4.37	ND			1	25
bis(2-Chloroethoxy)methane	13-SEP-01 16:20	0.0508	ND			1	5
2.4-Dichlorophenol	13-SEP-01 16:20	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 16:20	0.0492	ND			1	5
Japhthalene	13-SEP-01 16:20	0.0532	ND			1	5
l-Chloroaniline	13-SEP-01 16:20	0.155	ND			1	5
lexachlorobutadiene	13-SEP-01 16:20	0.112	ND			1	5
1-Chloro-3-methylphenol	13-SEP-01 16:20	0.0794	ND			1	5
2-Methylnaphthalene	13-SEP-01 16:20	0.0687	ND			1	5
Texachlorocyclopentadiene	13-SEP-01 16:20	0.0864	ND			1	5
2,4,6-Trichlorophenol	13-SEP-01 16:20	0.0925	ND			1	5
2,4,5-Trichlorophenol	13-SEP-01 16:20	0.112	ND			11	5
2-Chloronaphthalene	13-SEP-01 16:20	0.0769	ND			1	5
2-Nitroaniline	13-SEP-01 16:20	0.140	ND			1	5
Dimethylphthalate	13-SEP-01_16:20	0.0766	ND			11	5
2,6-Dinitrotoluene	13-SEP-01 16:20	0.152	ND			1	5
Acenaphthylene	13-SEP-01 16:20	0.0467	ND			1	5
3-Nitroaniline	13-SEP-01 16:20	0.313	ND			1	5
Acenaphthene	13-SEP-01 16:20	0.0680	ND			1	5
2,4-Dinitrophenol	13-SEP-01 16:20	1.24	ND				25
1-Nitrophenol	13-SEP-01 16:20	0.715	ND			1	25
Dibenzofuran	13-SEP-01 16:20	0.0519	ND			1	5
2,4-Dinitrotoluene	13-SEP-01 16:20	0.0981	ND		<u> </u>	$\frac{1}{1}$	5
Diethylphthalate	13-SEP-01 16:20	0.140	ND				<u> </u>

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

019

-

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 18

S01860C7

Date Printed.....: 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission DCL Report Group..: 01E-0300-04

DCL Sample Name...: 01E01966

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
A-Chlorophenyl Phenyl Ether	13-SEP-01 16:20	0.0478	ND			1	5
Shorene	13-SEP-01 16:20	0.0737	ND		I	1	5
A-Nitroaniline	13-SEP-01 16:20	0.341	ND		T	1	5
4.6-Dinitro-2-Methylphenol	13-SEP-01 16:20	1.48	ND			1	25
N-nitrosodiphenvlamine	13-SEP-01 16:20	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 16:20	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 16:20	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 16:20	1.03	ND			1	25
Phenanthrene	13-SEP-01 16:20	0.0582	ND			1	5
Anthracene	13-SEP-01 16:20	0.0880	ND			1	5
Carbazole	13-SEP-01 16:20	0.0726	ND	L	L		5
Di-n-butylphthalate	13-SEP-01 16:20	0.347	ND		L	1	5
Fluoranthene	13-SEP-01 16:20	0.0723	ND	1	L		5
Pyrene	13-SEP-01 16:20	0.0836	ND		L		5
Butylbenzylphthalate .	13-SEP-01 16:20	0.204	ND		L		5
3,3'-Dichlorobenzidine	13-SEP-01 16:20	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 16:20	0.0750	ND	l		1	5
Chrysene	13-SEP-01 16:20	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 16:20	2.49	ND			1 1	5
Di-n-octylphthalate	13-SEP-01 16:20	0.126	ND				5
Benzo(b)fluoranthene	13-SEP-01 16:20	0.105	'ND	t			5
Benzo(k)fluoranthene	13-SEP-01 16:20	0.132	ND				5
Benzo(a)pyrene	13-SEP-01 16:20	0.0772	ND	(1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 16:20	0.318	ND	l			5
Dibenz(a,h)Anthracene	13-SEP-01 16:20	0.287	ND	l		1	5
Benzo(g,h,i)perylene	13-SEP-01 16:20	0.276	ND	L <u></u>	L		5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Polycyclic hydrocarbon(18.36)	13-SEP-01 16:20	16.		JB	1 1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	54.8	50.0	110.
2-Fluorobiphenvl	45.1	50.0	90.3
2-Fluorophenol	25.8	50.0	51.7
Nitrobenzene-d5	46.5	50.0	93.0
Phenol-d5	22.8	50.0	45.6
Terphenyl-d14	48.6	50.0	97.3

SAMPLE ANALYSIS DATA SHEET

ate Printed....: 14-SEP-01 15:03

lient Ref Number....: Not Provided

ampling Site Not Provided elease Number Not Provided

CL Preparation Group: G018B007

reparation Method...: 3510B liquot Weight/Volume: 1000 mL

ate Received.....: 07-SEP-01 00:00

ate Prepared....: 11-SEP-01 00:00

et Weight/Volume....: Not Required

lient Name.....: North Dakota State Water Commission

Client Sample Name: DUP 1 DCL Sample Name...: 01E01967 DCL Report Group. .: 01E-0300-04

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 17:51	0.315	ND			1	5
henol	13-SEP-01 17:51	0.0525	ND			1	5
is(2-chloroethyl)ether	13-SEP-01 17:51	0.262	ND			1	5
-Chlorophenol	13-SEP-01 17:51	0.0851	ND			1	5
3-Dichlorobenzene	13-SEP-01 17:51	0.0369	ND		anna da da	1	5
A-Dichlorobenzene	13-SEP-01 17:51	0.0622	ND			1	5
enzyl Alcohol	13-SEP-01 17:51	0.0699	ND			1	5
2-Dichlorobenzene	13-SEP-01 17:51	0.0638	ND			1	5
-Methylphenol	13-SEP-01 17:51	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 17:51	0.0967	ND			1	5
-Methylphenol	13-SEP-01 17:51	0.0552	ND			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 17:51	0.109	ND			1	5
exachloroethane	13-SEP-01 17:51	0.0773	ND			1	5
itrobenzene	13-SEP-01 17:51	0.0924	ND			1	5
sophorone	13-SEP-01 17:51	0.114	ND			1	5
-Nitrophenol	13-SEP-01 17:51	0.0830	ND			1	5
,4-Dimethylphenol	13-SEP-01 17:51	0.285	ND			1	5
enzoic acid	13-SEP-01 17:51	4.37	ND			1	25
is (2-Chloroethoxy) methane	13-SEP-01 17:51	0.0508	ND			1	5
,4-Dichlorophenol	13-SEP-01 17:51	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 17:51	0.0492	ND			1	5
aphthalene	13-SEP-01 17:51	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 17:51	0.155	ND			1	5
exachlorobutadiene	13-SEP-01 17:51	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 17:51	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 17:51	0.0687	ND			1	5
exachlorocyclopentadiene	13-SEP-01 17:51	0.0864	ND		L	1	5
,4,6-Trichlorophenol	13-SEP-01 17:51	0.0925	ND		1	1	5
,4,5-Trichlorophenol	13-SEP-01 17:51	0.112	ND		<u> </u>	1	5
-Chloronaphthalene	13-SEP-01 17:51	0.0769	ND]		1	5
-Nitroaniline	13-SEP-01 17:51	0.140	ND			11	5
imethylphthalate	13-SEP-01 17:51	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 17:51	0.152	ND			1	5
cenaphthylene	13-SEP-01 17:51	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 17:51	0.313	ND		ļ	1	5
.cenaphthene	13-SEP-01 17:51	0.0680	ND		ļ	1	5
,4-Dinitrophenol	13-SEP-01 17:51	1.24	ND	ļ		1	25
-Nitrophenol	13-SEP-01 17:51	0.715	ND			$\frac{1}{1}$	25
ibenzofuran	13-SEP-01 17:51	0.0519	ND			+	5
,4-Dinitrotoluene	13-SEP-01 17:51	0.0981	ND			$\frac{1}{1}$	2
iethylphthalate	13-SEP-01 17:51	0.140	ND	L		1 1	5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

021

.....

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011535019 Page 20 sol860CB

Date Printed.....: 14-SEP-01 15:35 Client Name........... North Dakota State Water Commission DCL Sample Name...: 01E01967 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 17:51	0.0478	ND			1	5
Fluorene	13-SEP-01 17:51	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 17:51	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 17:51	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 17:51	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 17:51	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 17:51	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 17:51	1.03	ND			1	25
Phenanthrene	13-SEP-01 17:51	0.0582	ND			1	5
Anthracene	13-SEP-01 17:51	0.0880	ND			1	5
Carbazole	13-SEP-01 17:51	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 17:51	0.347	ND			1	5
Fluoranthene	13-SEP-01 17:51	0.0723	ND			1	5
Pyrene	13-SEP-01 17:51	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 17:51	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 17:51	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 17:51	0.0750	ND			1	5
Chrysene	13-SEP-01 17:51	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 17:51	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 17:51	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 17:51	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 17:51	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 17:51	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 17:51	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 17:51	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 17:51	0.276	ND		l	1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown Acid(9.22)	13-SEP-01 17:51	5.6		J	
Cvclic Hvdrocarbon(17.44)	13-SEP-01 17:51	8.2		J	1
Polycyclic hydrocarbon(18.36)	13-SEP-01 17:51	17.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2.4.6-Tribromophenol	57.4	50.0	115.
2-Fluorobiphenyl	43.0	50.0	86.1
2-Fluorophenol	24.7	50.0	49.3
Nitrobenzene-d5	42.8	50.0	85.6
Phenol-d5	19.5	50.0	38.9
Terphenyl-d14	44.8	50.0	89.5

SAMPLE ANALYSIS DATA SHEET

ate Printed.....: 14-SEP-01 15:03

lient Ref Number....: Not Provided ampling Site : Not Provided

elease Number Not Provided

CL Preparation Group: G018B007

reparation Method...: 3510B liquot Weight/Volume: 1000 mL

ate Received.....: 07-SEP-01 00:00

ate Prepared.....: 11-SEP-01 00:00

et Weight/Volume....: Not Required

lient Name.....: North Dakota State Water Commission

Client Sample Name: 1-13103 DCL Sample Name...: 01E01968 DCL Report Group. .: 01E-0300-04

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ... : GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

malytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
vridine	13-SEP-01 18:21	0.315	ND			1	5
henol	13-SEP-01 18:21	0.0525	ND			1	5
is(2-chloroethvl)ether	13-SEP-01 18:21	0.262	ND			1	5
-Chlorophenol	13-SEP-01 18:21	0.0851	ND			1	5
.3-Dichlorobenzene	13-SEP-01 18:21	0.0369	ND		140	1	5
.4-Dichlorobenzene	13-SEP-01 18:21	0.0622	ND			1	5
enzvl Alcohol	13-SEP-01 18:21	0.0699	ND			1	5
,2-Dichlorobenzene	13-SEP-01 18:21	0.0638	ND			1	5
-Methylphenol	13-SEP-01 18:21	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 18:21	0.0967	ND			1	5
-Methylphenol	13-SEP-01 18:21	0.0552	ND			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 18:21	0.109	ND			1	5
exachloroethane	13-SEP-01 18:21	0.0773	ND			1	5
itrobenzene	13-SEP-01 18:21	0.0924	ND			1	5
sophorone	13-SEP-01 18:21	0.114	ND			1	5
-Nitrophenol	13-SEP-01 18:21	0.0830	ND	4		1	5
,4-Dimethylphenol	13-SEP-01 18:21	0.285	ND			1	5
enzoic acid	13-SEP-01 18:21	4.37	ND			1	25
is(2-Chloroethoxy)methane	13-SEP-01 18:21	0.0508	ND		1	1	5
,4-Dichlorophenol	13-SEP-01 18:21	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 18:21	0.0492	ND			1	5
aphthalene	13-SEP-01 18:21	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 18:21	0.155	ND			1	5
exachlorobutadiene	13-SEP-01 18:21	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 18:21	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 18:21	0.0687	ND			11	5
exachlorocyclopentadiene	13-SEP-01 18:21	0.0864	ND			1 ·	5
,4,6-Trichlorophenol	13-SEP-01 18:21	0.0925	ND			1	5
,4,5-Trichlorophenol	13-SEP-01 18:21	0.112	ND			1	5
-Chloronaphthalene	13-SEP-01 18:21	0.0769	ND			1	5
-Nitroaniline	13-SEP-01 18:21	0.140	ND			1	5
imethylphthalate	13-SEP-01 18:21	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 18:21	0.152	ND			11	5
cenaphthylene	13-SEP-01 18:21	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 18:21	0.313	ND			1	5
cenaphthene	13-SEP-01 18:21	0.0680	ND			11	. 5
,4-Dinitrophenol	13-SEP-01 18:21	1.24	ND			1.	25
-Nitrophenol	13-SEP-01 18:21	0.715	ND			11	25
ibenzofuran	13-SEP-01 18:21	0.0519	ND			1	5
,4-Dinitrotoluene	13-SEP-01 18:21	0.0981	ND			1	5
iethylphthalate	13-SEP-01 18:21	0.140	ND		L		<u> </u>

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1. 091401150309 Page 22 sol860cc

Date Printed.....: 14-SEP-01 15:03 Client Name...... North Dakota State Water Commission DCL Sample Name...: 01E01968 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 18:21	0.0478	ND			1	5
Fluorene	13-SEP-01 18:21	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 18:21	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 18:21	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 18:21	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 18:21	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 18:21	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 18:21	1.03	ND			1	25
Phenanthrene	13-SEP-01 18:21	0.0582	ND			1	5
Anthracene	13-SEP-01 18:21	0.0880	ND			1	5
Carbazole	13-SEP-01 18:21	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 18:21	0.347	ND			1	5
Fluoranthene	13-SEP-01 18:21	0.0723	ND			1	5
Pyrene	13-SEP-01 18:21	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 18:21	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 18:21	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 18:21	0.0750	ND			1	5
Chrysene	13-SEP-01 18:21	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 18:21	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 18:21	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 18:21	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 18:21	0.132	ND			· 1	5
Benzo(a)pyrene	13-SEP-01 18:21	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 18:21	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 18:21	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 18:21	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Cyclic Hydrocarbon(17.45)	13-SEP-01 18:21	17.		J	1
Polycyclic hydrocarbon(18.36)	13-SEP-01 18:21	17.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	46.5	50.0	92.9
2-Fluorobiphenyl	39.4	50.0	78.9
2-Fluorophenol	24.8	50.0	49.6
Nitrobenzene-d5	39.4	50.0	78.8
Phenol-d5	18.3	50.0	36.7
Terphenyl-d14	45.1	50.0	90.2

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 09140115030957 Page 23

S01860CD

Date Printed....: 14-SEP-01 15:03

Client Ref Number....: Not Provided

Sampling Site Not Provided

Release Number Not Provided

)CL Preparation Group: G018B007

Preparation Method...: 3510B Aliquot Weight/Volume: 1000 mL

Date Received.....: 07-SEP-01 00:00

Date Prepared.....: 11-SEP-01 00:00

Net Weight/Volume....: Not Required

Client Name..... North Dakota State Water Commission

Client Sample Name: 1-13104 DCL Sample Name...: 01E01969 DCL Report Group..: 01E-0300-04

Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: X As Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ... : GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
Pvridine	13-SEP-01 18:52	0.315	ND			1	5
Phenol	13-SEP-01 18:52	0.0525	ND			1	5
Bis(2-chloroethyl)ether	13-SEP-01 18:52	0.262	ND			1	5
2-Chlorophenol	13-SEP-01 18:52	0.0851	ND			1	5
1.3-Dichlorobenzene	13-SEP-01 18:52	0.0369	ND			1	5
1,4-Dichlorobenzene	13-SEP-01 18:52	0.0622	ND			1	5
Benzyl Alcohol	13-SEP-01 18:52	0.0699	ND			1	5
1,2-Dichlorobenzene	13-SEP-01 18:52	0.0638	ND			1	5
2-Methylphenol	13-SEP-01 18:52	0.113	ND			1	5
Bis(2-chloroisopropyl)ether	13-SEP-01 18:52	0.0967	ND			1	5
4-Methylphenol	13-SEP-01 18:52	0.0552	ND			1	5
N-Nitrosodi-n-propyl amine	13-SEP-01 18:52	0.109	ND			11	5
Hexachloroethane	13-SEP-01 18:52	0.0773	ND			11	5
Nitrobenzene	13-SEP-01 18:52	0.0924	ND			1	5
Isophorone	13-SEP-01 18:52	0.114	ND			1	5
2-Nitrophenol	13-SEP-01 18:52	0.0830	ND			1	5
2,4-Dimethylphenol	13-SEP-01 18:52	0.285	ND			1	5
Benzoic acid	13-SEP-01 18:52	4.37	ND			1	25
bis(2-Chloroethoxy)methane	13-SEP-01 18:52	0.0508	ND			1	5
2,4-Dichlorophenol	13-SEP-01 18:52	0.144	ND			1	5
1,2,4-Trichlorobenzene	13-SEP-01 18:52	0.0492	ND			1	5
Naphthalene	13-SEP-01 18:52	0.0532	ND			1	5
4-Chloroaniline	13-SEP-01 18:52	0.155	ND			1	5
Hexachlorobutadiene	13-SEP-01 18:52	0.112	ND			1	5
4-Chloro-3-methylphenol	13-SEP-01 18:52	0.0794	ND			1	5
2-Methylnaphthalene	13-SEP-01 18:52	0.0687	ND			1	5
Hexachlorocyclopentadiene	13-SEP-01 18:52	0.0864	ND			1	5
2,4,6-Trichlorophenol	13-SEP-01 18:52	0.0925	ND			1	5
2,4,5-Trichlorophenol	13-SEP-01 18:52	0.112	ND			1	5
2-Chloronaphthalene	13-SEP-01 18:52	0.0769	ND			1	5
2-Nitroaniline	13-SEP-01 18:52	0.140	ND			1	5
Dimethylphthalate	13-SEP-01 18:52	0.0766	ND			1	5
2,6-Dinitrotoluene	13-SEP-01 18:52	0.152	ND			1	5
Acenaphthylene	13-SEP-01 18:52	0.0467	ND			11	5
3-Nitroaniline	13-SEP-01 18:52	0.313	ND		ļ	1	5
Acenaphthene	13-SEP-01 18:52	0.0680	ND			1	· <u>5</u>
2,4-Dinitrophenol	13-SEP-01 18:52	1.24	ND			1	25
4-Nitrophenol	13-SEP-01 18:52	0.715	ND_			1	25
Dibenzofuran	13-SEP-01 18:52	0.0519	ND			1	5
2,4-Dinitrotoluene	13-SEP-01 18:52	0.0981	ND		 	<u></u>	5
Diethylphthalate	13-SEP-01 18:52	0.140	ND	<u> </u>	100000	1	5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 24 s01860CD

Date Printed.....: 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission DCL Sample Name...: 01E01969 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 18:52	0.0478	ND			1	5
Fluorene	13-SEP-01 18:52	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 18:52	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 18:52	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 18:52	0.0865	ND			11	5
4-Bromophenyl Phenyl Ether	13-SEP-01 18:52	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 18:52	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 18:52	1.03	ND			1	25
Phenanthrene	13-SEP-01 18:52	0.0582	ND			1	5
Anthracene	13-SEP-01 18:52	0.0880	ND			1	5
Carbazole	13-SEP-01 18:52	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 18:52	0.347	ND			1	5
Fluoranthene	13-SEP-01 18:52	0.0723	ND			1	5
Pyrene	13-SEP-01 18:52	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 18:52	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 18:52	0.372	ND			1	5
Benzo(a) anthracene	13-SEP-01 18:52	0.0750	ND			1	5
Chrysene	13-SEP-01 18:52	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 18:52	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 18:52	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 18:52	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 18:52	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 18:52	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 18:52	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 18:52	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 18:52	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown Acid(9.22)	13-SEP-01 18:52	4.6		J	1
Hexadecanoic Acid(12.22)	13-SEP-01 18:52	7.2		J	1
Unknown Acid(13.50)	13-SEP-01 18:52	4.5		J	1
Unknown Oxyhydrocarbon(16.94)	13-SEP-01 18:52	9.8		J	1
Polycyclic hydrocarbon(18.36)	13-SEP-01 18:52	18.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	53.8	50.0	108.
2-Fluorobiphenyl	46.5	50.0	93.1
2-Fluorophenol	27.5	50.0	55.0
Nitrobenzene-d5	43.1	50.0	86.3
Phenol-d5	19.9	50.0	39.9
Terphenyl-d14	44.5	50.0	89.0

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

)ate Printed.....: 14-SEP-01 15:03

:lient Ref Number.... Not Provided

Sampling Site..... Not Provided Selease Number..... Not Provided

)CL Preparation Group: G018B007

'reparation Method...: 3510B

.liquot Weight/Volume: 1000 mL Vet Weight/Volume....: Not Required

)ate Received.....: 07-SEP-01 00:00

)ate Prepared.....: 11-SEP-01 00:00

:lient Name.....: North Dakota State Water Commission

Client Sample Name: LAKE COE DCL Sample Name...: 01E01970 DCL Report Group..: 01E-0300-04

Matrix..... WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🕅 As Received 🗋 Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Analytical Results

yridine 13-sEP-01 19:22 0.315 ND 1 5 henol 13-sEP-01 19:22 0.0525 ND 1 5 is(2-chloroethyl)ether 13-sEP-01 19:22 0.0621 ND 1 5 -Chlorophenol 13-sEP-01 19:22 0.0369 ND 1 5 .3-Dichlorobenzene 13-sEP-01 19:22 0.0622 ND 1 5 .4-Dichlorobenzene 13-sEP-01 19:22 0.0639 ND 1 5 .2-Dichlorobenzene 13-sEP-01 19:22 0.0639 ND 1 5 .4-Dichlorobenzene 13-sEP-01 19:22 0.0639 ND 1 5 .4-Exthylphenol 13-sEP-01 19:22 0.0957 ND 1 5 .4-Nethylphenol 13-sEP-01 19:22 0.0957 ND 1 5 .4-Extholoroethane 13-sEP-01 19:22 0.0973 ND 1 5 .4-Dichorobenzene 13-sEP-01 19:22 0.0924 ND 1 5 .4-Dimethylphenol 13-sEP-01 19:22 0.0924 ND 1 5	nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
henol 13-sEP-01 9:22 0.0525 ND 1 5 is(2-chlorosthyl)ether 13-sEP-01 19:22 0.262 ND 1 5 chlorosthyl)ether 13-sEP-01 19:22 0.0851 ND 1 5 .4-Dichlorostenzene 13-SEP-01 19:22 0.0622 ND 1 5 .4-Dichlorostenzene 13-SEP-01 19:22 0.0638 ND 1 5 .2-Dichlorostenzene 13-SEP-01 19:22 0.0638 ND 1 5 .2-Dichlorostenzene 13-SEP-01 19:22 0.0638 ND 1 5 .4ethylphenol 13-SEP-01 19:22 0.0927 ND 1 5 .1krosodin-n-propyl amine 13-SEP-01 19:22 0.0773 ND 1 5 .1krosodin-n-propyl amine 13-SEP-01 19:22 0.144 ND 1 5 .1krosodin-n-propyl amine 13-SEP-01 19:22 0.141 5 5	Pyridine	13-SEP-01 19:22	0.315	ND			1	5
is (2-chlorosthyl)ether 13-SEP-01 19:22 0.262 ND 1 5 -Chlorophenol 13-SEP-01 19:22 0.0851 ND 1 5 .9-Dichlorobenzene 13-SEP-01 19:22 0.0369 ND 1 5 .4-Dichlorobenzene 13-SEP-01 19:22 0.0622 ND 1 5 .2-Dichlorobenzene 13-SEP-01 19:22 0.0639 ND 1 5 .4-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 .4-Dichlorobenzene 13-SEP-01 19:22 0.0967 ND 1 5 .4-Exthylonol 13-SEP-01 19:22 0.0967 ND 1 5 .4-Mitrophenol 13-SEP-01 19:22 0.0973 ND 1 5 .4-Nitrophenol 13-SEP-01 19:22 0.0924 ND 1 5 .4-Dimethylphenol 13-SEP-01 19:22 0.0830 ND 1 5 .4-Dichorobenzene 13-SEP-01 19:22 0.0830 ND 1 5 .4-Dichorobenzene 13-SEP-01 19:22 0.0830 ND 1 5 <td>Phenol</td> <td>13-SEP-01 19:22</td> <td>0.0525</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>5</td>	Phenol	13-SEP-01 19:22	0.0525	ND			1	5
Chlorophenol 13-SEP-01 19:22 0.0851 ND 1 5 .4-Dichlorobenzene 13-SEP-01 19:22 0.0369 ND 1 5 .4-Dichlorobenzene 13-SEP-01 19:22 0.0622 ND 1 5 .2-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 .2-Dichlorobenzene 13-SEP-01 19:22 0.0133 ND 1 5 .4-Methylphenol 13-SEP-01 19:22 0.0967 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0973 ND 1 5 -Nitrosodi-n-propyl amine 13-SEP-01 19:22 0.0773 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0773 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0773 ND 1 5 -Al-Dichlorophenol 13-SEP-01 19:22 0.073 ND 1 5 <tr< td=""><td>is(2-chloroethvl)ether</td><td>13-SEP-01 19:22</td><td>0.262</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></tr<>	is(2-chloroethvl)ether	13-SEP-01 19:22	0.262	ND			1	5
3-Dichlorobenzene 13-SEP-01 19:22 0.0369 ND 1 5 4-Dichlorobenzene 13-SEP-01 19:22 0.0629 ND 1 5 0.2-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 Methylphenol 13-SEP-01 19:22 0.0638 ND 1 5 Methylphenol 13-SEP-01 19:22 0.0957 ND 1 5 Methylphenol 13-SEP-01 19:22 0.0967 ND 1 5 -Nitrosodi-n-propyl amine 13-SEP-01 19:22 0.0973 ND 1 5 Sophorone 13-SEP-01 19:22 0.0924 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 -A-Dimethylphenol 13-SEP-01 19:22 0.285 ND 1 5 -A-Dichlorobenzene 13-SEP-01 19:22 0.285 ND 1 5	-Chlorophenol	13-SEP-01 19:22	0.0851	ND			1	5
14-Dichlorobenzene 13-SEP-01 19:22 0.0692 ND 1 5 enzyl Alcohol 13-SEP-01 19:22 0.0699 ND 1 5 .2-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0438 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0457 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0967 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0773 ND 1 5 -Nitrosodin-propyl amine 13-SEP-01 19:22 0.0773 ND 1 5 iscphorone 13-SEP-01 19:22 0.0773 ND 1 5 -Nitrosodia 13-SEP-01 19:22 0.0830 ND 1 5 -Nitrosodia 13-SEP-01 19:22 0.0830 ND 1 5 -Alchohryphenol 13-SEP-01 19:22 0.0492 ND 1 5 id(2-Chlorophenol 13-SEP-01 19:22 0.144 ND 1 5 iaphtha	.3-Dichlorobenzene	13-SEP-01 19:22	0.0369	ND			1	5
enzyl Alcohol 13-SEP-01 19:22 0.0699 ND 1 5 ./2-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 Methylbhenol 13-SEP-01 19:22 0.0133 ND 1 5 Methylbhenol 13-SEP-01 19:22 0.0967 ND 1 5 -Nitrosodi-n-propyl amine 13-SEP-01 19:22 0.0924 ND 1 5 exachloroethane 13-SEP-01 19:22 0.0924 ND 1 5 itrobenzene 13-SEP-01 19:22 0.0924 ND 1 5 ophorone 13-SEP-01 19:22 0.0830 ND 1 5 is(2-chloroethoxy)methane 13-SEP-01 19:22 0.0840 ND 1 5 is(2-chloroethoxy)methane 13-SEP-01 19:22 0.0492 ND 1 5 is(2-chloroethoxy)methane 13-SEP-01 19:22 0.0508 ND 1 5 <	.4-Dichlorobenzene	13-SEP-01 19:22	0.0622	ND			1	5
12-Dichlorobenzene 13-SEP-01 19:22 0.0638 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.113 ND 1 5 is(2-chloroisopropyl)ether 13-SEP-01 19:22 0.0967 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0977 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.0773 ND 1 5 exachloroethane 13-SEP-01 19:22 0.0773 ND 1 5 exachloroethane 13-SEP-01 19:22 0.0173 ND 1 5 -Nitrosoftone 13-SEP-01 19:22 0.024 ND 1 5 -Witrophenol 13-SEP-01 19:22 0.2830 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.268 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.4049 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.4049 ND 1 5 <td>Senzyl Alcohol</td> <td>13-SEP-01 19:22</td> <td>0.0699</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>5</td>	Senzyl Alcohol	13-SEP-01 19:22	0.0699	ND			1	5
Methylphenol 13-sEP-01 19:22 0.113 ND 1 5 is(2-chloroisopropyl)ether 13-sEP-01 19:22 0.0967 ND 1 5 -Methylphenol 13-sEP-01 19:22 0.0552 ND 1 5 -Nitrosodi-n-propyl amine 13-sEP-01 19:22 0.0773 ND 1 5 exachloroethane 13-sEP-01 19:22 0.0924 ND 1 5 itrobenzene 13-sEP-01 19:22 0.0924 ND 1 5 -Mitrophenol 13-sEP-01 19:22 0.0830 ND 1 5 -Mitrophenol 13-sEP-01 19:22 0.285 ND 1 5 is(2-Chloroethoxy)methane 13-sEP-01 19:22 0.0508 ND 1 5 is(2-Chloroethoxy)methane 13-sEP-01 19:22 0.0492 ND 1 5 is(2-Chloroethoxy)methane 13-sEP-01 19:22 0.0532 ND 1 5 </td <td>.,2-Dichlorobenzene</td> <td>13-SEP-01 19:22</td> <td>0.0638</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>5</td>	.,2-Dichlorobenzene	13-SEP-01 19:22	0.0638	ND			1	5
is (2-chloroisoproyl)ether 13-SEP-01 19:22 0.0967 ND 1 5 -Methylphenol 13-SEP-01 19:22 0.019 ND 1 5 -Nitrosodi-n-proyl amine 13-SEP-01 19:22 0.0773 ND 1 5 iscohoroethane 13-SEP-01 19:22 0.0773 ND 1 5 iscohorone 13-SEP-01 19:22 0.0773 ND 1 5 -Nitrosodi 13-SEP-01 19:22 0.114 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.285 ND 1 5 enzoic acid 13-SEP-01 19:22 0.425 ND 1 5 is(2-chlorophenol 13-SEP-01 19:22 0.0508 ND 1 5 is(2-chlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 is(2-chlorophenol 13-SEP-01 19:22 0.0522 ND 1 5 is(2-chlorophenol 13-SEP-01 19:22 0.0522 ND 1 5	-Methylphenol	13-SEP-01 19:22	0.113	ND			1	5
-Methylphenol 13-SEP-01 19:22 0.0552 ND 1 5 -Nitrosodi-n-propyl amine 13-SEP-01 19:22 0.0773 ND 1 5 exachloroethane 13-SEP-01 19:22 0.0773 ND 1 5 sophorone 13-SEP-01 19:22 0.0924 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.285 ND 1 5 -Alichorophenol 13-SEP-01 19:22 0.285 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0508 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0492 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.112 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0794 ND 1 5 <td>is(2-chloroisopropyl)ether</td> <td>13-SEP-01 19:22</td> <td>0.0967</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>5</td>	is(2-chloroisopropyl)ether	13-SEP-01 19:22	0.0967	ND			1	5
-Nitrosodi-n-propyl amine 13-SEP-01 19:22 0.109 ND 1 5 lexachloroethane 13-SEP-01 19:22 0.0773 ND 1 5 litrobenzene 13-SEP-01 19:22 0.0924 ND 1 5 sophorone 13-SEP-01 19:22 0.0830 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.285 ND 1 5 (4-Dimethylphenol 13-SEP-01 19:22 0.780 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0492 ND 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0492 ND 1 5 is(2-Chlorobenzene 13-SEP-01 19:22 0.0532 ND 1 5 -chloroaniline 13-SEP-01 19:22 0.0532 ND 1 5 -chloroaniline 13-SEP-01 19:22 0.0464 ND 1 5	-Methylphenol	13-SEP-01 19:22	0.0552	ND			1	5
lasspon 13-SEP-01 19:22 0.0773 ND 1 5 litrobenzene 13-SEP-01 19:22 0.0924 ND 1 5 sophorone 13-SEP-01 19:22 0.0924 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 .4-Dinthylphenol 13-SEP-01 19:22 0.0508 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.0508 ND 1 5 .2, 4-Trichlorobenzene 13-SEP-01 19:22 0.0492 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.0532 ND 1 5 -Chloroaniphthalene 13-SEP-01 19:22 0.0794 ND 1 5 -Methylnapht	I-Nitrosodi-n-propyl amine	13-SEP-01 19:22	0.109	ND			1	5
Hitrobenzene 13-SEP-01 19:22 0.0924 ND 1 5 sophorone 13-SEP-01 19:22 0.114 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 .4-Dimethylphenol 13-SEP-01 19:22 0.285 ND 1 5 .4-Dimethylphenol 13-SEP-01 19:22 0.437 7.2 JB 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 .2.4-Trichlorobenzene 13-SEP-01 19:22 0.0492 ND 1 5 laphthalene 13-SEP-01 19:22 0.0552 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.112 ND 1 5 -Chloroanhylphenol 13-SEP-01 19:22 0.0794 ND 1 5 .4.5-Trichlorophenol 13-SEP-01 19:22 0.0867 ND 1	Iexachloroethane	13-SEP-01 19:22	0.0773	ND			1	5
sophorone 13-SEP-01 19:22 0.114 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 4-Dimethylphenol 13-SEP-01 19:22 0.285 ND 1 5 tenzoic acid 13-SEP-01 19:22 0.37 7.2 JB 1 5 tenzoic acid 13-SEP-01 19:22 0.0508 ND 1 5 t4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 t4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 tapthalene 13-SEP-01 19:22 0.142 ND 1 5 texachlorobutadiene 13-SEP-01 19:22 0.112 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0864 ND 1 5 <t< td=""><td>litrobenzene</td><td>13-SEP-01 19:22</td><td>0.0924</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></t<>	litrobenzene	13-SEP-01 19:22	0.0924	ND			1	5
-Nitrophenol 13-SEP-01 19:22 0.0830 ND 1 5 (4-Dimethylphenol 13-SEP-01 19:22 4.37 7.2 JB 1 5 enzoic acid 13-SEP-01 19:22 4.37 7.2 JB 1 5 is(2-Chloroethoxy)methane 13-SEP-01 19:22 0.0508 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 .2, 4-Trichlorobenzene 13-SEP-01 19:22 0.0532 ND 1 5 .echloroaniline 13-SEP-01 19:22 0.0532 ND 1 5 .echloroaniline 13-SEP-01 19:22 0.0587 ND 1 5 .echlorocyclopentadiene 13-SEP-01 19:22 0.0687 ND 1 5 .echlorocyclopentadiene 13-SEP-01 19:22 0.0867 ND 1 5 .etachlorocyclopentadiene 13-SEP-01 19:22 0.0769 <t< td=""><td>sophorone</td><td>13-SEP-01 19:22</td><td>0.114</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></t<>	sophorone	13-SEP-01 19:22	0.114	ND			1	5
	-Nitrophenol	13-SEP-01 19:22	0.0830	ND			1	5
ienzoic acid 13-SEP-01 19:22 4.37 7.2 JB 1 25 is (2-Chloroethoxy)methane 13-SEP-01 19:22 0.0508 ND 1 5 (4-Dichlorophenol 13-SEP-01 19:22 0.0492 ND 1 5 (2, 4-Trichlorobenzene 13-SEP-01 19:22 0.0492 ND 1 5 Iaphthalene 13-SEP-01 19:22 0.0532 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.155 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.0794 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0867 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0925 ND 1 5 -4, 6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 -4, 6-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 -Chloronaphthalene 13-SEP-01 19:22 0.140 ND <t< td=""><td>.4-Dimethylphenol</td><td>13-SEP-01 19:22</td><td>0.285</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></t<>	.4-Dimethylphenol	13-SEP-01 19:22	0.285	ND			1	5
Dis (2-Chloroethoxy)methane 13-SEP-01 19:22 0.0508 ND 1 5 .4-Dichlorophenol 13-SEP-01 19:22 0.044 ND 1 5 .2,4-Trichlorobenzene 13-SEP-01 19:22 0.0492 ND 1 5 laphthalene 13-SEP-01 19:22 0.0532 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.155 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0864 ND 1 5 Iexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 Iexachlorocyclopentadiene 13-SEP-01 19:22 0.0769 ND 1 5 Iexachlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 Iexachlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 Iexachlorophenol 13-SEP-01 19:22 0.0766	Senzoic acid	13-SEP-01 19:22	4.37	7.2		JB	11	25
.4-Dichlorophenol 13-SEP-01 19:22 0.144 ND 1 5 .2,4-Trichlorobenzene 13-SEP-01 19:22 0.0492 ND 1 5 laphthalene 13-SEP-01 19:22 0.0532 ND 1 5 -chloroaniline 13-SEP-01 19:22 0.155 ND 1 5 exachlorobutadiene 13-SEP-01 19:22 0.0794 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 exachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 e.4, 6-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 e-Nitroaniline 13-SEP-01 19:22 0.0769 ND 1 5 e-Nitroaniline 13-SEP-01 19:22 0.140 ND <td< td=""><td>ois(2-Chloroethoxy)methane</td><td>13-SEP-01 19:22</td><td>0.0508</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></td<>	ois(2-Chloroethoxy)methane	13-SEP-01 19:22	0.0508	ND			1	5
13-SEP-01 19:22 0.0492 ND 1 5 Iaphthalene 13-SEP-01 19:22 0.0532 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.155 ND 1 5 -Chlorobutadiene 13-SEP-01 19:22 0.112 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0864 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0925 ND 1 5 .4, 6-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0467 ND 1 5	4-Dichlorophenol	13-SEP-01 19:22	0.144	ND			1	5
Taphthalene 13-SEP-01 19:22 0.0532 ND 1 5 -Chloroaniline 13-SEP-01 19:22 0.155 ND 1 5 exachlorobutadiene 13-SEP-01 19:22 0.112 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0864 ND 1 5 exachlorocyclopentadiene 13-SEP-01 19:22 0.0765 ND 1 5 2,4,6-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 2,4,6-Trichlorophenol 13-SEP-01 19:22 0.0766 ND 1 5 -Chloronaphthalene 13-SEP-01 19:22 0.140 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.152 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.1667 ND 1<	.,2,4-Trichlorobenzene	13-SEP-01 19:22	0.0492	ND			1	5
Image: https://line 13-SEP-01 19:22 0.155 ND 1 5 Mexachlorobutadiene 13-SEP-01 19:22 0.112 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 Mexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 Mexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 .4, 6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 .4, 5-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 -Chloronaphthalene 13-SEP-01 19:22 0.0766 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.140 ND 1 5 .6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1	Japhthalene	13-SEP-01 19:22	0.0532	ND			1	5
lexachlorobutadiene 13-SEP-01 19:22 0.112 ND 1 5 -Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 -Methylnaphthalene 13-SEP-01 19:22 0.0864 ND 1 5 Iexachlorocyclopentadiene 13-SEP-01 19:22 0.0925 ND 1 5 .4, 6-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 .4, 4.5-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 Mitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 .6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 .6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 .4-Dinitrophenol 13-SEP-01 19:22 0.0467 ND 1	-Chloroaniline	13-SEP-01 19:22	0.155	ND			1	5
-Chloro-3-methylphenol 13-SEP-01 19:22 0.0794 ND 1 5 P-Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 Rexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 Itexachlorocyclopentadiene 13-SEP-01 19:22 0.0925 ND 1 5 .4,6-Trichlorophenol 13-SEP-01 19:22 0.0122 ND 1 5 .4,6-Trichlorophenol 13-SEP-01 19:22 0.012 ND 1 5 .4,6-Trichlorophenol 13-SEP-01 19:22 0.012 ND 1 5 .4,6-Trichlorophenol 13-SEP-01 19:22 0.0769 ND 1 5 .4,6-Diritroduene 13-SEP-01 19:22 0.0766 ND 1 5 .0imethylphthalate 13-SEP-01 19:22 0.0467 ND 1 5 .6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 Nitroaniline 13-SEP-01 19:22 0.0680	lexachlorobutadiene	13-SEP-01 19:22	0.112	ND			1	5
-Methylnaphthalene 13-SEP-01 19:22 0.0687 ND 1 5 Mexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 2,4,6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 2,4,5-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 -(6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0460 ND 1 5 <td>-Chloro-3-methylphenol</td> <td>13-SEP-01 19:22</td> <td>0.0794</td> <td>ND</td> <td></td> <td></td> <td>1</td> <td>5</td>	-Chloro-3-methylphenol	13-SEP-01 19:22	0.0794	ND			1	5
Iexachlorocyclopentadiene 13-SEP-01 19:22 0.0864 ND 1 5 2,4,6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 2,4,6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 2,4,5-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 2-Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 2-Nitrotoluene 13-SEP-01 19:22 0.0766 ND 1 5 2,6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 3-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0680 ND 1 25 -Nitr	-Methylnaphthalene	13-SEP-01 19:22	0.0687	ND			1	5
14,6-Trichlorophenol 13-SEP-01 19:22 0.0925 ND 1 5 2,4,5-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 2-Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 2-Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 2.6-Dinitrotoluene 13-SEP-01 19:22 0.0766 ND 1 5 2.6-Dinitrotoluene 13-SEP-01 19:22 0.152 ND 1 5 3-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0680 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 -Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 Nibenzofuran	[exachlorocyclopentadiene	13-SEP-01 19:22	0.0864	ND			1	5
.4.5-Trichlorophenol 13-SEP-01 19:22 0.112 ND 1 5 2-Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.0769 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.0766 ND 1 5 0imethylphthalate 13-SEP-01 19:22 0.0766 ND 1 5 2.6-Dinitrotoluene 13-SEP-01 19:22 0.0766 ND 1 5 3-SEP-01 19:22 0.152 ND 1 5 4.6-Dinitrotoluene 13-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.0680 ND 1 25 .4-Dinitrophenol 13-SEP-01 19:22 0.715 ND 1 25 Nibenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 N	.4.6-Trichlorophenol	13-SEP-01 19:22	0.0925	ND			1	5
-Chloronaphthalene 13-SEP-01 19:22 0.0769 ND 1 5 2-Nitroaniline 13-SEP-01 19:22 0.140 ND 1 5 Dimethylphthalate 13-SEP-01 19:22 0.0766 ND 1 5 Oimethylphthalate 13-SEP-01 19:22 0.0766 ND 1 5 C.6-Dinitrotoluene 13-SEP-01 19:22 0.152 ND 1 5 Cenaphthylene 13-SEP-01 19:22 0.0467 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 -Nitroaniline 13-SEP-01 19:22 0.0680 ND 1 5 -Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 -Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 -Nitrophenol 13-SEP-01 19:22 0.0519 ND 1 5 Nibenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 <t< td=""><td>4,5-Trichlorophenol</td><td>13-SEP-01 19:22</td><td>0.112</td><td>ND</td><td></td><td></td><td>1</td><td>5</td></t<>	4,5-Trichlorophenol	13-SEP-01 19:22	0.112	ND			1	5
Image: Nitroaniline 13-SEP-01 19:22 0.140 ND 1 5 Dimethylphthalate 13-SEP-01 19:22 0.0766 ND 1 5 2.6-Dinitrotoluene 13-SEP-01 19:22 0.0766 ND 1 5 2.6-Dinitrotoluene 13-SEP-01 19:22 0.152 ND 1 5 acenaphthylene 13-SEP-01 19:22 0.0467 ND 1 5 o-Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 o-Nitroaniline 13-SEP-01 19:22 0.0680 ND 1 5 acenaphthene 13-SEP-01 19:22 1.24 ND 1 25 -Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 olibenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 actiona 13-SEP-01 19:22 0.0981 ND 1 5 bibenzofur	-Chloronaphthalene	13-SEP-01 19:22	0.0769	ND	*		1	5
Dimethylphthalate 13-SEP-01 19:22 0.0766 ND 1 5 2,6-Dinitrotoluene 13-SEP-01 19:22 0.152 ND 1 5 acenaphthylene 13-SEP-01 19:22 0.0467 ND 1 5 o-Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 o-Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 acenaphthene 13-SEP-01 19:22 0.0680 ND 1 5 acenaphthene 13-SEP-01 19:22 1.24 ND 1 25 acenaphtenol 13-SEP-01 19:22 0.715 ND 1 25 acenaphtenol 13-SEP-01 19:22 0.715 ND 1 25 acenaphturene 13-SEP-01 19:22 0.0519 ND 1 5 bibenzofuran 13-SEP-01 19:22 0.0981 ND 1 5 acenaphthene 13-SEP-01 19:22 0.0981 ND 1 5 <	-Nitroaniline	13-SEP-01 19:22	0.140	ND			1	5
2,6-Dinitrotoluene13-SEP-01 19:220.152ND15acenaphthylene13-SEP-01 19:220.0467ND15o-Nitroaniline13-SEP-01 19:220.313ND15acenaphthene13-SEP-01 19:220.0680ND15acenaphthene13-SEP-01 19:221.24ND125acenaphtenol13-SEP-01 19:220.715ND125-Nitrophenol13-SEP-01 19:220.0519ND15oblenzofuran13-SEP-01 19:220.0981ND15acenaphthene13-SEP-01 19:220.0981ND15oblenzofuran13-SEP-01 19:220.0140ND15)imethylphthalate	13-SEP-01 19:22	0.0766	ND			1	5
acenaphthylene 13-SEP-01 19:22 0.0467 ND 1 5 0-Nitroaniline 13-SEP-01 19:22 0.313 ND 1 5 acenaphthene 13-SEP-01 19:22 0.313 ND 1 5 acenaphthene 13-SEP-01 19:22 0.0680 ND 1 5 acenaphthene 13-SEP-01 19:22 1.24 ND 1 25 acenaphtenol 13-SEP-01 19:22 0.715 ND 1 25 acenaphtenol 13-SEP-01 19:22 0.715 ND 1 25 acenaphtenol 13-SEP-01 19:22 0.0519 ND 1 5 bibenzofuran 13-SEP-01 19:22 0.0981 ND 1 5 acenaphthene 13-SEP-01 19:22 0.0981 ND 1 5 acenaphthene 13-SEP-01 19:22 0.140 ND 1 5	2,6-Dinitrotoluene	13-SEP-01 19:22	0.152	ND			1	5
Image: Network in the	cenaphthylene	13-SEP-01 19:22	0.0467	ND			1	5
Acenaphthene 13-SEP-01 19:22 0.0680 ND 1 5 2,4-Dinitrophenol 13-SEP-01 19:22 1.24 ND 1 25 1-Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 0.bbenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 2,4-Dinitrotoluene 13-SEP-01 19:22 0.0981 ND 1 5 0.behylphthalate 13-SEP-01 19:22 0.140 ND 1 5	-Nitroaniline	13-SEP-01 19:22	0.313	ND			-1.	5
13-SEP-01 19:22 1.24 ND 1 25 I-Nitrophenol 13-SEP-01 19:22 0.715 ND 1 25 Dibenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 V.4-Dinitrotoluene 13-SEP-01 19:22 0.0981 ND 1 5 Diethylphthalate 13-SEP-01 19:22 0.140 ND 1 5	cenaphthene	13-SEP-01 19:22	0.0680	ND		L	1 1	5
Image: Network of the second	,4-Dinitrophenol	13-SEP-01 19:22	1.24	ND			1	25
Dibenzofuran 13-SEP-01 19:22 0.0519 ND 1 5 2,4-Dinitrotoluene 13-SEP-01 19:22 0.0981 ND 1 5 Diethylphthalate 13-SEP-01 19:22 0.140 ND 1 5	-Nitrophenol	13-SEP-01 19:22	0.715	ND			<u> </u>	25
13-SEP-01 19:22 0.0981 ND 1 5 Diethylphthalate 13-SEP-01 19:22 0.140 ND 1 5	Dibenzofuran	13-SEP-01 19:22	0.0519	ND			1	5
Diethylphthalate 13-SEP-01 19:22 0.140 ND 1 5	,4-Dinitrotoluene	13-SEP-01 19:22	0.0981	ND			1 1	5
)iethylphthalate	13-SEP-01 19:22	0.140	ND	L		1	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1. 091401150309 Page 26 S01860CF

Date Printed.....: 14-SEP-01 15:03 Client Name.....: North Dakota State Water Commission

DCL Sample Name...: 01E01970 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 19:22	0.0478	ND			1	5
Fluorene	13-SEP-01 19:22	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 19:22	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 19:22	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 19:22	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 19:22	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 19:22	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 19:22	1.03	ND			1	25
Phenanthrene	13-SEP-01 19:22	0.0582	ND			1	5
Anthracene	13-SEP-01 19:22	0.0880	ND			1	5
Carbazole	13-SEP-01 19:22	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 19:22	0.347	11.			1	5
Fluoranthene	13-SEP-01 19:22	0.0723	ND			1	5
Pyrene	13-SEP-01 19:22	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 19:22	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 19:22	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 19:22	0.0750	ND	1.		1	5
Chrysene	13-SEP-01 19:22	0.0760	ND		STATIST 51 - 007	11	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 19:22	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 19:22	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 19:22	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 19:22	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 19:22	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 19:22	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 19:22	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 19:22	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown ALkane(4.58)	13-SEP-01 19:22	7.6		J	1
Unknown Acid(13.51)	13-SEP-01 19:22	6.3		J	1
Unknown Amide(14.77)	13-SEP-01 19:22	5.5		J	1
Unknown Amide(16.75)	13-SEP-01 19:22	6.4		J	1
Cyclic Hydrocarbon(17.49)	13-SEP-01 19:22	44.		J	1
Cyclic Hydrocarbon(17.57)	13-SEP-01 19:22	6.0		J	1
Polycyclic hydrocarbon(18.37)	13-SEP-01 19:22	17.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	34.8	50.0	69.6
2-Fluorobiphenyl	35.9	50.0	71.8
2-Fluorophenol	25.1	50.0	50.1
Nitrobenzene-d5	39.8	50.0	79.6
Phenol-d5	20.6	50.0	41.2
Terphenyl-d14	31.7	50.0	63.5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 09140115030957 Page 27 S01860CG

)ate Printed.....: 14-SEP-01 15:03

:lient Ref Number....: Not Provided Sampling Site Not Provided

Release Number....: Not Provided

)CL Preparation Group: G018B007

Preparation Method...: 3510B

Aliquot Weight/Volume: 1000 mL

Jate Received....: 07-SEP-01 00:00

)ate Prepared..... 11-SEP-01 00:00

Jet Weight/Volume....: Not Required

lient Name.....: North Dakota State Water Commission

Client Sample Name: 2-13105 DCL Sample Name...: 01E01971 DCL Report Group ..: 01E-0300-04

Matrix....: WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis....: XAs Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
Pyridine	13-SEP-01 19:52	0.315	ND			1	5
Phenol	13-SEP-01 19:52	0.0525	ND			1	5
lis(2-chloroethvl)ether	13-SEP-01 19:52	0.262	ND			1	5
2-Chlorophenol	13-SEP-01 19:52	0.0851	ND			1	5
.3-Dichlorobenzene	13-SEP-01 19:52	0.0369	ND			1	5
.4-Dichlorobenzene	13-SEP-01 19:52	0.0622	ND		2	1	5
Benzyl Alcohol	13-SEP-01 19:52	0.0699	ND			1	5
.2-Dichlorobenzene	13-SEP-01 19:52	0.0638	ND			1	5
2-Methylphenol	13-SEP-01 19:52	0.113	ND			1	5
3is(2-chloroisopropyl)ether	13-SEP-01 19:52	0.0967	ND			1	5
1-Methylphenol	13-SEP-01 19:52	0.0552	ND			1	5
N-Nitrosodi-n-propyl amine	13-SEP-01 19:52	0.109	ND			1	5
lexachloroethane	13-SEP-01 19:52	0.0773	ND			1	5
Vitrobenzene	13-SEP-01 19:52	0.0924	ND			1	5
Isophorone	13-SEP-01 19:52	0.114	ND			1	5
2-Nitrophenol	13-SEP-01 19:52	0.0830	ND			1	5
2,4-Dimethylphenol	13-SEP-01 19:52	0.285	ND			1	5
Benzoic acid	13-SEP-01 19:52	4.37	ND			1	25
pis(2-Chloroethoxy)methane	13-SEP-01 19:52	0.0508	ND			1	5
2,4-Dichlorophenol	13-SEP-01 19:52	0.144	ND			1	5
1,2,4-Trichlorobenzene	13-SEP-01 19:52	0.0492	ND			1	5
Naphthalene	13-SEP-01 19:52	0.0532	ND			1	5
4-Chloroaniline	13-SEP-01 19:52	0.155	ND			1	5
Hexachlorobutadiene	13-SEP-01 19:52	0.112	ND			1	5
4-Chloro-3-methylphenol	13-SEP-01 19:52	0.0794	ND			1	5
2-Methylnaphthalene	13-SEP-01 19:52	0.0687	ND			1	5
Hexachlorocyclopentadiene	13-SEP-01 19:52	0.0864	ND			1	5
2,4,6-Trichlorophenol	13-SEP-01 19:52	0.0925	ND			1	5
2,4,5-Trichlorophenol	13-SEP-01 19:52	0.112	ND			1	5
2-Chloronaphthalene	13-SEP-01 19:52	0.0769	ND			11	5
2-Nitroaniline	13-SEP-01 19:52	0.140	ND			1	5
Dimethylphthalate	13-SEP-01 19:52	0.0766	ND			1	5
2,6-Dinitrotoluene	13-SEP-01 19:52	0.152	ND			1	5
Acenaphthylene	13-SEP-01 19:52	0.0467	ND			1	5
3-Nitroaniline	13-SEP-01 19:52	0.313	ND			1 1	5
Acenaphthene	13-SEP-01 19:52	0.0680	ND		L	1	5
2,4-Dinitrophenol	13-SEP-01 19:52	1.24	ND		ļ	$\frac{1}{1}$	25
4-Nitrophenol	13-SEP-01 19:52	0.715	ND		ļ	<u> </u>	25
Dibenzofuran	13-SEP-01 19:52	0.0519	ND		ļ	1	· 5
2,4-Dinitrotoluene	13-SEP-01 19:52	0.0981	ND			+ $ -$	5
Diethylphthalate	13-SEP-01 19:52	0.140	ND	1	L		5

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992

Web Page: www.datachem.com E-mail: lab@datachem.com

029 . :

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 28

Date Printed.....: 14-SEP-01 15:03 Client Name...... North Dakota State Water Commission DCL Sample Name...: 01E01971 DCL Report Group..: 01E-0300-04

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
4-Chlorophenyl Phenyl Ether	13-SEP-01 19:52	0.0478	ND			1	5
Fluorene	13-SEP-01 19:52	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 19:52	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 19:52	1.48	ND			1	25
N-nitrosodiphenylamine	13-SEP-01 19:52	0.0865	ND			1 1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 19:52	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 19:52	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 19:52	1.03	ND		-	1	25
Phenanthrene	13-SEP-01 19:52	0.0582	ND			1	5
Anthracene	13-SEP-01 19:52	0.0880	ND			1	5
Carbazole	13-SEP-01 19:52	0.0726	ND			1 1	5
Di-n-butylphthalate	13-SEP-01 19:52	0.347	2.9		J	1	5
Fluoranthene	13-SEP-01 19:52	0.0723	ND			1	5
Pyrene	13-SEP-01 19:52	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 19:52	0.204	ND			1	5
3,3'-Dichlorobenzidine	13-SEP-01 19:52	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 19:52	0.0750	ND			1	5
Chrysene	13-SEP-01 19:52	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 19:52	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 19:52	0.126	ND			1	5
Benzo(b)fluoranthene	13-SEP-01 19:52	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 19:52	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 19:52	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 19:52	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 19:52	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 19:52	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Cyclic Hydrocarbon(17.60)	13-SEP-01 19:52	97.	N	J	1
Polycyclic hydrocarbon(18.37)	13-SEP-01 19:52	14.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	18.4	50.0	36.8
2-Fluorobiphenyl	42.0	50.0	84.0
2-Fluorophenol	23.3	50.0	46.6
Nitrobenzene-d5	42.6	50.0	85.2
Phenol-d5	17.6	50.0	35.1
Terphenyl-d14	40.4	50.0	80.9

SAMPLE ANALYSIS DATA SHEET

)ate Printed.....: 14-SEP-01 15:03

lient Ref Number....: Not Frovided ampling Site Not Provided

elease Number Not Frovided

CL Preparation Group: G018E007

reparation Method...: 3510E

.liquot Weight/Volume: 1000 mL

vate Received.....: 07-SEP-01 00:00

ate Prepared.....: 11-SEP-01 00:00

let Weight/Volume....: Not Required

Client Sample Name: 5-13197 DCL Sample Name...: 01E01972 :lient Name..... North Dakota State Water Commission DCL Report Group..: 01E-0300-04

> Matrix....: WATER Date Sampled....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis..... XAs Received Dried

DCL Analysis Group: G018B007 Analysis Method...: 8270C Instrument Type ...: GC/MS SV Instrument ID....: 5972-0 Column Type....: DB5 30m x .32mm X Primary Confirmation

malytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
yridine	13-SEP-01 20:22	0.315	ND			1	5
henol	13-SEP-01 20:22	0.0525	ND			1	5
is(2-chloroethyl)ether	13-SEP-01 20:22	0.262	ND			1	5
-Chlorophenol	13-SEP-01 20:22	0.0851	ND			1	5
,3-Dichlorobenzene	13-SEP-01 20:22	0.0369	ND			1	5
,4-Dichlorobenzene	13-SEP-01 20:22	0.0622	ND			1	5
enzyl Alcohol	13-SEP-01 20:22	0.0699	ND			1	5
,2-Dichlorobenzene	13-SEP-01 20:22	0.0638	ND			1	5
-Methylphenol	13-SEP-01 20:22	0.113	ND			1	5
is(2-chloroisopropyl)ether	13-SEP-01 20:22	0.0967	ND			1	5
-Methylphenol	13-SEP-01 20:22	0.0552	ND			1	5
-Nitrosodi-n-propyl amine	13-SEP-01 20:22	0.109	ND			1	5
exachloroethane	13-SEP-01 20:22	0.0773	ND	8		1	5
itrobenzene	13-SEP-01 20:22	0.0924	ND			1	5
sophorone	13-SEP-01 20:22	0.114	ND			1	5
-Nitrophenol	13-SEP-01 20:22	0.0830	ND			1	5
,4-Dimethylphenol	13-SEP-01 20:22	0.285	ND			1	5
enzoic acid	13-SEP-01 20:22	4.37	ND			1	25
is(2-Chloroethoxy)methane	13-SEP-01 20:22	0.0508	ND			1	5
,4-Dichlorophenol	13-SEP-01 20:22	0.144	ND			1	5
,2,4-Trichlorobenzene	13-SEP-01 20:22	0.0492	ND			1	5
aphthalene	13-SEP-01 20:22	0.0532	ND			1	5
-Chloroaniline	13-SEP-01 20:22	0.155	ND			1	5
exachlorobutadiene	13-SEP-01 20:22	0.112	ND			1	5
-Chloro-3-methylphenol	13-SEP-01 20:22	0.0794	ND			1	5
-Methylnaphthalene	13-SEP-01 20:22	0.0687	ND			1	5
exachlorocyclopentadiene	13-SEP-01 20:22	0.0864	ND			1	5
,4,6-Trichlorophenol	13-SEP-01 20:22	0.0925	ND			1	5
,4,5-Trichlorophenol	13-SEP-01 20:22	0.112	ND		CALCULATION OF A STREET	1	5
-Chloronaphthalene	13-SEP-01 20:22	0.0769	ND	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1	5
-Nitroaniline	13-SEP-01 20:22	0.140	ND			1	5
imethylphthalate	13-SEP-01 20:22	0.0766	ND			1	5
,6-Dinitrotoluene	13-SEP-01 20:22	0.152	ND			1	5
cenaphthylene	13-SEP-01 20:22	0.0467	ND			1	5
-Nitroaniline	13-SEP-01 20:22	0.313	ND			1	5
cenaphthene	13-SEP-01 20:22	0.0680	ND			1	5
,4-Dinitrophenol	13-SEP-01 20:22	1.24	ND		L	1	. 25
-Nitrophenol	13-SEP-01 20:22	0.715	ND			1.	25
ibenzofuran	13-SEP-01 20:22	0.0519	ND			1 .	. 5
,4-Dinitrotoluene	13-SEP-01 20:22	0.0981	ND			1	5
iethylphthalate	13-SEP-01 20:22	0.140	ND			1	5

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 0914011503095 Page 30 sol860cH

Date Printed.....: 14-SEP-01 15:03 Client Name...... North Dakota State Water Commission DCL Sample Name...: 01E01972 DCL Report Group..: 01E-0300-04

Analytical Results

2	Date	MOT	Pocult	Commont	01121	Dilution	CPDI
Analyce	Analyzed		<u>Nesuic</u>	conulenc	Quar.		
4-Chlorophenyl Phenyl Ether	13-SEP-01 20:22	0.04/8	ND				5
Fluorene	13-SEP-01 20:22	0.0737	ND			1	5
4-Nitroaniline	13-SEP-01 20:22	0.341	ND			1	5
4,6-Dinitro-2-Methylphenol	13-SEP-01 20:22	1.48	ND	j.		1	25
N-nitrosodiphenylamine	13-SEP-01 20:22	0.0865	ND			1	5
4-Bromophenyl Phenyl Ether	13-SEP-01 20:22	0.108	ND			1	5
Hexachlorobenzene	13-SEP-01 20:22	0.151	ND			1	5
Pentachlorophenol	13-SEP-01 20:22	1.03	ND			1	25
Phenanthrene	13-SEP-01 20:22	0.0582	ND			1	5
Anthracene	13-SEP-01 20:22	0.0880	ND			1	5
Carbazole	13-SEP-01 20:22	0.0726	ND			1	5
Di-n-butylphthalate	13-SEP-01 20:22	0.347	ND			1	5
Fluoranthene	13-SEP-01 20:22	0.0723	ND		1	1	5
Pyrene	13-SEP-01 20:22	0.0836	ND			1	5
Butylbenzylphthalate	13-SEP-01 20:22	0.204	ND	an laneas montait said the		1	5
3,3'-Dichlorobenzidine	13-SEP-01 20:22	0.372	ND			1	5
Benzo(a)anthracene	13-SEP-01 20:22	0.0750	ND		6	1	5
Chrysene	13-SEP-01 20:22	0.0760	ND			1	5
Bis(2-ethylhexyl)phthalate	13-SEP-01 20:22	2.49	ND			1	5
Di-n-octylphthalate	13-SEP-01 20:22	0.126	ND			1 .	5
Benzo(b)fluoranthene	13-SEP-01 20:22	0.105	ND			1	5
Benzo(k)fluoranthene	13-SEP-01 20:22	0.132	ND			1	5
Benzo(a)pyrene	13-SEP-01 20:22	0.0772	ND			1	5
Indeno(1,2,3-c,d)pyrene	13-SEP-01 20:22	0.318	ND			1	5
Dibenz(a,h)Anthracene	13-SEP-01 20:22	0.287	ND			1	5
Benzo(g,h,i)perylene	13-SEP-01 20:22	0.276	ND			1	5

Tentatively Identified Compound Results

Analyte(Retention Time)	Date Analyzed	Result	Comment	Qual.	Dilution
Unknown Acid(9.22)	13-SEP-01 20:22	22.		J	1
Phenol, 4,4'-butylidenebis[2-((16.21)	13-SEP-01 20:22	11.		J	1
Polycyclic hydrocarbon(18.36)	13-SEP-01 20:22	19.		JB	1

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
2,4,6-Tribromophenol	40.1	50.0	80.1
2-Fluorobiphenyl	44.4	50.0	88.8
2-Fluorophenol	26.2	50.0	52.4
Nitrobenzene-d5	40.6	50.0	81.2
Phenol-d5	19.4	50.0	38.8
Terphenyl-d14	41.2	50.0	82.4

OUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE MATRIX SPIKE DUPLICATE SAMPLE

ient Name.....: North Dakota State Water Commission elease Number..... Not Provided

trix....: WATERA porting Units....: ug/L

L Preparation Group: G018B007 ite Prepared....: 11-SEP-01 00:00 reparation Method...: 3510B

DCL Sample Name...: 01E01966MS Date Printed....: 14-SEP-01 15:03

DCL Analysis Group: G018B007 Analysis Method...: SW 8270 Instrument Type ...: GC/MS SV Instrument ID....: 5972-Q Column Type....: DB5 30m x .32mm X Primary Confirmation

QC Limit Type....: Method

nalytical Results

	Date	Sample	Spiked Result	Spike	Percent	QC Limits	QC Fĺaσ
nalyte	Analyzeu	RESULC	AAO	EQ Q	07 0	44 0/142	
2,4-Trichlorobenzene	113-SEP-01 16:51	0.00	44.0	50.0	07.7 07 E	49.0/142.	
2-Dichlorobenzene	13-SEP-01 16:51	0.00	41./	50.0	60.0	36 0/105	
3-Dichlorobenzene	13-SEP-01 16:51	0.00	35.0	50.0	73 6	36 0/125	
4-Dichlorobenzene	13-SEP-01 16:51	0.00	30.8	50.0	101	25 0/175	
4,5-Trichlorophenol	13-SEP-01 16:51	0.00	50.6	50.0	101.	29.0/1/9.	
4,6-Trichlorophenol	13-SEP-01 16:51	0.00	50.5	50.0	101.	16 0/128.	
4-Dichlorophenol	13-SEP-01 16:51	0.00	48.1	50.0	70.3	40.0/125.	
4-Dimethylphenol	13-SEP-01 16:51	0.00	38.2	50.0	10.3	45.0/139.	
4-Dinitrophenol	13-SEP-01 16:51	0.00	58.6	50.0	105	39 0/120	
,4-Dinitrotoluene	13-SEP-01 16:51	0.00	52.3	50.0	103.	51 0/139.	
,6-Dinitrotoluene	13-SEP-01 16:51	0.00	51.8	50.0	104.	51.0/125.	
-Chloronaphthalene	13-SEP-01 16:51	0.00	44.9	50.0	07.7	A1 0/125.	
-Chlorophenol	13-SEP-01 16:51	0.00	43.8	50.0	01.1	41.0/123. 11 0/195	
-Methylnaphthalene	13-SEP-01 16:51	0.00	47.3	50.0	94.6	41.0/125. 25 0/125	
-Methylphenol	13-SEP-01 16:51	0.00	34.4	50.0	107	20.0/120. 50 0/105	
-Nitroaniline	13-SEP-01 16:51	0.00	53.4	50.0	107.	14 0/125.	
-Nitrophenol	13-SEP-01 16:51	0.00	49.9	50.0	99.9	29 0/125.	
,3'-Dichlorobenzidine	13-SEP-01 16:51	0.00	48.4	50.0	90.9	51 0/1/5.	
-Nitroaniline	13-SEP-01 16:51	0.00	55.3	50.0		26 D/124	
,6-Dinitro-2-Methylphenol	13-SEP-01 16:51	0.00	54.9	50.0	110.	52 0/107	
-Bromophenyl Phenyl Ether	13-SEP-01 16:51	0.00	48.0	50.0	96.1 100	33.0/12/.	
-Chloro-3-methylphenol	13-SEP-01 16:51	0.00	52.8	50.0	106.	44.0/125.	
-Chloroaniline	13-SEP-01 16:51	0.00	45.7	50.0	100	40.0/100.	
-Chlorophenyl Phenyl Ether	13-SEP-01 16:51	0.00	52.8	50.0	100.	32 0/132	
-Methylphenol	13-SEP-01 16:51	0.00	33.7	50.0	07.4	40 0/142	
-Nitroaniline	13-SEP-01 16:51	0.00	42.7	50.0	85.3	25 0/121	
-Nitrophenol	13-SEP-01 16:51	0.00	23.3	50.0	40.5	40 0/125	
cenaphthene	13-SEP-01 16:51	0.00	54.1	50.0	102	43.0/125.	
cenaphthylene	13-SEP-01 16:51	0.00	51.3	50.0	112	A5 0/145	
nthracene	13-SEP-01 16:51	0.00	56.1	50.0	107	51 0/102	
enzo(a)anthracene	13-SEP-01 16:51	0.00	53.1	50.0	107.	A1 0/125	<u> </u>
enzo(a)pyrene	13-SEP-01 16:51	0.00	50.9	50.0	102.	37 0/125	
enzo(b)fluoranthene	13-SEP-01 16:51	0.00	50.9	50.0	102.	34 0/140	<u>+</u>
enzo(g,h,i)perylene	13-SEP-01 16:51	0.00	53.0	50.0	10/.	25 0/142	<u>† – – – – – – – – – – – – – – – – – – –</u>
enzoic acid	13-SEP-01 16:51	3.44	23.0	50.0	39.2	35 0/102.	<u> </u>
enzyl alcohol	13-SEP-01 16:51	0.00	42.0	50.0	77 6	A4 0/125	<u></u>
is(2-chloroethyl)ether	13-SEP-01 16:51	0.00	38.8	50.0	7/ 5	36 0/166	1
is(2-chloroisopropyl)ether	13-SEP-01 16:51	1 20	51.2 62 E	50.0	122	33.0/129	1
is(2-ethylhexyl)phthalate	13-SEP-01 16:51	1.28	5/ 0	50.0	110	26.0/125	1
utylbenzylphthalate	13-SEP-01 16:51	0.00	59.5	50.0	118	55.0/133.	1
hrysene	12 CED 01 16:51	0.00	51 3	50 0	109	34.0/126.	
<u>i-n-butylphthalate</u>	12 CED 01 16:51	0.00	53.3	50.0	107.	38.0/127.	
1-n-octy1phthalate	12 CED 01 16:51	0.00	51 2	50 0	103	50.0/125.	
1benz(a,h)Anthracene	13-SEP-UL 10:51	0.00	49 7	50.0	99.4	52.0/125.	1
<u>ibenzoturan</u>	13-CED-01 16.51		52 6	50.0	105.	37.0/125.	
<u>iethyiphthalate</u>	13_CED_01 16.51	0.00	52.1	50.0	104.	25.0/175.	Γ
imethylphthalate	T2-206-01 10:21	4 0.00					ويتحاكم ويستعد المتعالية

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE MATRIX SPIKE DUPLICATE SAMPLE

DCL Sample Name...: 01E01966MS

Client Name.....: North Dakota State Water Commission

Date Printed....: 14-SEP-01 15:03

Analytical Results

Analyte	Date Analyzed	Sample Result	Spiked Result	Spike Added	Percent Recovery	QC Limits	QC Flag
Fluoranthene	13-SEP-01 16:51	0.00	54.3	50.0	109.	47.0/125.	
Fluorene	13-SEP-01 16:51	0.00	54.0	50.0	108.	48.0/139.	
Hexachlorobenzene	13-SEP-01 16:51	0.00	53.1	50.0	106.	46.0/133.	
Hexachlorobutadiene	13-SEP-01 16:51	0.00	41.0	50.0	82.1	25.0/125.	
Hexachlorocyclopentadiene	13-SEP-01 16:51	0.00	33.4	50.0	66.7	41.0/125.	
Hexachloroethane	13-SEP-01 16:51	0.00	34.7	50.0	69.4	25.0/153.	
Indeno(1,2,3-c,d)pyrene	13-SEP-01 16:51	0.00	51.6	50.0	103.	27.0/160.	
Isophorone	13-SEP-01 16:51	0.00	45.1	50.0	90.2	26.0/175.	
N-Nitrosodi-n-propyl amine	13-SEP-01 16:51	0.00	43.3	50.0	86.7	37.0/135.	
N-Nitrosodiphenylamine	13-SEP-01 16:51	0.00	53.4	50.0	107.	27.0/125.	
Naphthalene	13-SEP-01 16:51	0.00	39.4	50.0	78.8	50.0/125.	
Nitrobenzene	13-SEP-01 16:51	0.00	43.9	50.0	87.8	46.0/133.	
Pentachlorophenol	13-SEP-01 16:51	0.00	66.7	50.0	133.	28.0/136.	
Phenanthrene	13-SEP-01 16:51	0.00	54.8	50.0	110.	54.0/125.	a at when a
Phenol	13-SEP-01 16:51	0.00	19.5	50.0	39.0	25.0/125.	
Pyrene	13-SEP-01 16:51	0.00	53.5	50.0	107.	47.0/136.	
bis(2-Chloroethoxy)methane	13-SEP-01 16:51	0.00	46.9	50.0	93.7	49.0/125.	

DCL Sample Name...: 01E01966MSD

Analytical Results

	Date	Duplicate	Percent		-		, QC	QC
Analyte	Analyzed	Result	Recovery	Mean	Range	RPD	Limits	Flag
1,2,4-Trichlorobenzene	13-SEP-01 17:21	44.5	89.0	44.2	0.547	1.2	0.00/50.0	
1,2-Dichlorobenzene	13-SEP-01 17:21	42.6	85.2	42.2	0.865	2.1	0.00/50.0	
1,3-Dichlorobenzene	13-SEP-01 17:21	38.2	76.3	36.6	3.21	8.8	0.00/50.0	
1,4-Dichlorobenzene	13-SEP-01 17:21	39.1	78.2	38.0	2.34	6.2	0.00/50.0	
2,4,5-Trichlorophenol	13-SEP-01 17:21	48.6	97.2	49.6	1.97	4.0	0.00/50.0	
2,4,6-Trichlorophenol	13-SEP-01 17:21	47.8	95.7	49.2	2.71	5.5	0.00/50.0	
2.4-Dichlorophenol	13-SEP-01 17:21	47.2	94.4	47.7	0.932	2.0	0.00/50.0	
2,4-Dimethylphenol	13-SEP-01 17:21	43.1	86.2	40.6	4.92	12.	0.00/50.0	
2,4-Dinitrophenol	13-SEP-01 17:21	52.6	105.	55.6	5.99	11.	0.00/50.0	
2.4-Dinitrotoluene	13-SEP-01 17:21	54.3	109.	53.3	1.99	3.7	0.00/50.0	
2.6-Dinitrotoluene	13-SEP-01 17:21	53.7	107.	52.8	1.89	3.6	0.00/50.0	
2-Chloronaphthalene	13-SEP-01 17:21	47.0	94.0	46.0	2.04	4.4	0.00/50.0	
2-Chlorophenol	13-SEP-01 17:21	47.3	94.6	45.6	3.45	7.6	0.00/50.0	
2-Methylnaphthalene	13-SEP-01 17:21	48.8	97.5	48.0	1.46	3.0	0.00/50.0	
2-Methylphenol	13-SEP-01 17:21	36.1	72.2	35.3	1.67	4.7	0.00/50.0	a
2-Nitroaniline	13-SEP-01 17:21	54.1	108.	53.8	0.726	1.4	0.00/50.0	
2-Nitrophenol	13-SEP-01 17:21	49.9	99.8	49.9	0.0270	0.054	0.00/50.0	
3,3'-Dichlorobenzidine	13-SEP-01 17:21	49.5	99.0	49.0	1.05	2.2	0.00/50.0	
3-Nitroaniline	13-SEP-01 17:21	56.2	112.	55.7	0.960	1.7	0.00/50.0	
4,6-Dinitro-2-Methylphenol	13-SEP-01 17:21	55.1	110.	55.0	0.231	0.42	0.00/50.0	
4-Bromophenyl Phenyl Ether	13-SEP-01 17:21	54.0	108.	51.0	5.97	12.	0.00/50.0	
4-Chloro-3-methylphenol	13-SEP-01 17:21	51.8	104.	52.3	0.991	1.9	0.00/50.0	
4-Chloroaniline	13-SEP-01 17:21	47.9	95.8	46.8	2.20	4.7	0.00/50.0	
4-Chlorophenyl Phenyl Ether	13-SEP-01 17:21	54.4	109.	53.6	1.54	2.9	0.00/50.0	
4-Methylphenol	13-SEP-01 17:21	33.5	67.0	33.6	0.216	0.64	0.00/50.0	
4-Nitroaniline	13-SEP-01 17:21	44.3	88.7	43.5	1.67	3.8.	0.00/50.0	
4-Nitrophenol	13-SEP-01 17:21	22.6	45.3	22.9	0.641	2.8	0.00/50.0	
Acenaphthene	13-SEP-01 17:21	49.7	99.4	51.9	4.38	8.4	0.00/50.0	
Acenaphthylene	<u>13-SEP-01 17:21</u>	49.4	98.9	50.4	1.91	3.8	0.00/50.0	

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE MATRIX SPIKE DUPLICATE SAMPLE

:lient Name.....: North Dakota State Water Commission

DCL Sample Name...: 01E01966MSD

Date Printed....: 14-SEP-01 15:03

Inalytical Results

	Date	Duplicate	Percent				QC	OC
nalyte	Analyzed	Result	Recovery	Mean	Range	RPD	Limits	Flag
nthracene	13-SEP-01 17:21	58.0	116.	57.0	1.92	3.4	0.00/50.0	
Senzo(a) anthracene	13-SEP-01 17:21	56.5	113.	55.1	2.83	5.1	0.00/50.0	
lenzo(a)pyrene	13-SEP-01 17:21	51.9	104.	51.4	1.09	2.1	0.00/50.0	
Senzo(b)fluoranthene	13-SEP-01 17:21	56.1	112.	53.5	5.18	9.7	0.00/50.0	
<pre>senzo(g,h,i)perylene</pre>	13-SEP-01 17:21	50.3	101.	51.9	3.36	6.5	0.00/50.0	
Senzoic acid	<u>13-SEP-01 17:21</u>	22.8	38.8	22.9	0.190	0.83	0.00/50.0	
enzyl alcohol	13-SEP-01 17:21	45.9	91.8	44.0	3.92	8.9	0.00/50.0	
is(2-chloroethyl)ether	13-SEP-01 17:21	40.9	81.7	39.8	2.07	5.2	0.00/50.0	
is(2-chloroisopropyl)ether	13-SEP-01 17:21	38.9	77.8	38.1	1.66	4.4	0.00/50.0	
is(2-ethylhexyl)phthalate	13-SEP-01 17:21	62.9	123.	62.7	0.423	0.67	0.00/50.0	
utylbenzylphthalate	13-SEP-01 17:21	55.5	111.	55.2	0.590	1.1	0.00/50.0	
hrysene	13-SEP-01 17:21	54.1	108.	56.5	4.88	8.6	0.00/50.0	
i-n-butylphthalate	13-SEP-01 17:21	56.8	114.	55.5	2.57	4.6	0.00/50.0	id spinos
i-n-octylphthalate	13-SEP-01 17:21	62.3	125.	57.8	9.02	16.	0.00/50.0	
ibenz(a,h)Anthracene	13-SEP-01 17:21	49.9	99.9	50.6	1.38	2.7	0.00/50.0	
ibenzofuran	13-SEP-01 17:21	50.8	102.	50.2	1.07	2.1	0.00/50.0	
iethylphthalate	13-SEP-01 17:21	55.2	110.	53.9	2.56	4.7	0.00/50.0	
imethylphthalate	13-SEP-01 17:21	48.9	97.7	50.5	3.23	6.4	0.00/50.0	
luoranthene	13-SEP-01 17:21	58.5	117.	56.4	4.17	7.4	0.00/50.0	
luorene	13-SEP-01 17:21	53.0	106.	53.5	0.985	1.8	0.00/50.0	
exachlorobenzene	13-SEP-01 17:21	53.8	108.	53.4	0.710	1.3	0.00/50.0	
exachlorobutadiene	13-SEP-01 17:21	43.6	87.3	42.3	2.60	6.1	0.00/50.0	
exachlorocyclopentadiene	13-SEP-01 17:21	31.1	62.3	32.2	2.21	6.9	0.00/50.0	
exachloroethane	13-SEP-01 17:21	35.4	70.8	35.0	0.729	2.1	0.00/50.0	
ndeno(1,2,3-c,d)pyrene	13-SEP-01 17:21	50.2	100.	50.9	1.49	2.9	0.00/50.0	
sophorone	13-SEP-01 17:21	46.3	92.7	45.7	1.21	2.6	0.00/50.0	
-Nitrosodi-n-propyl amine	13-SEP-01 17:21	41.1	82.2	42.2	2.23	5.3	0.00/50.0	
-Nitrosodiphenylamine	13-SEP-01 17:21	54.4	109.	53.9	1.03	1.9	0.00/50.0	
aphthalene	13-SEP-01 17:21	41.1	82.2	40.2	1.73	4.3	0.00/50.0	
itrobenzene	13-SEP-01 17:21	44.0	88.0	44.0	0.0780	0.18	0.00/50.0	
entachlorophenol	13-SEP-01 17:21	64.6	129.	65.6	2.10	3.2	0.00/50.0	
henanthrene	13-SEP-01 17:21	57.4	115.	56.1	2.63	4.7	0.00/50.0	-
henol	13-SEP-01 17:21	20.0	39.9	19.7	0.482	2.4	0.00/50.0	
yrene	13-SEP-01 17:21	55.5	111.	54.5	1.99	3.6	0.00/50.0	
is(2-Chloroethoxy)methane	13-SEP-01 17:21	47.3	94.6	47.1	0.426	0.91	0.00/50.0	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

Client Name..... North Dakota State Water Commission Release Number..... Not Provided

Matrix....: WATERA Reporting Units....: ug/L

DCL Preparation Group: G018B007 Date Prepared....: 11-SEP-01 00:00 Preparation Method...: 3510B

DCL Sample Name...: QC-188055-1 Date Printed....: 14-SEP-01 15:03

DCL Analysis Group: G018B007 Analysis Method...: SW 8270 Instrument Type ...: GC/MS SV Instrument ID....: 5972-0 Column Type....: DB5 30m x .32mm X Primary Confirmation

QC Limit Type....: Method

Analytical Results

Analyta	Date	Margot	Beault	Percent	QC	QC
Analyte	Allaryzeu	Target	Result	Recovery	Limits	Flag
1,2,4-Trichlorobenzene	13-SEP-01 13:10	50.0	44.3	88.6	44.0/142.	
1,2-Dichlorobenzene	13-SEP-U1 13:10	50.0	41.9	83.7	42.0/155.	
1,3-Dichioropenzene	13-SEP-UI 13:10	50.0	35.9	71.7	36.0/125.	
1,4-Dichioropenzene	13-SEP-U1 13:10	50.0	36.8	73.6	30.0/125.	
2,4,5-Trichlorophenol	13-SEP-01 13:16	50.0	47.3	94.7	25.0/175.	
2,4,6-Trichlorophenol	13-SEP-01 13:16	50.0	48.7	97.5	39.0/128.	
2,4-Dichiorophenol	13-SEP-01 13:16	50.0	49.1	98.2	46.0/125.	
2,4-Dimethylphenol	13-SEP-01 13:16	50.0	41.0	82.1	45.0/139.	
2,4-Dinitrophenol	13-SEP-01 13:16	50.0	53.5	107.	30.0/151.	
2,4-Dinitrotoluene	13-SEP-01 13:16	50.0	53.3	107.	39.0/139.	_
2,6-Dinitrotoluene	13-SEP-01 13:16	50.0	54.4	109.	51.0/125.	
2-Chloronaphthalene	13-SEP-01 13:16	50.0	45.3	90.6	60.0/125.	
2-Chlorophenol	13-SEP-01 13:16	50.0	45.5	91.0	41.0/125.	
2-Methylnaphthalene	13-SEP-01 13:16	50.0	49.2	98.4	41.0/125.	
2-Methylphenol	13-SEP-01 13:16	50.0	33.6	67.1	25.0/125.	
2-Nitroaniline	13-SEP-01 13:16	50.0	54.0	108.	50.0/125.	
2-Nitrophenol	13-SEP-01 13:16	50.0	50.7	101.	44.0/125.	
3,3'-Dichlorobenzidine	13-SEP-01 13:16	50.0	48.3	96.7	29.0/175.	
3-Nitroaniline	13-SEP-01 13:16	50.0	59.9	120.	51.0/125.	
4,6-Dinitro-2-Methylphenol	13-SEP-01 13:16	50.0	55.3	111.	26.0/134.	
4-Bromophenyl Phenyl Ether	13-SEP-01 13:16	50.0	47.4	94.7	53.0/127.	
4-Chloro-3-methylphenol	13-SEP-01 13:16	50.0	56.5	113.	44.0/125.	
4-Chloroaniline	13-SEP-01 13:16	50.0	45.4	90.8	45.0/136.	
4-Chlorophenyl Phenyl Ether	13-SEP-01 13:16	50.0	53.9	108.	51.0/132.	· · · · · · · · · · · · · · · ·
4-Methylphenol	13-SEP-01 13:16	50.0	33.3	66.6	33.0/125.	
4-Nitroaniline	13-SEP-01 13:16	50.0	46.4	92.7	40.0/143.	18 - C
4-Nitrophenol	13-SEP-01 13:16	50.0	23.2	46.5	25.0/131.	
Acenaphthene	13-SEP-01 13:16	50.0	50.1	100.	49.0/125.	
Acenaphthylene	13-SEP-01 13:16	50.0	47.4	94.9	47.0/125.	
Anthracene	13-SEP-01 13:16	50.0	55.0	110.	45.0/165.	
Benzo(a)anthracene	13-SEP-01 13:16	50.0	52.2	104.	51.0/133.	
Benzo(a)pyrene	13-SEP-01 13:16	50.0	52.8	106.	41.0/125.	
Benzo(b)fluoranthene	13-SEP-01 13:16	50.0	48.8	97.7	37.0/125.	
Benzo(g,h,i)perylene	13-SEP-01 13:16	50.0	53.4	107.	34.0/149.	- Alter -
Benzoic acid	13-SEP-01 13:16	50.0	11.3	22.6	25.0/162.	*
Benzyl alcohol	13-SEP-01 13:16	50.0	43.8	87.5	35.0/125.	
Bis(2-chloroethyl)ether	13-SEP-01 13:16	50.0	37.7	75.4	44.0/125.	
Bis(2-chloroisopropyl)ether	13-SEP-01 13:16	50.0	39.1	78.2	36.0/166.	
Bis(2-ethylhexyl)phthalate	13-SEP-01 13:16	50.0	63.8	128.	33.0/129.	
Butylbenzylphthalate	13-SEP-01 13:16	50.0	57.8	116.	26.0/125.	
Chrysene	13-SEP-01 13:16	50.0	59.5	119.	55.0/133.	
Di-n-butylphthalate	13-SEP-01 13:16	50.0	54.2	108.	34.0/126.	
Di-n-octylphthalate	13-SEP-01 13:16	50.0	68.0	136.	38.0/127.	*
Dibenz(a,h)Anthracene	13-SEP-01 13:16	50.0	52.0	104.	50.0/125.	
Dibenzofuran	13-SEP-01 13:16	50.0	48.0	96.1	52.0/125.	
Diethylphthalate	13-SEP-01 13:16	50.0	54.7	109.	37.0/125.	
Dimethylphthalate	13-SEP-01 13:16	50.0	51.7	103.	25 0/175	

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

.ient Name..... North Dakota State Water Commission

DCL Sample Name...: QC-188055-1

Date Printed....: 14-SEP-01 15:03

nalytical Results

alyte	Date Analyzed	Target	Result	Percent Recovery	QC Limits	QC Flag
.uoranthene	13-SEP-01 13:16	50.0	54.6	109.	47.0/125.	
uorene	13-SEP-01 13:16	50.0	51.2	102.	48.0/139.	
exachlorobenzene	13-SEP-01 13:16	50.0	49.5	99.0	46.0/133.	
exachlorobutadiene	13-SEP-01 13:16	50.0	41.4	82.9	25.0/125.	
exachlorocyclopentadiene	13-SEP-01 13:16	50.0	32.6	65.2	41.0/125.	
exachloroethane	13-SEP-01 13:16	50.0	33.7	67.4	25.0/153.	
ideno(1,2,3-c,d)pyrene	13-SEP-01 13:16	50.0	53.3	107.	27.0/160.	
sophorone	13-SEP-01 13:16	50.0	45.7	91.4	26.0/175.	
-Nitrosodi-n-propyl amine	13-SEP-01 13:16	50.0	40.4	80.8	37.0/125.	
-Nitrosodiphenylamine	13-SEP-01 13:16	50.0	51.9	104.	27.0/125.	
iphthalene	13-SEP-01 13:16	50.0	40.1	80.2	50.0/125.	
trobenzene	13-SEP-01 13:16	50.0	44.8	89.5	46.0/133.	
entachlorophenol	13-SEP-01 13:16	50.0	60.7	121.	28.0/136.	
lenanthrene	13-SEP-01 13:16	50.0	53.0	106.	54.0/125.	
nenol	13-SEP-01 13:16	50.0	18.3	36.6	25.0/125.	
/rene	13-SEP-01 13:16	50.0	58.0	116.	47.0/136.	
is(2-Chloroethoxy)methane	13-SEP-01 13:16	50.0	46.5	93.0	49.0/125.	

DCL Sample Name...: QD-188055-1

nalytical Results

nalyte	Date Analyzed	Duplicate Result	Percent Recovery	Mean	Range	RPD	QC Limits	OC Flag
2.4-Trichlorobenzene	13-SEP-01 13:46	42.6	85.3	43.5	1.65	3.8	0.00/20.0	
2-Dichlorobenzene	13-SEP-01 13:46	38.2	76.4	40.0	3.67	9.2	0.00/20.0	
,3-Dichlorobenzene	13-SEP-01 13:46	36.3	72.6	36.1	0.469	1.3	0.00/20.0	
4-Dichlorobenzene	13-SEP-01 13:46	35.6	71.1	36.2	1.22	3.4	0.00/20.0	
4.5-Trichlorophenol	13-SEP-01 13:46	45.9	91.7	46.6	1.49	3.2	0.00/20.0	
4,6-Trichlorophenol	13-SEP-01 13:46	47.3	94.7	48.0	1.40	2.9	0.00/20.0	
4-Dichlorophenol	13-SEP-01 13:46	49.7	99.4	49.4	0.583	1.2	0.00/20.0	
4-Dimethylphenol	13-SEP-01 13:46	42.8	85.6	41.9	1.79	4.3	0.00/20.0	
4-Dinitrophenol	13-SEP-01 13:46	53.5	107.	53.5	0.0300	0.056	0.00/20.0	
.4-Dinitrotoluene	13-SEP-01 13:46	54.7	109.	54.0	1.43	2.6	0.00/20.0	
.6-Dinitrotoluene	13-SEP-01 13:46	53.3	107.	53.8	1.12	2.1	0.00/20.0	
-Chloronaphthalene	13-SEP-01 13:46	46.2	92.5	45.8	0.919	2.0	0.00/20.0	
-Chlorophenol	13-SEP-01 13:46	42.3	84.6	43.9	3.19	7.3	0.00/20.0	
-Methylnaphthalene	13-SEP-01 13:46	48.4	96.9	48.8	0.756	1.5	0.00/20.0	
-Methylphenol	13-SEP-01 13:46	39.5	79.0	36.5	5.93	16.	0.00/20.0	
-Nitroaniline	13-SEP-01 13:46	53.3	107.	53.7	0.716	1.3	0.00/20.0	
-Nitrophenol	13-SEP-01 13:46	50.9	102.	50.8	0.208	0.41	0.00/20.0	
.3'-Dichlorobenzidine	13-SEP-01 13:46	51.3	103.	49.8	2.91	5.8	0.00/20.0	
-Nitroaniline	13-SEP-01 13:46	55.9	112.	57.9	3.97	6.9	0.00/20.0	
.6-Dinitro-2-Methylphenol	13-SEP-01 13:46	52.7	105.	54.0	2.63	4.9	0.00/20.0	
-Bromophenyl Phenyl Ether	13-SEP-01 13:46	48.2	96.3	47.8	0.786	1.6	0.00/20.0	
-Chloro-3-methylphenol	13-SEP-01 13:46	55.1	110.	55.8	1.35	2.4	0.00/20.0	
-Chloroaniline	13-SEP-01 13:46	47.9	95.7	46.6	2.48	5.3	0.00/20.0	
-Chlorophenyl Phenyl Ether	13-SEP-01 13:46	54.5	109.	54.2	0.601	1.1	0.00/20.0	
-Methylphenol	13-SEP-01 13:46	33.5	67.1	33.4	0.234	0.70	0.00/20.0	
-Nitroaniline	13-SEP-01 13:46	48.8	97.7	47.6	2.48	5.2	0.00/20.0	
-Nitrophenol	13-SEP-01 13:46	20.9	41.8	22.1	2.37	11.	0.00/20.0	
cenaphthene	13-SEP-01 13:46	49.4	98.7	49.7	0.687	1.4	0.00/20.0	ļ
cenaphthylene	13-SEP-01 13:46	47.7	95.5	47.6	0.308	0.65	0.00/20.0	<u> </u>

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 Web Page: www.datachem.com FAX (801) 268-9992 E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

Client Name.....: North Dakota State Water Commission

DCL Sample Name...: QD-188055-1 Date Printed.....: 14-SEP-01 15:03

Analytical Results

Analyte	Date Analyzed	Duplicate Result	Percent	Mean	Range	RPD	QC Limits	OC Flag
Anthracene	13-SEP-01 13:46	54 5	109	54 8	0 547	1 0	0.00/20.0	I Lay
Benzo (a) anthracene	13-SEP-01 13:46	49.9	99.8	51.1	2.34	4.6	0 00/20 0	
Benzo(a)pvrene	13-SEP-01 13:46	53.0	106.	52.9	0.160	0.30	0.00/20.0	
Benzo(b)fluoranthene	13-SEP-01 13:46	49.1	98.3	49.0	0.293	0.60	0.00/20.0	
Benzo(g,h,i)pervlene	13-SEP-01 13:46	54.3	109.	53.8	0.922	1.7	0.00/20.0	
Benzoic acid	13-SEP-01 13:46	11.5	22.9	11.4	0.165	1.5	0.00/20.0	
Benzyl alcohol	13-SEP-01 13:46	44.5	89.1	44.1	0.782	1.8	0.00/20.0	
Bis(2-chloroethyl)ether	13-SEP-01 13:46	43.3	86.5	40.5	5.60	14.	0.00/20.0	
Bis(2-chloroisopropyl)ether	13-SEP-01 13:46	38.2	76.4	38.6	0.882	2.3	0.00/20.0	
Bis(2-ethylhexyl)phthalate	13-SEP-01 13:46	56.8	114.	60.3	7.03	12.	0.00/20.0	
Butylbenzylphthalate	13-SEP-01 13:46	54.3	109.	56.0	3.52	6.3	0.00/20.0	
Chrysene	13-SEP-01 13:46	57.2	114.	58.4	2.29	3.9	0.00/20.0	
Di-n-butylphthalate	13-SEP-01 13:46	55.6	111.	54.9	1.36	2.5	0.00/20.0	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Di-n-octylphthalate	13-SEP-01 13:46	55.5	111.	61.8	12.6	20.	0.00/20.0	*
Dibenz(a,h)Anthracene	13-SEP-01 13:46	50.5	101.	51.2	1.45	2.8	0.00/20.0	
Dibenzofuran	13-SEP-01 13:46	50.2	100.	49.1	2.15	4.4	0.00/20.0	
Diethylphthalate	13-SEP-01 13:46	57.2	114.	55.9	2.52	4.5	0.00/20.0	
Dimethylphthalate	13-SEP-01 13:46	51.7	103.	51.7	0.0560	0.11	0.00/20.0	
Fluoranthene	13-SEP-01 13:46	54.1	108.	54.3	0.508	0.94	0.00/20.0	
Fluorene	13-SEP-01 13:46	55.3	111.	53.2	4.11	7.7	0.00/20.0	
Hexachlorobenzene	13-SEP-01 13:46	49.4	98.8	49.5	0.0800	0.16	0.00/20.0	
Hexachlorobutadiene	13-SEP-01 13:46	41.0	82.0	41.2	0.436	1.1	0.00/20.0	
Hexachlorocyclopentadiene	13-SEP-01 13:46	32.1	64.1	32.3	0.540	1.7	0.00/20.0	
Hexachloroethane	13-SEP-01 13:46	31.4	62.9	32.6	2.24	6.9	0.00/20.0	
Indeno(1,2,3-c,d)pyrene	13-SEP-01 13:46	51.8	104.	52.6	1.56	3.0	0.00/20.0	
Isophorone	13-SEP-01 13:46	49.6	99.1	47.6	3.84	8.1	0.00/20.0	
N-Nitrosodi-n-propyl amine	13-SEP-01 13:46	42.9	85.8	41.7	2.49	6.0	0.00/20.0	
N-Nitrosodiphenylamine	<u>13-SEP-01 13:46</u>	47.9	95.9	49.9	3.96	7.9	0.00/20.0	
Naphthalene	13-SEP-01 13:46	39.1	78.2	39.6	1.01	2.5	0.00/20.0	
Nitrobenzene	13-SEP-01 13:46	48.0	96.0	46.4	3.26	7.0	0.00/20.0	
Pentachlorophenol	<u>13-SEP-01 13:46</u>	59.4	119.	60.1	1.30	2.2	0.00/20.0	
Phenanthrene	13-SEP-01 13:46	53.6	107.	53.3	0.690	1.3	0.00/20.0	
Phenol	13-SEP-01 13:46	19.0 .	38.0	18.7	0.711	3.8	0.00/20.0	
Pyrene	<u>13-SEP-01 13:46</u>	53.3	107.	55.6	4.61	8.3	0.00/20.0	
bis(2-Chloroethoxy)methane	13-SEP-01 13:46	50.3	101.	48.4	3.79	7.8	0.00/20.0	

038

-

QUALITY CONTROL DATA SHEET SURROGATE SUMMARY

Date Printed....: 14-SEP-01 15:03

DCL Analysis Group: G018B007 Analysis Method...: SW 8270

DCL Prep Group....: G018B007 Preparation Method: 3510B

QC Limit Type....: Method

Surrogate Recoveries

urr. ID	2,4,6-5	Tribromophe	enol	2-F11	lorobiphen	yl	2-F.	luoropheno	1
C Limits		10.0/123.		4	43.0/116.			21.0/100.	
CL Sample umber	Analyte Result	Spiked Amount	% Rec.Q	Analyte Result	Spiked Amount	Rec.Q	Analyte Result	Spiked Amount	Rec.Q
1E01962	56.0	50.0	112.	44.0	50.0	88.1	26.4	50.0	52.8
1E01963	49.3	50.0	98.7	40.0	50.0	80.0	21.6	50.0	43.1
1E01964	60.6	50.0	121.	42.3	50.0	84.7	29.1	50.0	58.2
1E01965	58.3	50.0	117.	45.8	50.0	91.5	24.6	50.0	49.2
1E01966	54.8	50.0	110.	45.1	50.0	90.3	25.8	50.0	51.7
1E01966MS	52.4	50.0	105.	42.6	50.0	85.3	23.4	50.0	46.8
1E01966MSD	54.8	50.0	110.	43.5	50.0	87.0	24.4	50.0	48.8
1E01967	57.4	50.0	115.	43.0	50.0	86.1	24.7	50.0	49.3
1E01968	46.5	50.0	92.9	39.4	50.0	78.9	24.8	50.0	49.6
1E01969	53.8	50.0	108.	46.5	50.0	93.1	27.5	50.0	55.0
1E01970	34.8	50.0	69.6	35.9	50.0	71.8	25.1	50.0	50.1
1E01971	18.4	50.0	36.8	42.0	50.0	84.0	23.3	50.0	46.6
1E01972	40.1	50.0	80.1	44.4	50.0	88.8	26.2	50.0	52.4
L-188055-1	49.0	50.0	98.0	41.6	50.0	83.3	26.1	50.0	52.1
C-188055-1	59.1	50.0	118.	44.0	50.0	88.1	23.4	50.0	46.7
D-188055-1	57.7	50.0	115.	45.3	50.0	90.6	24.2	50.0	48.4

urr. ID	Niti	cobenzene-c	15	I	Phenol-d5		Terphenyl-d14				
C Limits		35.0/114.			10.0/94.0			33.0/141.			
CL Sample umber	Analyte Result	Spiked Amount	Rec.Q	Analyte Result	Spiked Amount	Rec.Q	Analyte Result	Spiked Amount	% Rec.Q		
1E01962	44.2	50.0	88.4	21.0	50.0	42.1	51.9	50.0	104.		
1E01963	44.2	50.0	88.4	19.4	50.0	38.8	50.2	50.0	100.		
1E01964	43.6	50.0	87.2	21.2	50.0	42.3	41.2	50.0	82.4		
1E01965	40.8	50.0	81.6	19.2	50.0	38.4	43.4	50.0	86.8		
1E01966	46.5	50.0	93.0	22.8	50.0	45.6	48.6	50.0	97.3		
1E01966MS	43.6	50.0	87.2	17.2	50.0	34.3	51.0	50.0	102.		
1E01966MSD	44.8	50.0	89.6	18.1	50.0	36.1	47.8	50.0	95.7		
1E01967	42.8	50.0	85.6	19.5	50.0	38.9	44.8	50.0	89.5		
1E01968	39.4	50.0	78.8	18.3	50.0	36.7	45.1	50.0	90.2		
1E01969	43.1	50.0	86.3	19.9	50.0	39.9	44.5	50.0	89.0		
1E01970	39.8	50.0	79.6	20.6	50.0	41.2	31.7	50.0	63.5		
1E01971	42.6	50.0	85.2	17.6	50.0	35.1	40.4	50.0	80.9		
1E01972	40.6	50.0	81.2	19.4	50.0	38.8	41.2	50.0	82.4		
L-188055-1	43.3	50.0	86.7	19.2	50.0	38.3	47.1	50.0	94.2		
C-188055-1	43.3	50.0	86.6	16.8	50.0	33.6	58.4	50.0	117.		
D-188055-1	41.9	50.0	83.9	17.9	50.0	35.7	53.6	50.0	107.		

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700FAX (801) 268-9992Web Page: www.datachem.comE-mail: lab@datachem.com

latrix..... WATERA
:eporting Units...... ug/L

elease Number..... Not Provided

:lient Name.....: North Dakota State Water Commission

DataChem Laboratories CHAIN-OF-CUSTODY

Page 1 of 2

Results due by: 28-Sep-2001

Project/Job	/Task: P0186001		Split:		Root Set	D: 01E-0300 *	Re	porting Group	04			#
Client: No	rth Dakota State V	Vater Commission				Account: 08001			Sen		çi 👘 k	В
Comments:							2	Analysis	nivo	k.		o t
Verified:	05 9/1/0							Anarysis	ls by 8			t
Date Sampled	Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2			2700			Š
5-Sep-2001	3-SPRING	01E01962			WATER				X			2
5-Sep-2001	4-RESERVOIR	01E01963			WATER				X			1
5-Sep-2001	6-13101	01E01964			WATER				X			2
5-Sep-2001	6-13102	01E01965			WATER				X			2
4-Sep-2001	5-13098	01E01966			WATER				X			215
4-Sep-2001	5-13098	01E01966MS		MS	WATER				X			1
4-Sep-2001	5-13098	01E01966MSD		MSD	WATER			1	X			0
4-Sep-2001	DUP 1	01E01967			WATER				X			215
4-Sep-2001	1-13103	01E01968			WATER				X			2
4-Sep-2001	1-13104	01E01969			WATER				X			1

ORIGIN	IAL FIELD SAN	IPLE CHAIN-OF-CUSTO	DY	SAMPLE PREPARATION / ANALYSIS CHAIN-OF-CUSTODY Sample Prep/Analysis for: Lab Notebook No.: Prepared/Analyzed by: Date/Time:					
Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location		
Walk-in/Boot Shelf/Fridge	9/2/21 KOG	R-33-1 JP	Labeling/Shelving						
R-33-1	9/11/01	Walk-in/ Room/ Shelf/ Fridge	Storage:						
				· · · · · · · · · · · · · · · · · · ·	5 AU	a providencial de la vice d'al a de la companya de			
			7						
							an na an taon 1999 - An tao 1999 - An tao An tao 1999 - An tao 1999 - An tao 1999 - An tao 1999 -		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1970 - A				

Check box if there is a continuation page Form: COFC1.01-SWV2.30 Printed 9/7/2001 16:21

e de la composición d

CHAIN-OF-CUSTODY

Page 2 of 2 Results due by: 28-Sep-2001

Project/Jo	b/Task: P0186001		Split:		Root Set	ID: 01E-0300 *		Repo	rting Group	04	T			T	T	#
Client: N	orth Dakota State W	ater Commission				Account: 08001				Ser		5				B
Comments	:	, ,				*	· · · <u>· · · · · · · · · · · · · · · · </u>		Analysis	nivo						0+
Verified:	RS 9/7/01					Ŧ			Allarysis	ls by 8						t I
Date Sampled	Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2	· ·			32700			ji -			e s
4-Sep-2001	LAKE COE	01E01970			WATER					X				-		1
4-Sep-2001	2-13105	01E01971			WATER					x			\vdash	 		Î
4-Sep-2001	5-13197	01E01972			WATER					X				-		1
-, , ,																
		· · · · · · · · · · · · · · · · · · ·														
					· · · · · · · · · · · · · · · · · · ·											

ORIGIN	IAL FIELD SAM	PLE CHAIN-OF-CUSTO	DY	SAMPLE PREPARATION / ANALYSIS CHAIN-OF-CUSTODY Sample Prep/Analysis for: Lab Notebook No.: Prepared/Analyzed by: Date/Time:						
Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location			
Walk-in/ Room/ Shelf/ Fridge	9/7/01 1600	R-33-1 =	Labeling/Shelving							
R-33-1	9/11/01	Walk-in/ Room/Shelf/ Fridge	Storage:							
						1				
					······		······································			
					1					

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

....

TEL. (801	
North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 Dates Sampled: Change of Custody: Date Date Shipped:By CarrierAnalysis Requested: 82	North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 By:

	No	Location	No.	Sample		Test	For		Comments	
			Bottles	Date		0070	0000	0000		
2				8	8260	8270	8330	8332		
		7-	2		D		11	11	1 11 Fina	1-6
21959	1	10x 130 9 0	312		20		-16	14		,
			3-4040	/	3400					
	2			<u> </u>						
,	3									
		7-								
60	4	1305	21-1		k	<u> </u>	IL	IC.		
			31104	p ·	40		ļ			
	5		0 1014	×						
	6									
11	7	DUND	21-1		21-1	1997 - 19 1	12	11		
1 61	<u> </u>	nap a	24 404	0	8/400	1				
	8		in the second		Prive					
	۴–									
	0	1				e.				
	-	This Black		· · · · · · · · · · · · · · · · · · ·						
	10	- I C (B D lan /					1			
		/	<u> </u>		1					
	<u>LL</u>					<u> </u>	<u> </u>			
							1			
	12		<u> </u>				╂───	<u>├</u> ──		
	<u> </u>			<u> </u>				t		
	13		<u>↓</u>	<u> </u>			+			
							+			
	14			ļ	+					
	L		<u> </u>	L	<u> </u>	L., .	1	L		

.

Blank Temperature at time of shipping_____

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission	North Dakota State Water Commission
900 East Boulevard	900 East Boulevard
Bismarck, ND 58505	Bismarck, ND 58505
Dates Sampled:9 /9	By:
Change of Custody: Date 77	By:
Change of Custody: Date	By:
Date Shipped:	By:
Carrier 123 TRV	
VIEVE	

8332

Analysis Requested: 8260B 8270 8330

No	Location	No. Bottles	Sample Date		Test	For		Comments	
				8260 B	8270	8330	8332		
21	3-5pring	#31L	919	9	1]	1	1x traril	boyle
z 2	11 1 5 910 7101/10	3400	91)	3	-				٦
76-	9 - REJEW DOLD	34040	215	B 3			-/		
3									1 H
-	06-13101							12 Exma	Doon
4									
5									
6	······································					. 			
7									
8									
9									
10			····		┟				
11	2								
12		<u> </u>			<u> </u>		ļ		
13	· · · · · · · · · · · · · · · · · · ·								
14							<u> </u>		
		1	l	<u> </u>	L		L	I	I

Blank Temperature at time of shipping

		OIE	-0'300	
Samples To:	DATA CHEM LABORATOR 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 8 TEL. (801	IES 4123-2547		
North I 900 Ea Bisma Dates Chang Date S Carrie	Dakota State Water Commissi ast Boulevard rck, ND 58505 9/5 Sampled: ge of Custody: Date ge of Custody: Date Shipped:	on <u> 15</u> 1 1 1	North Dakota State Water 900 East Boulevard Bismarck, ND 58505 By: By: By:	Commission

Analysis Requested: 8260B 8270

8330

8332

No	Location	No. Bottles	Sample Date		Test	For		Comments	
\square				8260 B	8270	8330	8332	- 1 tional	17.
11	6-13/01	2001L	9/5	×	X	X	Y	and if tonu	Boff
2	6-13102	14	915		X	X	X		Shift
3	tation 1	3/4000	915						;'nı
	Tuip Blank	10 y	ony						100
Ē									(131
5									
6	<u> </u>								
7									
8									
9									-
10	0		<u></u>						
11	1					~	-		
12	2				1	1	1		
1:	3			1-	1	1-			
14	4			1		1_	1		-

Blank Temperature at time of shipping_

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 Dates Sampled:	North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 y: Y: Y:
Analysis Requested: 826	0B 8270 8330 8332

No	Location	No. Bottles	Sample Date		Test	For		Comments	
		Dottioo		8260 B	8270	8330	8332		
, <u>1</u>	5-13098	3	914		1	/	1		
2	· · · · · · · · · · · · · · · · · · ·	4 oul	414	-1					
3	5-13076	1		Ò	1			B J More 1	a offe
4	<u>M3/#**</u>								-4
5	Dupl	3	914	-	1		7		
6		-3	919						
7									
8									
9		1							
10				1	1				
11			<u> </u>	-					٦.
12				1					
13		1				†			
14				+	1	1			

Blank Temperature at time of shipping_____

OIE-0300

DATA CHEM LABORATORIES Samples To: 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 Dates Sampled: B Change of Custody: Date B Change of Custody: Date B Date Shipped: Garrier	North Dakota State Water Commission 900 East Boulevard Bismarct, ND 58805 By: By: By:
--	--

Analysis Requested: 8260B 8270

8330

8332

Ţ	No	Location	No. Bottles	Sample Date		Test	For		Comments	
					8260 B	8270	8330	8332	¥	
965	1	5-13.98	3	914		X	x	X	te / Lexp	20
15/msp	2	MSMSD	3	GIL	13				0	Z
		1,2,4900		"/	0				<	e
ŀ	3	1370 -				11			11.414	
68	4	1-1310 7	+d			X			ICLOUM	
	5							L		
19	6	En (-13/1/4	2			XIL			16 CXFia	
	7									
E	/									
F	8		×	<u> </u>						
ļ	9									
-	10									
F								<u> </u>		
	11						1			
ŀ	12									
	13									
ŀ	14									

Blank Temperature at time of shipping_

DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 2-13/057 TEL. (801 Samples To: yorth Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard 900 East Boulevard Bismarck, ND 58505 Bismarck, ND 58505 By: Dates Sampled: Change of Custody: Date By: By: Change of Custody: Date By: Date Shipped: 0 Carrier 8260B 8270 8330 8332 Analysis Requested:

No	Location	No.	Sample		Test	For		Comments
		Domes	Dale	8260	8270	8330	8332	
	·		90	В	\underline{c}			
1	lake loe	5	41-		1	IL	IC	
		13	9/4	1040				
2								
-	7 17/08		914		11			
3	-d-13/01				7-			
4								
5	5-13191	3	914		10	12	16	
		3-	414-	40 6				
6	TO'REALE			40mL				
7-	Type Dian.							
<u> </u>								
8				<u> </u>		ļ	4	
			<u> </u>					
9			+					
			+					
10				and the second s				
11								
	1						ļ	
12				4				
13				+	+	+		
				+	-	+	+	
14		+						

Blank Temperature at time of shipping_____

Invoice Date: 17-SEP-2001

INVOICE 101-5346 Form RLIMS40-V2.0 09170112275840

Page 1 of 1

Total Amount Due

\$ 4,030.00

Due Date: 17-0CT-2001 Terms: Net 30

Billing ID: 10404 Group Name: 01E-0300-04 Account: 08001

North Dakota State Water Commission Attention: Accounts Payable 900 East Boulevard Bismark, ND 58505

Payor's Reference: Not Provided Company Contact: William M. Schuh

Item DescriptionSample
TypeNo. of
MethodUnit
PriceTotalSemivols by 8270CWATER8270C13\$ 310.00\$ 4,030.00

Total Amount Due \$ 4,030.00

TERMS: A 1.5% per month finance charge will be made on the account if not paid by due date. Customer agrees to pay all collection costs and reasonable attorney's fees. 960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Phone (801) 266-7700 FAX (801) 268-9992 Appendix B-3, EPA Method 8330

October 4, 2001

A SORENSON COMPANY

Mr. William Schuh North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505

Dear Mr. Schuh:

Enclosed is a copy of the analytical report for DCL Set Id #: 01E-0300-01.

Should you have any questions about the enclosed data package, please feel free to contact Mr. Kevin Griffiths, Project Manager, at (801) 266-7700. We would welcome any suggestions that you believe would help us serve you better.

Sincerely,

Heather Taysom Document Control

CINCINNATI LABORATORY 4388 Glendale-Milford Road Cincinnati, Ohio 45242-3706 513-733-5336, Fax 513-733-5347 CORPORATE OFFICE SALT LAKE CITY LABORATORY 960 West LeVoy Drive Salt Lake City, Utah 84123-2547 801-266-7700, Fax 801-268-9992 www.datachem.com

NOVATO OFFICE 11 Santa Yorma Court Novato, California 94945-1123 415-897-9471, Fax 415-893-9469

C:\Documents and Settings\taysom\My Documents\Cover Letters\NDSWC.doc

Case Narrative

Method:8330Analysis:ExplosivesPreparation SOP #:OL-SW-8330Analysis SOP#:OL-SW-8330DCL Set ID's:01E-0300-02

Client: North Dakota State Water Comm. Account: 8001 Matrix: Water

- General Set Information: This lot contained eleven field water samples, a method blank, a laboratory control sample (LCS), an LCS duplicate and a matrix spike (MS).
- **Method Summary:** The samples were extracted using the double salting out procedure prescribed in EPA method 8330. An aliquot of 770 mL of each sample was saturated with salt and extracted twice with acetonitrile by stirring at timed intervals. The acetonitrile extracts were combined and re-extracted with fresh salt water. The final volume of the extract was adjusted to 5 mL for each sample and filtered through a 0.45 um PTFE filter. One part acetonitrile extract was mixed with one part of a 1% calcium chloride solution, then injected into an HP1050 HPLC equipped with UV detection and a Phenomenex Ultracarb ODS(20) C18 column. The instrument was adjusted to the proper operating parameters and allowed to equilibrate until a stable baseline was established. Initial calibration standards were analyzed and linear calibration curves were generated from the data. A continuing calibration standard was analyzed in triplicate at the beginning of sample analysis and singly after each ten samples and at the end of the analysis. The response of the continuing calibration standard must be within method limits when compared to the initial calibration curve.

Samples and QCs were analyzed under identical conditions as those used for initial and continuing calibration. Quantitation was based on calibration curves using the initial calibration standards. Results were reported in units of $\mu g/L$.

Sample Preparation: No anomalies were observed during the preparation of the sample set.

Holding Times: The samples were prepared and analyzed within method holding times.

Dilution(s): No dilutions were required for the analysis of this batch.

Quality Control Data:

Blank: No confirmed method analytes were detected in the method blank sample above the CRDL. This report contains

001

nades

Laboratory Control Sample: All LCS analyte recoveries were within acceptable limits, with the following exceptions. QD-188053-1 had a low recovery for tetryl and a high recovery for 4-amino-2,6-dinitrotoluene.

MS/MSD: Matrix spiking was not performed on this set.

Surrogate recovery: Surrogate recovery was acceptable for all samples from this set.

Instrument QC: All initial instrumental and continuing calibrations samples met method criteria.

Flagging Codes: None.

NC/CAR: NC/CAR #450 was submitted for this set.

Miscellaneous Comments: None.

Confirmation Analyses: Any sample with a positive result was qualitatively analyzed for confirmation on a second column. Only confirmed analytes were reported. For samples requiring confirmation, one part acetonitrile extract was mixed with one part of a 1% calcium chloride solution, then injected into an HP1050 HPLC equipped with UV detection and Waters NovaPak C8 and CN cartridge columns run in series. The instrument was adjusted to the proper operating parameters and allowed to equilibrate until a stable baseline was established. A CCV standard was run to establish retention times and a standard at a level near the reporting limits was run to verify low level sensitivity. The second column analyses were used for qualitative confirmation of analytes based on retention time. If a positive result is confirmed, the quantitative result from the primary column is reported.

Datapackage Table of Contents

Information pertaining to this datapackage is divided into the four categories listed below. A Case Narrative immediately precedes this Table of Contents and contains pertinent information about this datapackage.

Analytical Results	Yellow
Sample Tracking Documentation	. Pink
Analytical Documentation	. Blue
Raw Data	Green

· • • • • • • • • •

Analytical Results

COVER PAGE

ANALYTICAL REPORT FOR North Dakota State Water Commission Phone(701) 328-2739 Fax(701) 328-3696

DCL Report Group..: 01E-0300-02

Date Printed....: 06-OCT-01 17:48

Project Protocol #: P0186001 Client Ref Number.: Not Provided Release Number....: Not Provided

North Dakota State Water Commission Attention: William M. Schuh 900 East Boulevard Bismark, ND 58505

Analysis Method(s): 8330

Client	Laboratory	Date	Date
Sample Name	Sample Name	Sampled	Received
Method Blank	BL-188053-1	NA	NA
LCS	QC-188053-1	NA	NA
LCS Dup	QD-188053-1	NA	NA
7-13086	01E01959	05-SEP-01	07-SEP-01
7-13087	01E01960	05-SEP-01	07-SEP-01
DUP 2	01E01961	05-SEP-01	07-SEP-01
3-SPRING	01E01962	05-SEP-01	07-SEP-01
4-RESERVOIR	01E01963	05-SEP-01	07-SEP-01
6-13101	01E01964	05-SEP-01	07-SEP-01
6-13102	01E01965	05-SEP-01	07-SEP-01
5-13098	01E01966	04-SEP-01	07-SEP-01
5-13098	01E01966MS	04-SEP-01	07-SEP-01
	01E01967	04-SEP-01	07-SEP-01
LAKE COE	01E01970	04-SEP-01	07-SEP-01
5-13197	01E01972	04-SEP-01	07-SEP-01

Analyst: Vaya Terry Ρ. 10/ 8/01 Date Fullmer Tade Kunay Lab Supervisor: Richard W. Wade Dat 004 ----

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE GROUP COMMENTS

Form	RLIMS63H-V1.3
Page	2

G018601D

DCL Report Group..: 01E-0300-02 Date Printed....: 06-0CT-01 17:48

:lient Name...: North Dakota State Water Commission

Release Number....: Not Provided

ample Group Comments

ee narrative for comments.

eneral Information

The DCL QC Database maintains all numerical figures which are input from the pertinent data source. These data have not been rounded to significant figures nor have they been moisture corrected. leports generated from the system, however, list data which have been rounded to the number of significant figures requested by the client or deemed appropriate for the method. This may create unor discrepancies between data which appear on the QC Summary Forms (Forms B-G) and those that would be calculated from rounded analytical results. Additionally, if a moisture correction is performed, lifferences will be observed between the QC data and the surrogate data reported on Form A (or other "eport forms) and corresponding data reported on QC Summary Forms. In these cases, the Form A will indicate the "Report Basis" as well as the moisture value used for making the correction. leport generation options: X

lesult Symbol Definitions

ND - Not Detected above the MDL or IDL (LLD or MDC for radiochemistry).

** - No result could be reported, see sample comments for details.

ualifier Symbol Definitions

- U Not Detected above the MDL or IDL (LLD or MDC for radiochemistry). For radiochemistry the nuclide was not identified by the Canberra Nuclear NID program, activity values reported are calculated using the Canberra Nuclear MINACT program.
- B For organic analysis the qualifier indicates that this analyte was found in the method blank.
- For inorganic analysis the qualifier signifies the value is between the IDL and PQL. J - The qualifier indicates that the value is between the MDL and the PQL. It is also used for indicating an estimated value for tentatively identified compounds in mass spectrometry where a 1:1 response is assumed.
| DATA
CHEM | FORM A (TYPE
SINGLE METHOD AND
SAMPLE ANALYSIS DAT | I)
Alyses
Fa sheet | Form RLIMS63A-V1.3
10060117481816
Page 3 |
|---|--|--|--|
| LABORATORIES
A Sorenson Company
Date Printed: 06-OCT-01 17:
Client Name: North Dakota
Client Ref Number: Not Provided
Sampling Site: Not Applicabl
Release Number: Not Provided | 48
State Water Commission
e
e | Client Sample Name: BL
DCL Sample Name: BL
DCL Report Group: 01
Matrix | S018904X
188053-1
188053-1
E-0300-02
TER
t Applicable
/L |
| DCL Preparation Group: G018902Q
Date Prepared: 10-SEP-01 00:
Preparation Method: 8330
Aliquot Weight/Volume: 770.mL
Net Weight/Volume: Not Required | 00 | DCL Analysis Group: G0
Analysis Method: 83
Instrument Type: HF
Instrument ID: LC
Column Type: UI | 18902Q
30
-LC
8
tracarb ODS
Primary |

Analytical Results

	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
Analyte	25_SEP_01 12.25	0.0758	ND			1	0.013
1,3,5-Trinitrobenzene	2J-35F-01 12.25	0.0356	ND			1	0.013
1,3-Dinitrobenzene	25-SEP-01 12:25	0.0256	ND			1	0.26
2.4.6-Trinitrotoluene	25-SEP-01 12:25	0.0769	DN D				0.13
2.4-Dinitrotoluene	25-SEP-01 12:25	0.0681	ND			<u> </u>	0.13
2 6-Dinitrotoluene	25-SEP-01 12:25	0.0154	ND			1	0.26
2. bmine-4 6-Dinitrotoluene	25-SEP-01 12:25	0.0582	ND			1	0.26
2-Amino-1,0-Dinitiotoluous	25-SEP-01 12:25	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 12:25	0.196	ND		ļ	1	0.52
4-Amino-2.6-Dinitrotoluene	25-SEP-01 12:25	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 12:25	0.123	ND		-		0.52
UNV	25-SEP-01 12:25	0.0445	ND			1	0.26
Nitrobongene	25-SEP-01 12:25	0.0696	ND			1	0.26
NICIODenzene	25-SEP-01 12:25	0.0539	ND			1	0.26
Totrul	25-SEP-01 12:25	0.0853	ND				0.26

Surrogate Recoveries

Analyta	Result	Spiked Amount	Percent Recovery	
A Dinitrotoluene	12.1	13.0	93.0	

Confirmation

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 4

Date Printed....: 06-OCT-01 17:48

Client Ref Number....: Not Provided Sampling Site..... Not Applicable

Release Number....: Not Provided

Client Name.....: North Dakota State Water Commission

Client Sample Name: QC-188053-1 DCL Sample Name...: QC-188053-1 DCL Report Group..: 01E-0300-02

Matrix..... WATER Date Sampled.....: Not Applicable Reporting Units...: ug/L

Date Received..... Not Applicable

DCL Preparation Group: G018902Q Date Prepared.....: 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume...: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,3,5-Trinitrobenzene	25-SEP-01 12:56	0.0758	3.05			1	0.013
1,3-Dinitrobenzene	25-SEP-01 12:56	0.0256	2.60			1	0.013
2,4,6-Trinitrotoluene	25-SEP-01 12:56	0.0769	5.12			1	0.26
2,4-Dinitrotoluene	25-SEP-01 12:56	0.0681	2.64			1	0.13
2,6-Dinitrotoluene	25-SEP-01 12:56	0.0154	5.38			1	0.26
2-Amino-4,6-Dinitrotoluene	25-SEP-01 12:56	0.0582	5.77			1	0.26
2-Nitrotoluene	25-SEP-01 12:56	0.0129	11.1			1	0.52
3-Nitrotoluene	25-SEP-01 12:56	0.196	11.3			1	0.52
4-Amino-2,6-Dinitrotoluene	25-SEP-01 12:56	0.153	6.59			1	0.26
4-Nitrotoluene	25-SEP-01 12:56	0.123	11.3			1	0.52
HMX	25-SEP-01 12:56	0.0445	5.85			1	0.26
Nitrobenzene	25-SEP-01 12:56	0.0696	5.14			1	0.26
RDX	25-SEP-01 12:56	0.0539	5.91			1	0.26
Tetryl	25-SEP-01 12:56	0.0853	5.00			1	0.26

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	12.1	13.0	93.4

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 5 501890CN

Date Printed: 06-OCT-01 17:48	Client Sample Name: QD-188053-1 DCL Sample Name: QD-188053-1 DCL Report Group: 01E-0300-02
Client Ref Number: Not Provided	Matrix WATER
Sampling Site: Not Applicable	Date Sampled: Not Applicable
Release Number: Not Provided	Reporting Units: ug/L
Date Received: Not Applicable	
DCL Preparation Group: G018902Q	DCL Analysis Group: G018902Q
Date Prepared: 10-SEP-01 00:00	Analysis Method: 8330

Date Prepared.....: 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume...: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 3 E Mrinitrohenzene	25-SEP-01 13:27	0.0758	2.74			1	0.013
1.3-Dipitrohenzene	25-SEP-01 13:27	0.0256	3.00			1	0.013
2 4 6-mrinitrotoluene	25-SEP-01 13:27	0.0769	4.08			1	0.26
2 4-Dipitrotoluene	25-SEP-01 13:27	0.0681	3.06			1	0.13
2.6-Dinitrotoluene	25-SEP-01 13:27	0.0154	6.29			1	0.26
2-Amino-4.6-Dinitrotoluene	25-SEP-01 13:27	0.0582	6.36			1	0.26
2-Nitrotoluene	25-SEP-01 13:27	0.0129	12.7				0.52
3-Nitrotoluene	25-SEP-01 13:27	0.196	12.5			1	0.52
4-Amino-2.6-Dinitrotoluene	25-SEP-01 13:27	0.153	9.01		<u></u>		0.26
4-Nitrotoluene	25-SEP-01 13:27	0.123	12.7		<u> </u>		0.52
HMX	25-SEP-01 13:27	0.0445	6.06				0.26
Nitrobenzene	25-SEP-01 13:27	0.0696	6.15			1	0.26
RDX	25-SEP-01 13:27	0.0539	6.31			1 1	0.26
Tatryl	25-SEP-01 13:27	0.0853	2.98	1	1	1 1	0.26

Analyte	Result	Spiked Amount	Percent Recovery	
3 4-Dinitrotoluene	13.5	13.0	104.	

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 6

S01860B9

ate Printed..... 06-0CT-01 17:48

lient Ref Number....: Not Provided ampling Site........ Not Provided

elease Number..... Not Provided

ate Received....: 07-SEP-01 00:00

lient Name.....: North Dakota State Water Commission

Client Sample Name: 7-13086 DCL Sample Name...: 01E01959 DCL Report Group..: 01E-0300-02

Matrix......: WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 図AS Received □Dried

CL Preparation Group: G018902Q ate Prepared.....: 10-SEP-01 00:00 reparation Method...: 8330 liquot Weight/Volume: 770.mL et Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary Confirmation

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
.3.5-Trinitrobenzene	25-SEP-01 13:57	0.0758	ND			1	0.013
.3-Dinitrobenzene	25-SEP-01 13:57	0.0256	ND			1	0.013
.4.6-Trinitrotoluene	25-SEP-01 13:57	0.0769	ND		26	1	0.26
,4-Dinitrotoluene	25-SEP-01 13:57	0.0681	ND			1	0.13
,6-Dinitrotoluene	25-SEP-01 13:57	0.0154	ND			1	0.26
-Amino-4,6-Dinitrotoluene	25-SEP-01 13:57	0.0582	ND			1	0.26
-Nitrotoluene	25-SEP-01 13:57	0.0129	ND			1	0.52
-Nitrotoluene	25-SEP-01 13:57	0.196	ND			1	0.52
-Amino-2,6-Dinitrotoluene	25-SEP-01 13:57	0.153	ND			1	0.26
-Nitrotoluene	25-SEP-01 13:57	0.123	ND			1	0.52
MX	25-SEP-01 13:57	0.0445	ND			1	0.26
itrobenzene	25-SEP-01 13:57	0.0696	ND			1	0.26
DX	25-SEP-01 13:57	0.0539	ND			1	0.26
etrvl	25-SEP-01 13:57	0.0853	ND			1	0.26

urrogate Recoveries

nalyte	Result	Spiked Amount	Percent Recovery
,4-Dinitrotoluene	12.8	13.0	98.8

009

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 06-OCT-01 17:48Client Sample Name: 7-13087
DCL Sample Name...: 01E01960Client Name....: North Dakota State Water CommissionDCL Report Group..: 01E-0300-02Client Ref Number....: Not ProvidedMatrix.....: WATER
Date Sampled.....: 05-SEP-01 00:00Release Number....: Not ProvidedDate Sampled.....: 05-SEP-01 00:00Date Received.....: 07-SEP-01 00:00Report Basis.....: MAS Received □DriedDCL Preparation Group: G018902QDCL Analysis Group: G018902Q

Date Prepared.....: 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary

Analytical Results

analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 3 5 Wrinitrohonzene	25-SEP-01 14:28	0.0758	ND			1	0.013
1,3,5-IIIIICIODenzene	25-SEP-01 14:28	0.0256	ND			1	0.013
2.4.6.Trinitrotoluene	25-SEP-01 14:28	0.0769	ND			1	0.26
2 A_Dipitrotoluene	25-SEP-01 14:28	0.0681	ND			1	0.13
2.6-Dipitrotoluene	25-SEP-01 14:28	0.0154	ND			1	0.26
2-Amino-4 6-Dinitrotoluene	25-SEP-01 14:28	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 14:28	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 14:28	0.196	ND			1	0.52
4-Amino-2.6-Dinitrotoluene	25-SEP-01 14:28	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 14:28	0.123	ND				0.52
HMX	25-SEP-01 14:28	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 14:28	0.0696	ND				0.26
PDY	25-SEP-01 14:28	0.0539	ND			1	0.26
Tetryl	25-SEP-01 14:28	0.0853	ND				0.26

Analyta	Result	Spiked Amount	Percent Recovery	
3 4-Dinitrotoluene	12.1	13.0	92.9	

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 8 S01860BC

)ate Printed.....: 06-OCT-01 17:48

lient Ref Number....: Not Provided

Sampling Site Not Provided

elease Number....: Not Provided

)ate Received.....: 07-SEP-01 00:00

lient Name.....: North Dakota State Water Commission

Client Sample Name: DUP 2 DCL Sample Name...: 01E01961 DCL Report Group..: 01E-0300-02

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🕅 As Received 🗌 Dried

>CL Preparation Group: G018902Q >ate Prepared.....: 10-SEP-01 00:00 >reparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,3,5-Trinitrobenzene	25-SEP-01 16:12	0.0758	ND			1	0.013
, 3-Dinitrobenzene	25-SEP-01 16:12	0.0256	ND			1	0.013
2,4,6-Trinitrotoluene	25-SEP-01 16:12	0.0769	ND			1	0.26
2,4-Dinitrotoluene	25-SEP-01 16:12	0.0681	ND			1	0.13
2.6-Dinitrotoluene	25-SEP-01 16:12	0.0154	ND			1	0.26
2-Amino-4,6-Dinitrotoluene	25-SEP-01 16:12	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 16:12	0.0129	ND	1 10 10-10		1	0.52
-Nitrotoluene	25-SEP-01 16:12	0.196	ND			1	0.52
-Amino-2,6-Dinitrotoluene	25-SEP-01 16:12	0.153	ND			1	0.26
1-Nitrotoluene	25-SEP-01 16:12	0.123	ND			1	0.52
IMX	25-SEP-01 16:12	0.0445	ND			1	0.26
litrobenzene	25-SEP-01 16:12	0.0696	ND			1	0.26
3DX	25-SEP-01 16:12	0.0539	ND			1	0.26
fetryl	25-SEP-01 16:12	0.0853	ND			1	0.26

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	12.8	13.0	98.4

SAMPLE ANALYSIS DATA SHEET

Date Printed: 06-OCT-01 17:48	Client Sample Name: 3-SPRING DCL Sample Name: 01E01962
Client Name: North Dakota State Water Commission	DCL Report Group: 01E-0300-02
Sampling Site: Not Provided	Matrix WATER
Pelease Number: Not Provided	Date Sampled: 05-SEP-01 00:00
Release Mamber	Reporting Units: ug/L
Date Received: 07-SEP-01 00:00	Report Basis: 🕅 As Received 🗌 Dried
DCL Preparation Group: G018902Q	DCL Analysis Group: G018902Q
Date Prepared: 10-SEP-01 00:00	Analysis Method: 8330
Preparation Method: 8330	Instrument Type: HPLC

Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Aliquot Weight/Volume: 770.mL

Net Weight/Volume....: Not Required

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 3 5-Trinitrobenzene	25-SEP-01 16:43	0.0758	ND			1	0.013
1 3-Dinitrobenzene	25-SEP-01 16:43	0.0256	ND			1	0.013
2.4.6-Trinitrotoluene	25-SEP-01 16:43	0.0769	ND			1	0.26
2.4-Dinitrotoluene	25-SEP-01 16:43	0.0681	ND		l	1	0.13
2.6-Dinitrotoluene	25-SEP-01 16:43	0.0154	ND			1	0.26
2-Amino-4.6-Dinitrotoluene	25-SEP-01 16:43	0.0582	ND		L	1	0.26
2-Nitrotoluene	25-SEP-01 16:43	0.0129	ND		L	1	0.52
3-Nitrotoluene	25-SEP-01 16:43	0.196	ND				0.52
4-Amino-2,6-Dinitrotoluene	25-SEP-01 16:43	0.153	ND				0.26
4-Nitrotoluene	25-SEP-01 16:43	0.123	ND				0.52
HMX	25-SEP-01 16:43	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 16:43	0.0696	ND		L	1	0.26
RDX	25-SEP-01 16:43	0.0539	ND		<u> </u>	1	0.26
Tetryl	25-SEP-01 16:43	0.0853	ND			1	0.26

Analyte	Result	Spiked Amount	Percent Recovery
3.4-Dinitrotoluene	11.8	13.0	91.0

DATA CHEM A BORATORIES A Sorenson Company	FORM A (TYPE SINGLE METHOD AND SAMPLE ANALYSIS DAT	I) Alyses Fa sheet	Form RLIMS63A-V1.3 10060117481816 Page 10 s01860BF
te Printed: 06-OCT-01 17:4 lient Name: North Dakota S lient Ref Number: Not Provided ampling Site: Not Provided elease Number: Not Provided ate Received: 07-SEP-01 00:0	18 State Water Commission 90	Client Sample Name: 4 DCL Sample Name: 0 DCL Report Group: 0 Matrix	-RESERVOIR 1E01963 1E-0300-02 ATER 5-SEP-01 00:00 g/L]As Received []Dried
CL Preparation Group: G018902Q ate Prepared: 10-SEP-01 00:0 reparation Method: 8330 liquot Weight/Volume: 770.mL et Weight/Volume: Not Required	00	DCL Analysis Group: G Analysis Method: 8 Instrument Type: H Instrument ID: L Column Type: U	018902Q 330 PLC C-8 ltracarb ODS]Primary]Confirmation
nalytical Results			

Date Dilution CRDL Qual. Result Comment MDL Analyzed nalyte 0.013 ND 1 0.0758 25-SEP-01 17:14 ,3,5-Trinitrobenzene 1 0.013 ND 25-SEP-01 17:14 0.0256 ,3-Dinitrobenzene 0.26 1 ND 25-SEP-01 17:14 0.0769 ,4,6-Trinitrotoluene 0.13 1 0.0681 ND 25-SEP-01 17:14 ,4-Dinitrotoluene 1 0.26 0.0154 ND 25-SEP-01 17:14 ,6-Dinitrotoluene 0.26 1 ND 0.0582 -Amino-4,6-Dinitrotoluene 25-SEP-01 17:14 0.52 25-SEP-01 17:14 1 0.0129 ND -Nitrotoluene 0.52 1 ND 25-SEP-01 17:14 0.196 -Nitrotoluene 1 0.26 ND -Amino-2,6-Dinitrotoluene 0.153 25-SEP-01 17:14 0.52 1 25-SEP-01 17:14 25-SEP-01 17:14 0.123 ND -Nitrotoluene 0.26 1 ND 0.0445 MX 0.26 1 25-SEP-01 17:14 0.0696 ND itrobenzene 0.26 1 ND 0.0539 25-SEP-01 17:14 DX 1 0.26 25-SEP-01 17:14 0.0853 ND etryl

		Spiked	Percent
nalvte	Result	Amount	Recovery
4-Dinitrotoluene	12.2	13.0	94.1

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1006011748181 Page 11

S01860BG

Date Printed..... 06-OCT-01 17:48

Client Ref Number....: Not Provided Sampling Site...... Not Provided

Release Number....: Not Provided

DCL Preparation Group: G018902Q

Preparation Method...: 8330

Aliquot Weight/Volume: 770.mL

Date Received.....: 07-SEP-01 00:00

Date Prepared.....: 10-SEP-01 00:00

Net Weight/Volume....: Not Required

Client Name.....: North Dakota State Water Commission

Client Sample Name: 6-13101 DCL Sample Name...: 01E01964 DCL Report Group..: 01E-0300-02

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🕅 As Received 🗌 Dried

DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,3,5-Trinitrobenzene	25-SEP-01 18:15	0.0758	ND			1	0.013
1,3-Dinitrobenzene	25-SEP-01 18:15	0.0256	ND			1	0.013
2,4,6-Trinitrotoluene	25-SEP-01 18:15	0.0769	ND			1	0.26
2,4-Dinitrotoluene	25-SEP-01 18:15	0.0681	ND	8 3.		1	0.13
2,6-Dinitrotoluene	25-SEP-01 18:15	0.0154	ND	(1	0.26
2-Amino-4,6-Dinitrotoluene	25-SEP-01 18:15	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 18:15	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 18:15	0.196	ND			1	0.52
4-Amino-2,6-Dinitrotoluene	25-SEP-01 18:15	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 18:15	0.123	ND			1	0.52
нмх	25-SEP-01 18:15	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 18:15	0.0696	ND			1	0.26
RDX	25-SEP-01 18:15	0.0539	ND			1	0.26
Tetryl	25-SEP-01 18:15	0.0853	ND			1	0.26

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	13.0	13.0	99.7

014

SAMPLE ANALYSIS DATA SHEET

ate Printed.....: 06-0CT-01 17:48

lient Ref Number....: Not Provided

ampling Site Not Provided

elease Number....: Not Provided

ate Received.....: 07-SEP-01 00:00

lient Name...... North Dakota State Water Commission

Client Sample Name: 6-13102 DCL Sample Name...: 01E01965 DCL Report Group..: 01E-0300-02

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAS Received Dried

CL Preparation Group: G018902Q ate Prepared.....: 10-SEP-01 00:00 reparation Method...: 8330 liquot Weight/Volume: 770.mL et Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type....: Ultracarb ODS X Primary Confirmation

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
.3.5-Trinitrobenzene	25-SEP-01 18:46	0.0758	ND			1	0.013
.3-Dinitrobenzene	25-SEP-01 18:46	0.0256	ND			1	0.013
.4.6-Trinitrotoluene	25-SEP-01 18:46	0.0769	ND			1	0.26
.4-Dinitrotoluene	25-SEP-01 18:46	0.0681	ND			1	0.13
.6-Dinitrotoluene	25-SEP-01 18:46	0.0154	ND			1	0.26
-Amino-4,6-Dinitrotoluene	25-SEP-01 18:46	0.0582	ND			1	0.26
-Nitrotoluene	25-SEP-01 18:46	0.0129	ND			1	0.52
-Nitrotoluene	25-SEP-01 18:46	0.196	ND			1	0.52
-Amino-2.6-Dinitrotoluene	25-SEP-01 18:46	0.153	ND			1	0.26
-Nitrotoluene	25-SEP-01 18:46	0.123	ND			1	0.52
MX	25-SEP-01 18:46	0.0445	ND			1	0.26
itrobenzene	25-SEP-01 18:46	0.0696	ND			1	0.26
DX	25-SEP-01 18:46	0.0539	ND		1	1	0.26
etryl	25-SEP-01 18:46	0.0853	ND			1	0.26

nalyte	Result	Spiked Amount	Percent Recovery
,4-Dinitrotoluene	12.6	13.0	96.6

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 13

S01860BJ

Client Sample Name: 5-13098 DCL Sample Name...: 01E01966 DCL Report Group..: 01E-0300-02 Client Name.....: North Dakota State Water Commission Client Ref Number....: Not Provided Matrix....: WATER Sampling Site..... Not Provided Date Sampled....: 04-SEP-01 00:00 Release Number....: Not Provided Reporting Units...: ug/L Report Basis..... XAs Received Dried Date Received.....: 07-SEP-01 00:00 DCL Analysis Group: G018902Q DCL Preparation Group: G018902Q Analysis Method...: 8330 Date Prepared..... 10-SEP-01 00:00

Date Prepared..... 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS XPrimary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1 3 5-Trinitrohenzene	25-SEP-01 19:17	0.0758	ND			1	0.013
1 3-Dinitrobenzene	25-SEP-01 19:17	0.0256	ND			1	0.013
2 A 6-Trinitrotoluene	25-SEP-01 19:17	0.0769	ND		1	1	0.26
2 4-Dinitrotoluene	25-SEP-01 19:17	0.0681	ND		1	1	0.13
2.6-Dinitrotoluene	25-SEP-01 19:17	0.0154	ND			1	0.26
2-Amino-4.6-Dinitrotoluene	25-SEP-01 19:17	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 19:17	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 19:17	0.196	ND			1 ·	0.52
4-Amino-2.6-Dinitrotoluene	25-SEP-01 19:17	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 19:17	0.123	ND			1	0.52
HMX	25-SEP-01 19:17	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 19:17	0.0696	ND			1	0.26
RDX	25-SEP-01 19:17	0.0539	ND			1	0.26
Tetryl	25-SEP-01 19:17	0.0853	ND			1	0.26

Analyte	Result	Spiked Amount	Percent Recovery
3.4-Dinitrotoluene	13.0	13.0	100.

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 06-OCT-01 17:48

Client Ref Number....: Not Provided Sampling Site...... Not Provided

Release Number....: Not Provided

Date Received.....: 07-SEP-01 00:00

Client Name......: North Dakota State Water Commission

Client Sample Name: DUP 1 DCL Sample Name...: 01K01967 DCL Report Group..: 01K-0300-02

Matrix...... WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 図As Received □Dried

DCL Preparation Group: G018902Q Date Prepared..... 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,3,5-Trinitrobenzene	25-SEP-01 20:18	0.0758	ND				0.013
1,3-Dinitrobenzene	25-SEP-01 20:18	0.0256	ND			1 1	0.013
2,4,6-Trinitrotoluene	25-SEP-01 20:18	0.0769	ND			1	0.26
2,4-Dinitrotoluene	25-SEP-01 20:18	0.0681	ND			1	0.13
2,6-Dinitrotoluene	25-SEP-01 20:18	0.0154	ND			1	0.26
2-Amino-4,6-Dinitrotoluene	25-SEP-01 20:18	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 20:18	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 20:18	0.196	ND			1	0.52
4-Amino-2,6-Dinitrotoluene	25-SEP-01 20:18	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 20:18	0.123	ND			1	0.52
HMX	25-SEP-01 20:18	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 20:18	0.0696	ND			1	0.26
RDX	25-SEP-01 20:18	0.0539	ND			1	0.26
Fetryl	25-SEP-01 20:18	0.0853	ND			1	0.26

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	12.0	13.0	92.3

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 15

S01860BN

 Date Printed.....: 06-OCT-01 17:48
 Client Sample Name: LAKE COE

 DCL Sample Name...: 01E01970
 DCL Sample Name...: 01E01970

 Client Name....: North Dakota State Water Commission
 DCL Report Group..: 01E-0300-02

 Client Ref Number...: Not Provided
 Matrix.....: WATER

 Sampling Site.....: Not Provided
 Date Sampled.....: 04-SEP-01 00:00

 Release Number....: Not Provided
 Date Sampled....: 04-SEP-01 00:00

 Date Received.....: 07-SEP-01 00:00
 Report Basis....: MAS Received Dried

 DCL Preparation Group: G018902Q
 DCL Analysis Group: G018902Q

 Date Propared
 USEP-01 00:00

Date Prepared...... 10-SEP-01 00:00 Preparation Method...: 8330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1.3.5-Trinitrobenzene	25-SEP-01 20:49	0.0758	ND			1	0.013
1.3-Dinitrobenzene	25-SEP-01 20:49	0.0256	ND		Τ	1	0.013
2.4.6-Trinitrotoluene	25-SEP-01 20:49	0.0769	ND			1	0.26
2.4-Dinitrotoluene	25-SEP-01 20:49	0.0681	ND			1	0.13
2.6-Dinitrotoluene	25-SEP-01 20:49	0.0154	ND			1	0.26
2-Amino-4.6-Dinitrotoluene	25-SEP-01 20:49	0.0582	ND			1	0.26
2-Nitrotoluene	25-SEP-01 20:49	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 20:49	0.196	ND		1	1	0.52
4-Amino-2.6-Dinitrotoluene	25-SEP-01 20:49	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 20:49	0.123	ND			1	0.52
HMX	25-SEP-01 20:49	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 20:49	0.0696	ND			1	0.26
RDX	25-SEP-01 20:49	0.0539	ND			1	0.26
Tetryl	25-SEP-01 20:49	0.0853	ND			1	0.26

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	13.3	13.0	102.

018

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10060117481816 Page 16 S01860BP

Date Printed.....: 06-OCT-01 17:48

	DCL Sample Name: 01801972
Client Name: North Dakota State Water Commission	DCL Report Group: 01E-0300-02
Client Ref Number: Not Provided	
Sampling Site: Not Provided	Matrix
Release Number: Not Provided	Date Sampled: 04-SEP-01 00:00
	Reporting Units: ug/L
Date Received: 07-SEP-01 00:00	Report Basis: 🛛 As Received 🗌 Dried
DCL Preparation Group: G018902Q	DCL Analysis Group: G018902Q

DCL Preparation Group: G018902Q Date Prepared.....: 10-SEP-01 00:00 Preparation Method...: &330 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G018902Q Analysis Method...: 8330 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type.....: Ultracarb ODS X Primary Confirmation

Client Sample Name: 5-13197

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
1,3,5-Trinitrobenzene	25-SEP-01 21:19	0.0758	ND			1	0.013
1,3-Dinitrobenzene	25-SEP-01 21:19	0.0256	ND		2 23 39	1	0.013
2,4,6-Trinitrotoluene	25-SEP-01 21:19	0.0769	ND			1	0.26
2,4-Dinitrotoluene	25-SEP-01 21:19	0.0681	ND			1	0.13
2,6-Dinitrotoluene	25-SEP-01 21:19	0.0154	ND			1	0.26
2-Amino-4,6-Dinitrotoluene	25-SEP-01 21:19	0.0582	ND		6 5 d75 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	1	0.26
2-Nitrotoluene	25-SEP-01 21:19	0.0129	ND			1	0.52
3-Nitrotoluene	25-SEP-01 21:19	0.196	ND			1	0.52
4-Amino-2,6-Dinitrotoluene	25-SEP-01 21:19	0.153	ND			1	0.26
4-Nitrotoluene	25-SEP-01 21:19	0.123	ND			1	0.52
HMX	25-SEP-01 21:19	0.0445	ND			1	0.26
Nitrobenzene	25-SEP-01 21:19	0.0696	ND			1	0.26
RDX	25-SEP-01 21:19	0.0539	ND			1	0.26
Fetryl	25-SEP-01 21:19	0.0853	ND			1	0.26

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
3,4-Dinitrotoluene	12.7	13.0	97.7

019

QUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE

S01860BK

Client Name.....: North Dakota State Water Commission Release Number.....: Not Provided

Matrix....: WATER Reporting Units.....: ug/L

DCL Preparation Group: G018902Q Date Prepared.....: 10-SEP-01 00:00 Preparation Method...: 8330 DCL Sample Name...: 01E01966MS Date Printed.....: 06-0CT-01 17:48

DCL Analysis Group: G018902Q Analysis Method...: SW8330-14 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type....: Ultracarb ODS X Primary Confirmation

QC Limit Type....: Method

Analytical Results

Analyte	Date Analyzed	Sample Result	Spiked Result	Spike Added	Percent Recovery	QC Limits	QC Flag
1.3.5-Trinitrobenzene	25-SEP-01 19:47	0.00	3.17	3.25	97.5	50.0/125.	
1,3-Dinitrobenzene	25-SEP-01 19:47	0.00	2.73	3.25	84.1	50.0/125.	
2.4.6-Trinitrotoluene	25-SEP-01 19:47	0.00	5.21	6.49	80.3	50.0/125.	
2.4-Dinitrotoluene	25-SEP-01 19:47	0.00	2.84	3.25	87.2	50.0/125.	
2.6-Dinitrotoluene	25-SEP-01 19:47	0.00	5.75	6.49	88.6	50.0/125.	
2-Amino-4,6-dinitrotoluene	25-SEP-01 19:47	0.00	5.90	6.49	90.9	50.0/125.	
2-Nitrotoluene	25-SEP-01 19:47	0.00	11.6	13.0	89.1	50.0/125.	
3-Nitrotoluene	25-SEP-01 19:47	0.00	11.6	13.0	89.1	50.0/125.	
4-Amino-2,6-dinitrotoluene	25-SEP-01 19:47	0.00	6.72	6.49	104.	50.0/125.	
4-Nitrotoluene	25-SEP-01 19:47	0.00	11.5	13.0	88.9	50.0/125.	
HMX	25-SEP-01 19:47	0.00	5.55	6.49	85.6	50.0/125.	
Nitrobenzene	25-SEP-01 19:47	0.00	5.52	6.49	85.1	50.0/125.	
RDX	25-SEP-01 19:47	0.00	5.78	6.49	89.0	50.0/125.	
Tetryl	25-SEP-01 19:47	0.00	4.75	6.49	73.2	50.0/125.	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS) LABORATORY CONTROL DUPL (LCD)

lient Name...... North Dakota State Water Commission elease Number....: Not Provided

atrix....: WATER eporting Units....: ug/L

CL Preparation Group: G018902Q ate Prepared.....: 10-SEF-01 00:00 reparation Method...: 8330

DCL Sample Name...: QC-188053-1 Date Printed....: 06-OCT-01 17:48

DCL Analysis Group: G018902Q Analysis Method...: SW8330-14 Instrument Type...: HPLC Instrument ID....: LC-8 Column Type....: Ultracarb ODS X Primary Confirmation

QC Limit Type....: Method

nalytical Results

nalvte	Date Analyzed	Target	Result	Percent Recovery	QC Limits	QC Flag
.3.5-Trinitrobenzene	25-SEP-01 12:56	3.25	3.05	93.7	50.0/125.	
.3-Dinitrobenzene	25-SEP-01 12:56	3.25	2.60	79.9	50.0/125.	
.4.6-Trinitrotoluene	25-SEP-01 12:56	6.49	5.12	78.8	50.0/125.	
4-Dinitrotoluene	25-SEP-01 12:56	3.25	2.64	81.2	50.0/125.	
6-Dinitrotoluene	25-SEP-01 12:56	6.49	5.38	82.9	50.0/125.	
-Amino-4.6-dinitrotoluene	25-SEP-01 12:56	6.49	5.77	89.0	50.0/125.	
-Nitrotoluene	25-SEP-01 12:56	13.0	11.1	85.7	50.0/125.	
-Nitrotoluene	25-SEP-01 12:56	13.0	11.3	86.7	50.0/125.	
-Amino-2.6-dinitrotoluene	25-SEP-01 12:56	6.49	6.59	102.	50.0/125.	
-Nitrotoluene	25-SEP-01 12:56	13.0	11.3	87.3	50.0/125.	
MX	25-SEP-01 12:56	6.49	5.85	90.1	50.0/125.	5.9
itrobenzene	25-SEP-01 12:56	6.49	5.14	79.1	50.0/125.	
X	25-SEP-01 12:56	6.49	5.91	91.1	50.0/125.	
etryl	25-SEP-01 12:56	6.49	5.00	77.1	50.0/125.	

S01890CN

DCL Sample Name...: QD-188053-1

nalytical Results

nalyte	Date Analyzed	Duplicate Result	Percent Recovery	Mean	Range	RPD	QC Limits	QC Flag
.3.5-Trinitrobenzene	25-SEP-01 13:27	2.74	84.2	2.89	0.312	11.	0.00/25.0	
.3-Dinitrobenzene	25-SEP-01 13:27	3.00	92.2	2.80	0.400	14.	0.00/25.0	
4.6-Trinitrotoluene	25-SEP-01 13:27	4.08	62.9	4.60	1.03	22.	0.00/25.0	
.4-Dinitrotoluene	25-SEP-01 13:27	3.06	94.2	2.85	0.423	15.	0.00/25.0	
6-Dinitrotoluene	25-SEP-01 13:27	6.29	96.9	5.83	0.910	16.	0.00/25.0	
-Amino-4.6-dinitrotoluene	25-SEP-01 13:27	6.36	97.9	6.07	0.583	9.6	0.00/25.0	
-Nitrotoluene	25-SEP-01 13:27	12.7	97.8	11.9	1.58	13.	0.00/25.0	
-Nitrotoluene	25-SEP-01 13:27	12.5	96.1	11.9	1.25	11.	0.00/25.0	
-Amino-2.6-dinitrotoluene	25-SEP-01 13:27	9.01	139.	7.80	2.42	31.	0.00/25.0	*
-Nitrotoluene	25-SEP-01 13:27	12.7	97.7	12.0	1.37	11.	0.00/25.0	
MX	25-SEP-01 13:27	6.06	93.3	5.95	0.208	3.5	0.00/25.0	
itrobenzene	25-SEP-01 13:27	6.15	94.7	5.64	1.01	18.	0.00/25.0	
DX	25-SEP-01 13:27	6.31	97.3	6.11	0.398	6.5	0.00/25.0	
etryl	25-SEP-01 13:27	2.98	45.9	3.99	2.03	51.	0.00/25.0	*

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com Phone (801) 266-7700 E-mail: lab@datachem.com FAX (801) 268-9992

021

QUALITY CONTROL DATA SHEET SURROGATE SUMMARY

G0189020

Date Printed....: 06-OCT-01 17:48

DCL Analysis Group: G018902Q Analysis Method...: SW8330-14

DCL Prep Group....: G018902Q Preparation Method: 8330

QC Limit Type....: Method

Client	Name	:	North	Dakota	State	water	Commission
Release	Number	:	Not Pr	rovided			

Matrix....: WATER Reporting Units.....: ug/L

Surr. ID	3,4-Di	nitrotolu	ene					unana a	
DCL Sample Number	Analyte Result	Spiked Amount	% Rec.Q	Analyte Result	Spiked Amount	Rec. Q	Analyte Result	Spiked Amount	<pre>% Rec. Q</pre>
01E01959	12.8	13.0	98.8						
01E01960	12.1	13.0	92.9					· · ·····	
01E01961	12.8	13.0	98.4						
01E01962	11.8	13.0	91.0						
01E01963	12.2	13.0	94.1						
01E01964	13.0	13.0	99.7						
01E01965	12.6	13.0	96.6						
01E01966	13.0	13.0	100.						-
01E01966MS	12.2	13.0	93.7						
01E01967	12.0	13.0	92.3						
01E01970	13.3	13.0	102.						
01E01972	12.7	13.0	97.7						
BL-188053-1	12.1	13.0	93.0						
QC-188053-1	12.1	13.0	93.4						
OD-188053-1	13.5	13.0	104.						

Surrogate Recoveries

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

022

CHAIN-OF-CUSTODY

							h				T	
			Solit:	T	Root Set I	D: 01E-0300*	F	Reporting Group	02			+
Project/Job/	Task: P0186001		<u>opini</u>			Account: 08001			330			
Client: Nort	th Dakota State Wa	ater Commission	<u></u>					Analysis	-E×I			
Comments:	/	1							olosi			
Verified:	PS 9/7/	01	D.C.L. C. mala			Customer ID 2			ves			
Date	Field	DCL Sample Name	ID ID	QC	Matrix	Customer to 2	r r		X			
Sampled	7-13086	01E01959			WATER				X			
5-Sep-2001	7 13087	01E01960			WATER				X	┼─┼─┼		
5-Sep-2001	7-13001	01E01961			WATER					┼╼╌┼╍╌┼		
5-Sep-2001	DUP 2	011001001			WATER				+		 	
5-Sep-2001	3-SPRING	01E01962	<u> </u>		WATER				$+\times$	┼┈┼┈┼	 	
5-Sep-2001	4-RESERVOIR	01E01963	+		WATER		E.		X	+	 	
5-Sep-2001	6-13101	01E01964	<u></u>		TATATED				X		 	
5-Sep-2001	6-13102	01E01965			WAIER				X		 	
4 Sep 2001	5-13098	01E01966	1		WATER	+	+		X			
4-Sep-2001	5-13098	01E01966MS		MS	WATER				X			
4-Sep-2001	5-13098	01E01966MSD		MSD	WATER		<u> </u>					
4-Sep-2001	5-13098	01101000000					2					

ORIGIN	AL FIELD SAMI	PLE CHAIN-OF-CUSTOD	Y	SAMPLE PRE Sample Prep/Analysis for: Prepared/Analyzed by:	PARATION / A	NALYSIS CHAIN-OF-CU Lab Notebook Date/Time: _	Reason for Transfer/
	D /T	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Storage Location
Relinquished By: (Signature) Walk-in/Room/Shelf/Fridge		R-33-1 78	Labeling/Shelving	5			
1023 5 mond	9/7/01 1600	Walk-in/ Room/ Shelf/ Fridge	Storage: 833	P			
K33-1	14-50	0					
			·				
						-	
					<u></u>	and a second	Printed 9/7/2001 16:0

Check box if there is a continuation page \Box

Form: COFC1.01-SWV2.30

Earliest Sampling Date: 4-Sep-2001

DataChem Laboratories CHAIN-OF-CUSTODY

Page 2 of 2

Results due by: 28-Sep-2001

.

		C. P.		Deat Cat I	D: 01E-0300 *	Re	porting Grou	p 02						#
/Task: P0186001		Split:		ROOT Set I	0. 0119-0300 *		<u> </u>	83						B
rth Dakota State Wa	ater Commission				Account: 08001		 Al!-	30-E						t
	·						Analysis	xplo					1	t
15 9/761								osives						e s
Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2			+						1
DUP 1	01E01967			WATER		<u> </u>		$-\hat{\cdot}$	+					1
LAKE COE	01E01970			WATER				$+\frac{x}{2}$						1
5-13197	01E01972			WATER				<u> </u>		_			+	-+
0 10101									+	_				
									4				+	
	1								1					
			ļ										_	
				+										
						++-		_						
	/Task: P0186001 th Dakota State Wa S 9 761 ID Number DUP 1 LAKE COE 5-13197	/Task: P0186001 :th Dakota State Water Commission "S 9 ID Field ID Number Name DUP 1 01E01967 LAKE COE 01E01970 5-13197 01E01972	Task: P0186001 Split: :th Dakota State Water Commission "S 9 ID Field ID Number Name ID DUP 1 01E01967 LAKE COE 01E01970 5-13197 01E01972	Task: P0186001 Split: :th Dakota State Water Commission	Task: P0186001 Split: Root Set I :th Dakota State Water Commission "S 9 7br "S 9 7br ID QC Matrix DIP 1 01E01967 WATER WATER 5-13197 01E01972 WATER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Task: P0186001 Split: Root Set ID: 01E-0300 * th Dakota State Water Commission Account: 08001 "S 9 76 ID DCL Sample ID DCL Sample ID QC Matrix Customer ID 2 DUP 1 01E01967 WATER	/Task: P0186001 Split: Root Set ID: 01E-0300 * Ref th Dakota State Water Commission Account: 08001 ''S 9	/Task: P0186001 Split: Root Set ID: 01E-0300 * Reporting Grou th Dakota State Water Commission Account: 08001 Analysis S 9 Mame DCL Sample ID QC Matrix Customer ID 2 Analysis ID Number Name DCL Sample ID QC Matrix Customer ID 2 ID ID	/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 th Dakota State Water Commission Account: 08001 Analysis Analysis %	/Task: P0186001 Split: Root Set ID: 01E-0300 * Reporting Group 02 th Dakota State Water Commission Account: 08001 Analysis % </td <td>/Task: P0186001 Split: Root Set ID: 01E-0300 * Reporting Group 02 I th Dakota State Water Commission Account: 08001 Analysis \$</td> <td>/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Commission *th Dakota State Water Commission Account: 08001 Analysis Marix Analysis Marix Image: Customer ID 2 <t< td=""><td>/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Constraint of the constraint of</td><td>/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Control of the second secon</td></t<></td>	/Task: P0186001 Split: Root Set ID: 01E-0300 * Reporting Group 02 I th Dakota State Water Commission Account: 08001 Analysis \$	/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Commission *th Dakota State Water Commission Account: 08001 Analysis Marix Analysis Marix Image: Customer ID 2 Image: Customer ID 2 <t< td=""><td>/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Constraint of the constraint of</td><td>/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Control of the second secon</td></t<>	/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Constraint of the constraint of	/Task: P0186001 Split: Root Set ID: 01E-0300* Reporting Group 02 Image: Control of the second secon

ORIGIN	AL FIELD SAM	PLE CHAIN-OF-CUSTO	DY	SAMPLE PRE Sample Prep/Analysis for Prepared/Analyzed by:	PARATION / /	RATION / ANALYSIS CHAIN-OF-CUSTODT Lab Notebook No.: Date/Time:			
Paliaguished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location		
Walk-in/ Room/Shelf/ Fridge	States 1600	R-33-1 7P	Labeling/Shelving						
K33-1 1.002	169-10-0	Walk-in/ Room/ Shelf/ Fridge	Storage: 033	\$					
			¥						
		· · · · · · · · · · · · · · · · · · ·							
					<u> </u>	1	Printed 9/7/2001 16:0		

Check box if there is a continuation page 🗌

Form: COFC1.01-SWV2.30

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

··· 、						
North Dakota State 1 900 East Boulevard Bismarck, ND 5850 Dates Sampled: Change of Custody Change of Custody Date Shipped: Carrier	Water Commission	Nort 900 Bisr By: By: By:	th Dakol East Br narck, A	ta State V oulevard 19 5850	Water Cor	nmission
F	Analysis Requested:	8260B	8270	8330	8332	

No	Location	No. Bottles	Sample Date		Test	For		Comments	
		Dottioo		8260 B	8270	8330	8332		. /
	7013086	312				11	12	1 ytora	1-0
		3-404	0	3400					
2							2		
3									
	7-	011				IL	IC		
<u>4</u>	1305 (210	10	\$40					
5		0.100							
				+					
6						<u> </u>			
7	DUNZ	21-1		21-1	<u> </u>	12	11		
		37 406		B/40%	1-	1			
8									1
9	h art				+				
	Trip Blank		+	-					1
10		•							1
17					+	+	+		1
-		-							1
12					\square				1
1:	3				+				1
Ļ	4		+						4
μ	+								1

Blank Temperature at time of shipping_____

01E-0300 DATA CHEM LABORATORIES Samples To: 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801 North Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58805 900 East Boulevard Bismarck, ND 58505 By: Dates Sampled: By: Change of Custody: Date Change of Custody: Date By: By: Date Shipped: Carrier 8332 8330 8260B 8270 Analysis Requested: Comments Test For Sample No. Location No Date Bottles 8332 8270 8330 8260 Both B 0 1931L 41 19621 3 3 YOM 9 4/12 1 on Noin 63 2 4 83 3 40M extra 3 3 10 0 4 5 6 7 8 9 10 11 12 13 14

Blank Temperature at time of shipping

5	Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801												
	North Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard 900 East Boulevard Bismarck, ND 58505 96 Dates Sampled: 91/5 Change of Custody: Date Date Shipped: 91/5 Carrier 91/6 Analysis Requested: 8260B No. Sample Test For Comments												
Γ	No	Lo	ocation	No. Bottles	Sample Date		Test	For	<u></u>	Comments			
4	1	·(e -1	3101		9/5	8260 B	8270 X	8330 ¥	8332 ¥	anditional	1L Balle		
5	2	6-13	5102	LL	915		X	X	×		shifted		
	3 4 5 6 7 8 9 10 11 11 12	Taip Taip	Blant								(1310)		
	13								+		_		

Blank Temperature at time of shipping

Samples To: DATA CHEM LABORATORIES SUNCE SUNCE CONVEXT. 200 East BOULEARD 900 East BOULEARD		01E-0300											
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Sa	ample	es To: DATA CHE 960 WEST SALT LAKE TEL. (801 North Dakota State	M LABORATORIE LEVOY DRIVE E CITY, UTAH 84 Water Commission	S 123-2547	North Da	kota S	tate W	ater Co	ommission			
No Location No. Sample Date Test For Comments 1 $5 - 13 \circ 9 \cdot 9$ 3 $9/4$ 4 4 4 2 $4 \circ 1000$ $- 4 \circ 1000$ $- 4 \circ 1000$ $- 4 \circ 1000$ $- 4 \circ 10000$ $- 4 \circ 10000$ 3 $5 - 7 \cdot 130 \circ 19 \cdot 1000$ $- 3 \circ 10000$ $- 4 \circ 10000$ $- 4 \circ 10000$ $- 4 \circ 10000$ $- 4 \circ 100000$ $- 4 \circ 100000$ $- 4 \circ 100000$ $- 4 \circ 1000000$ $- 4 \circ 10000000$ $- 6 \circ 10000000000000000000000000000000000$	ñ		900 East Bodievan Bismarck, ND 5850 Dates Sampled: _ Change of Custoo Change of Custoo Date Shipped: Carrier	os dy: Date 9/7 dy: Date Jy: Date Analysis Reque	By:_By:	Bismarcl y: y: y:	(, ND (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	330	8332				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Γ	No	Location	No. Bottles	Sample Date		Test	For	8332	Comments			
16 - 3 - 132 + 4 - 3 - 6 + 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4			5-12094	.3	914	8260 B	8270		4		1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	166	2	<u>5 1)e + 0</u>	3	914								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lta	3	6- 13099	5 +	+	Ø	1			Bamore	e ore		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	AT MASI	1150						2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	67	5	DUAL	3	914	3	1	T	1		4		
7	58	6		3	-91						-		
8		7						<u> </u>	<u> </u>		4		
9		8									-		
10		.9							+		7		
11		10						+					
		1					+		+				
		12	2				+		1-				
		1	3				+-	1-					
		1	4						1				

Blank Temperature at time of shipping_____

OIE-0300

Samples To: 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505 Dates Sampled: Change of Custody: Date Change of Custody: Date Date Shipped:	North Dakota State Water Commission 900 East Boulevard Bismarcte ND 58505 By: By: By: By:
Date Shipped:)0

Analysis Requested: 8260B 8270 8330 8332

ſ	No	Location	No. Bottles	Sample Date	0060	Test	For	8332	Comments	
		5-12.98	3	914	8260 B	20 X	×.	X	PQ/L ex	tra g
3	2	MEMED	3	914	13					otto
	3	Lismon -		. /						eae
8	4	1-13103	2			Xu			16xdru	, j
ið.	5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					,		IL CYTIC	
1	6	En (-13/04	10-	•						
	8						-			
	9				+					
	10							+		-
	11				+		1			
	12									-
	18	4								1
	Ë									

Blank Temperature at time of shipping

DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 2-13/07 TEL. (801 Jakota State Water Commission 1/1 / North Dakota State Samples To: North Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard 900 East Boulevard Bismarck, ND 58505 Bismarck, ND 58505 By: Dates Sampled: By: Change of Custody: Date By: Change of Custody: Date By: Date Shipped: Carrier 8332 8330 8260B 8270 Analysis Requested: Comments Test For Sample No. Location No Date Bottles 8260 8270 8330 8332 C В K 3 11 or 1 170 3 1040 A 2 9/4 3 71 4 72

		and the second		۲	N 1				the second se
				Glu	+	10	16	16	
72	5	5-13141	12-	714	4.40				
			3-	714	Trac				
	6		<u>}</u>		4pmL				
73		Trip Blank		<u> </u>	+				
	7			<u> </u>	+1	\vdash			
					+1				
	8		<u> </u>	<u> </u>	+				
			<u> </u>	1	1				
	9			+	1				
			+		+				
	10		+	+	+				
					+				
	11				-	1			
				+	+	+			
	12		+		+	1			
100			+		+	+		T	
	13		+	+	+	1	T		
			+	+	+	+			
	14		+			+			
			1		and a second second				

Blank Temperature at time of shipping

Appendix B-4, EPA Method 8332

October 8, 2001

A SORENSON COMPANY

Mr. William Schuh North Dakota State Water Commission 900 East Boulevard Bismarck, ND 58505

Dear Mr. Schuh:

Enclosed is a copy of the analytical report for DCL Set Id #: 01E-0300-03.

Should you have any questions about the enclosed data package, please feel free to contact Mr. Kevin Griffiths, Project Manager, at (801) 266-7700. We would welcome any suggestions that you believe would help us serve you better.

Sincerely,

Heather Taysom **Document Control**

CINCINNATI LABORATORY 4388 Glendale-Milford Road Cincinnati, Ohio 45242-3706 513-733-5336, Fax 513-733-5347

CORPORATE OFFICE SALT LAKE CITY LABORATORY 960 West LeVoy Drive Salt Lake City, Utah 84123-2547 801-266-7700, Fax 801-268-9992 www.datachem.com

NOVATO OFFICE 11 Santa Yorma Court Novato, California 94945-1123 415-897-9471, Fax 415-893-9469

C:\Documents and Settings\taysom\My Documents\Cover Letters\NDSWC.doc

Case Narrative

Method:SW-846 8332Analysis:Nitroglycerin, PETNAccount:08101Preparation SOP #:OL-SW-8332Analysis SOP#:OL-SW-8332Matrix:WaterDCL Set ID's:01E-0300-03

Client: North Dakota State Water Commission

- General Set Information: This set consisted of ten water samples which were prepared and analyzed according to EPA method SW-846 8332.
- **Method Summary:** The samples were extracted using the double salting out procedure prescribed in EPA method 8330. An aliquot of 770 mL of each sample was saturated with salt and extracted twice with acetonitrile by stirring at timed intervals. The acetonitrile extracts were combined and re-extracted with fresh salt water. The final volume of the extract was adjusted to 5 mL for each sample and filtered through a 0.45 um PTFE filter. One part acetonitrile extract was mixed with one part of a 1% calcium chloride solution, and then injected into an HP1050 HPLC equipped with UV detection and a Phenomenex Ultracarb ODS column. The instrument was adjusted to the proper operating parameters and allowed to equilibrate until a stable baseline was established. Initial Calibration standards were analyzed and linear calibration curves were generated from the data. A continuing calibration standard was analyzed in triplicate at the beginning of sample analysis and singly after each ten samples and at the end of the analysis. The response of the continuing calibration curve.

Samples and QCs were analyzed under identical conditions as those used for initial and continuing calibration. Quantitation was based on calibration curves using the initial calibration standards. Results were reported in units of $\mu g/L$.

Sample Preparation: No anomalies were observed during the preparation of the samples.

Holding Times: The sample were prepared and analyzed within method required hold times.

Dilution(s): No dilutions were required for the analysis.

This report contains 001 pages

Quality Control Data:

Blank: No confirmed method analytes were detected in the method blank above the CRDL.

Laboratory Control Samples: All recoveries met the method criteria.

Surrogate Recovery: Surrogate recoveries were acceptable with the following exception. Sample 01E01963 (4-RESERVOIR) had a slightly low recovery.

MS/MSD: Matrix spiking was performed on sample 01E01966. All recoveries met the method criteria.

Instrument QC: All initial and continuing calibration verification samples met method criteria.

Flagging Codes: None.

NC/CAR: NC/CAR #502 was issued with this set.

Miscellaneous Comments: None.

Confirmation Analyses: Any sample with a positive result was qualitatively analyzed for confirmation on a second column. Only confirmed analytes were reported. For samples requiring confirmation, one part acetonitrile extract was mixed with one part of a 1% calcium chloride solution, then injected into an HP1050 HPLC equipped with UV detection and Waters NovaPak C8 and CN cartridge columns run in series. The instrument was adjusted to the proper operating parameters and allowed to equilibrate until a stable baseline was established. A CCV standard was run to establish retention times and a standard at a level near the reporting limits was run to verify low level sensitivity. The second column analyses were used for qualitative confirmation of analytes based on retention time. If a positive result is confirmed, the quantitative result from the primary column is reported.

10/4/01

Datapackage Table of Contents

Information pertaining to this datapackage is divided into the four categories listed below. A Case Narrative immediately precedes this Table of Contents and contains pertinent information about this datapackage.

Analytical Results	Yellow
Sample Tracking Documentation	. Pink
Analytical Documentation	. Blue
Raw Data	. Green

* * * * * * * * * *

Analytical Results

COVER PAGE

ANALYTICAL REPORT FOR North Dakota State Water Commission Phone(701) 328-2739 Fax(701) 328-3696

Form	COVER-V1.3
	1004011015233
Page	1
	G018601F

DCL Report Group..: 01E-0300-03

Date Printed....: 04-OCT-01 10:15

Project Protocol #: P0186001 Client Ref Number.: Not Provided Release Number....: Not Provided

North Dakota State Water Commission Attention: William M. Schuh 900 East Boulevard Bismark, ND 58505

Analysis Method(s): 8332

Client Laboratory Date		Date	Date
Sample Name	Sample Name	Sampled	Received
Method Blank	BL-188054-1	NA	NA
LCS	QC-188054-1	NA	NA
7-13086	01E01959	05-SEP-01	07-SEP-01
7-13087	01E01960	05-SEP-01	07-SEP-01
3-SPRING	01E01962	05-SEP-01	07-SEP-01
4-RESERVOIR	01E01963	05-SEP-01	07-SEP-01
6-13101	01E01964	05-SEP-01	07-SEP-01
6-13102	01E01965	05-SEP-01	07-SEP-01
5-13098	01E01966	04-SEP-01	07-SEP-01
5-13098	01E01966MS	04-SEP-01	07-SEP-01
5-13098	01E01966MSD	04-SEP-01	07-SEP-01
DUP 1	01E01967	04-SEP-01	07-SEP-01
LAKE COE	01E01970	04-SEP-01	07-SEP-01
5-13197	01E01972	04-SEP-01	07-SEP-01

Jaco -	
Analyst: Parry P. Vavo	<u>10/4/01</u>
ML 1010-	select.
Reviewer: Brent Fullmer	<u>10/9/01</u> Date
Richard Mr. Shde	10/5/01
Lab Supervisor: Richard W. Wade	Date
	- 004

Phone (801) 266-7700 FAX (801) 268-9992

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 Web Page: www.datachem.com E-mail: lab@datachem.com

SAMPLE GROUP COMMENTS

Form RLIMS63H-V1.3 10040110152336 Page 2 G018601F

DCL Report Group..: 01E-0300-03 Date Printed....: 04-OCT-01 10:15

:lient Name...: North Dakota State Water Commission

Release Number....: Not Provided

sample Group Comments

See narrative for comments.

Seneral Information

The DCL QC Database maintains all numerical figures which are input from the pertinent data ource. These data have not been rounded to significant figures nor have they been moisture corrected. leports generated from the system, however, list data which have been rounded to the number of ignificant figures requested by the client or deemed appropriate for the method. This may create linor discrepancies between data which appear on the QC Summary Forms (Forms B-G) and those that would e calculated from rounded analytical results. Additionally, if a moisture correction is performed, lifferences will be observed between the QC data and the surrogate data reported on Form A (or other eport forms) and corresponding data reported on QC Summary Forms. In these cases, the Form A will ndicate the "Report Basis" as well as the moisture value used for making the correction. leport generation options: X

lesult Symbol Definitions

- ND Not Detected above the MDL or IDL (LLD or MDC for radiochemistry).
- ** No result could be reported, see sample comments for details.

Jualifier Symbol Definitions

- U Not Detected above the MDL or IDL (LLD or MDC for radiochemistry). For radiochemistry the nuclide was not identified by the Canberra Nuclear NID program, activity values reported are calculated using the Canberra Nuclear MINACT program. - For organic analysis the qualifier indicates that this analyte was found in the method blank.
- в For inorganic analysis the qualifier signifies the value is between the IDL and PQL.
- The qualifier indicates that the value is between the MDL and the PQL. It is also used for indicating an estimated value for tentatively identified compounds in mass J spectrometry where a 1:1 response is assumed.

	FORM A (TYPE SINGLE METHOD AM	I) WALYSES	Form RLIMS63A-V1.3 1004011015233(Page 3
L A B O R A T O R I E S A Sorenson Company	SAMPLE ANALYSIS DA	TA SHEET	S018B04L
Date Printed: 04-0CT-01 10:	15	Client Sample Name: BL DCL Sample Name: BL	188054-1 188054-1
Client Name: North Dakota	State Water Commission	DCL Report Group: 01	E-0300-03
Client Ref Number: Not Provided			
Sampling Site Not Applicable	e	Matrix WA	TER
Release Number: Not Provided		Date Sampled No	t Applicable
		Reporting Units: ug	/L
Date Received Not Applicable	e		
DCL Preparation Group: G018B01B		DCL Analysis Group: G0	19200D
Date Prepared: 11-SEP-01 00:	00	Analysis Method: 83	32
Preparation Method: 8332		Instrument Type: HP	LC
Aliquot Weight/Volume: 770.mL		Instrument ID: LC	:-3

Analytical Results

Net Weight/Volume....: Not Required

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	01-OCT-01 22:42	0.354	ND			1	0.970
Nitroglycerin	01-OCT-01 22:42	0.376	ND			1	0.970

Column Type....: Ultracarb ODS

X Primary Confirmation

Analyte	Result	Spiked Amount	Percent Recovery	
1-Nitronaphthalene	9.48	13.0	73.0	

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10040110152336 Page 4

S018B04M

Date Printed..... 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site..... Not Applicable

Release Number....: Not Provided

Client Name.....: North Dakota State Water Commission

Client Sample Name: QC-188054-1 DCL Sample Name...: QC-188054-1 DCL Report Group..: 01E-0300-03

Matrix..... WATER Date Sampled.....: Not Applicable Reporting Units...: ug/L

Date Received..... Not Applicable

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	01-OCT-01 23:02	0.354	24.0			1	0.970
Nitroglycerin	01-OCT-01 23:02	0.376	21.4			1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
L-Nitronaphthalene	9.56	13.0	73.6

.. .

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1004011015233 Page 5 \$01860BQ

Date Printed....: 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site..... Not Provided

Release Number....: Not Provided

Date Received.....: 07-SEP-01 00:00

Client Name.....: North Dakota State Water Commission

Client Sample Name: 7-13086 DCL Sample Name...: 01E01959 DCL Report Group..: 01E-0300-03

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAS Received Dried

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	01-OCT-01 23:23	0.354	ND	· ·		1	0.970
Nitroglycerin	01-OCT-01 23:23	0.376	ND			1	0.970

Analyte	Result	Spiked Amount	Percent Recovery
1-Nitronaphthalene	11.0	13.0	84.8

SAMPLE ANALYSIS DATA SHEET

ate Printed..... 04-0CT-01 10:15

lient Ref Number....: Not Provided ampling Site..... Not Provided

elease Number....: Not Provided

lient Name..... North Dakota State Water Commission

Client Sample Name: 7-13087 DCL Sample Name...: 01E01960 DCL Report Group..: 01E-0300-03

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🖾 As Received 🗌 Dried

CL Preparation Group: G018B01B ate Prepared.....: 11-SEP-01 00:00 reparation Method...: 8332 liquot Weight/Volume: 770.mL et Weight/Volume....: Not Required

ate Received.....: 07-SEP-01 00:00

DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

nalytical Results

nalyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
ETN	01-OCT-01 23:44	0.354	ND			1	0.970
itroglycerin	01-OCT-01 23:44	0.376	ND			1	0.970

urrogate Recoveries

nalyte	Result	Spiked Amount	Percent Recovery
-Nitronaphthalene	11.1	13.0	85.9

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10040110152336 Page 7 501860BS

Date Printed..... 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site..... Not Provided

Release Number....: Not Provided

Client Name...... North Dakota State Water Commission

Clie	ent Sam	ple Nar	ne:	3-SPRING
DCL	Sample	Name.		01E01962
DCL	Report	Group	:	01E-0300-03

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAS Received Dried

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required

Date Received....: 07-SEP-01 00:00

DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 00:05	0.354	ND		(a)	1	0.970
Nitroglycerin	02-OCT-01 00:05	0.376	ND			1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
1-Nitronaphthalene	10.1	13.0	77.9

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 10040110152336 Page 8 S01860BT

Date Printed.....: 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site..... Not Provided

Release Number....: Not Provided

Date Received....: 07-SEP-01 00:00

Client Name.....: North Dakota State Water Commission

Client Sample Name: 4-RESERVOIR DCL Sample Name...: 01E01963 DCL Report Group..: 01E-0300-03

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: 🕅 As Received 🗌 Dried

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 00:26	0.354	ND			1	0.970
Nitroglycerin	02-OCT-01 00:26	0.376	ND			1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
l-Nitronaphthalene	8.31	13.0	64.0

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1004011015233 Page 9

S01860BV

Date Printed..... 04-OCT-01 10:15 Client Sample Name: 6-13101 DCL Sample Name...: 01E01964 Client Name.....: North Dakota State Water Commission DCL Report Group..: 01E-0300-03 Client Ref Number....: Not Provided Sampling Site....: Not Provided Matrix....: WATER Release Number....: Not Provided Date Sampled....: 05-SEP-01 00:00 Reporting Units...: ug/L Date Received.....: 07-SEP-01 00:00 Report Basis.....: XAs Received Dried DCL Preparation Group: G018B01B DCL Analysis Group: G019200D Date Prepared....: 11-SEP-01 00:00 Analysis Method...: 8332 Preparation Method...: 8332

Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Aliquot Weight/Volume: 770.mL

Net Weight/Volume....: Not Required

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 00:48	0.354	ND			1	0.970
Nitroglycerin	02-OCT-01 00:48	0.376	ND		1	1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
1-Nitronaphthalene	9.83	13.0	75.8

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

)ate Printed.....: 04-0CT-01 10:15

:lient Ref Number....: Not Provided
;ampling Site.....: Not Provided

telease Number....: Not Provided

)CL Preparation Group: G018B01B

reparation Method...: 8332

liquot Weight/Volume: 770.mL

)ate Received.....: 07-SEP-01 00:00

)ate Prepared.....: 11-SEP-01 00:00

let Weight/Volume....: Not Required

lient Name...... North Dakota State Water Commission

Client Sample Name: 6-13102 DCL Sample Name...: 01E01965 DCL Report Group..: 01E-0300-03

Matrix...... WATER Date Sampled.....: 05-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received []Dried

DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

inalytical Results

malvte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
ETN	02-OCT-01 01:09	0.354	ND			1	0.970
litroglycerin	02-OCT-01 01:09	0.376	ND			1	0.970

Surrogate Recoveries

nalyte	Result	Spiked Amount	Percent Recovery
-Nitronaphthalene	10.7	13.0	82.3

LABORATORIES
LADORATORILO
A Sorenson Company

SAMPLE ANALYSIS DATA SHEET

Form RLIMS63A-V1.3 1004011015233 Page 11

S01860BX

Date Printed: 04-OCT-01 10:15	Client Sample Name: 5-13098
	DCL Sample Name: 01E01966
Client Name: North Dakota State Water Commission	DCL Report Group: 01E-0300-03
Client Ref Number: Not Provided	
Sampling Site: Not Provided	Matrix WATER
Release Number: Not Provided	Date Sampled: 04-SEP-01 00:00
	Reporting Units: ug/L
Date Received: 07-SEP-01 00:00	Report Basis: 🕅 As Received 🗌 Dried
DCL Preparation Group: G018B01B	DCL Analysis Group: G019200D
Date Prepared: 11-SEP-01 00:00	Analysis Method: 8332
Preparation Method: 8332	Instrument Type: HPLC
Aliquot Weight/Volume: 770.mL	Instrument ID: LC-3
Net Weight/Volume: Not Required	Column Type: Ultracarb ODS

X Primary

Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 01:31	0.354	ND			1	0.970
Nitroglycerin	02-OCT-01 01:31	0.376	ND			1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
1-Nitronaphthalene	11.4	13.0	88.1	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

SAMPLE ANALYSIS DATA SHEET

Form	RLIMS63A-V1.3
	10040110152336
Page	12
	S01860C0

Date Printed.....: 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site.....: Not Provided

Release Number....: Not Provided

Date Received.....: 07-SEP-01 00:00

Client Name.....: North Dakota State Water Commission

Client Sample Name: DUP 1 DCL Sample Name...: 01K01967 DCL Report Group..: 01E-0300-03

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary Confirmation

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL	
PETN	02-OCT-01 02:56	0.354	ND	1		1	0.970	-
Nitroglycerin	02-OCT-01 02:56	0.376	ND			1	0.970	-

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery	
l-Nitronaphthalene	9.62	13.0	74.1	

SAMPLE ANALYSIS DATA SHEET

Date Printed.....: 04-OCT-01 10:15

Client Ref Number....: Not Provided Sampling Site..... Not Provided

Release Number....: Not Provided

Date Received.....: 07-SEP-01 00:00

Client Name.....: North Dakota State Water Commission

Client	Sample	Name:	LAKE	COE
DCL Sar	nple Nar	ne:	01E01	970
DCL Rep	ort Gro	up:	01E-0	300-03

Matrix.....: WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAS Received Dried

DCL Preparation Group: G018B01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 03:18	0.354	ND			1	0.970
Nitroglycerin	02-OCT-01 03:18	0.376	ND			1	0.970

Surrogate Recoveries

Analyte	Result	Spiked Amount	Percent Recovery
1-Nitronaphthalene	9,95	13.0	76.6

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

016

SAMPLE ANALYSIS DATA SHEET

Date Printed..... 04-OCT-01 10:15

Client Ref Number....: Not Frovided Sampling Site..... Not Frovided

Release Number....: Not Frovided

Date Received.....: 07-SEP-01 00:00

Client Name.....: North Dakota State Water Commission

Client Sample Name: 5-13197 DCL Sample Name...: 01E01972 DCL Report Group..: 01E-0300-03

Matrix.....: WATER Date Sampled.....: 04-SEP-01 00:00 Reporting Units...: ug/L Report Basis.....: XAs Received Dried

DCL Preparation Group: G018E01B Date Prepared.....: 11-SEP-01 00:00 Preparation Method...: 8332 Aliquot Weight/Volume: 770.mL Net Weight/Volume....: Not Required DCL Analysis Group: G019200D Analysis Method...: 8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary

Analytical Results

Analyte	Date Analyzed	MDL	Result	Comment	Qual.	Dilution	CRDL
PETN	02-OCT-01 03:39	0.354	ND			1	0.970
Nitroglycerin	02-OCT-01 03:39	0.376	ND			1	0.970

Surrogate Recoveries

		Spiked	Percent
Analyte	Result	Amount	Recovery
L-Nitronaphthalene	11.0	13.0	84.7

QUALITY CONTROL DATA SHEET LABORATORY CONTROL SAMPLE (LCS)

Form	RLIMS63B-V1.3
	1004011015233
Page	15

S018B04M

Client 1	Name:	Nort	h Dakota	State	Water	Commission
Release	Number:	Not	Provided			

Matrix....: WATER Reporting Units.....: ug/L

DCL Preparation Group: G018B01B Date Prepared..... 11-SEP-01 00:00 Preparation Method...: 8332 DCL Sample Name...: **QC-188054-1** Date Printed.....: 04-OCT-01 10:15

DCL Analysis Group: G019200D Analysis Method...: OL-SW-8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary Confirmation

QC Limit Type....: Method

Analytical Results

Analyte	Date Analyzed	Target	Result	Percent Recovery	QC Limits	QC Flag
Nitroglycerin	01-OCT-01 23:02	26.0	21.4	82.4	65.0/125.	
PETN	01-OCT-01 23:02	26.0	24.0	92.3	65.0/125.	

QUALITY CONTROL DATA SHEET MATRIX SPIKE SAMPLE MATRIX SPIKE DUPLICATE SAMPLE

2lient Name.....: North Dakota State Water Commission
Release Number.....: Not Frovided

4atrix....: WATER
Reporting Units.....: ug/L

>CL Preparation Group: G018E01B >ate Prepared.....: 11-SEP-01 00:00 ?reparation Method...: 8332 DCL Sample Name...: 01E01966MS Date Printed.....: 05-0CT-01 07:55

DCL Analysis Group: G019200D Analysis Method...: OL-SW-8332 Instrument Type...: HPLC Instrument ID....: LC-3 Column Type.....: Ultracarb ODS X Primary Confirmation

QC Limit Type....: Method

Analytical Results

Inalyte	Date Analyzed	Sample Result	Spiked Result	Spike Added	Percent Recovery	QC Limits	QC Flag
litroglycerin	02-OCT-01 01:52	0.00	22.4	26.0	83.9	65.0/125.	
PETN	02-OCT-01 01:52	0.00	24.0	26.0	92.5	65.0/125.	

DCL Sample Name...: 01E01966MSD

Analytical Results

nalyte	Date Analyzed	Duplicate Result	Percent Recovery	Mean	Range	RPD	QC Limits	QC Flag
litroglycerin	02-OCT-01 02:35	5 24.5	94.2	23.4	2.10	9.0	0.00/35.0	
EIN	02-OCT-01 02:35	5 23.5	90.4	23.8	0.536	2.3	0.00/35.0	

QUALITY CONTROL DATA SHEET SURROGATE SUMMARY

Date Printed....: 04-OCT-01 10:15

DCL Analysis Group: G019200D Analysis Method...: OL-SW-8332

DCL Prep Group....: G018B01B Preparation Method: 8332

QC Limit Type....: Method

Client	Name:	North	Dakota	State	Water	Commission
Release	Number:	Not P:	rovided			

Matrix....: WATER Reporting Units.....: ug/L

Surrogate R	ecoveries	;					- 4				
Surr. ID QC Limits	ID 1-Nitronaphthalene hits 65.0/125.										
DCL Sample Number	Analyte Result	Spiked Amount	Rec.	Q	Analyte Result	Spiked Amount	Rec.	Q	Analyte Result	Spiked Amount	Rec. C
01E01959	11.0	13.0	84.8								4
01E01960	11.1	13.0	85.9					\rightarrow			
01E01962	10.1	13.0	77.9				_				+
01E01963	8.31	13.0	64.0	*			-	\square		. <u>.</u>	
01E01964	9.83	13.0	75.8				-				
01E01965	10.7	13.0	82.3							· · · · · · · · · · · · · · · · · · ·	
01E01966	11.4	13.0	88.1								
01E01966MS	10.6	13.0	81.5							<u></u>	
01E01966MSD	11.2	13.0	86.0								
01E01967	9.62	13.0	74.1				_				
01E01970	9.95	13.0	76.6								
01E01972	11.0	13.0	84.7				- Property				
BL-188054-1	9.48	13.0	73.0								
QC-188054-1	9.56	13.0	73.6							12	

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547Phone (801) 266-7700Web Page: www.datachem.comFAX (801) 268-9992E-mail: lab@datachem.com

020

8332

D5 Deliverable Package

72 Hr RT Windows Analytical Sequence Curve Summaries -ICV Summary -CCV Summaries -

Cal ID: 100101LC3

Method 8332

RT Windows For Analytical Sequence From 72 Hr RT Study

Sample Info: 219WS43675 Sequence: 1001LC3

RT Low RT High 0 Hr RT Mid Hr RT 72 Hr RT 3xStDv CCV RT 31001-27.D 31001-16 31001-20 31001-44 Datafile:

Analyte				ter and a second	a For the second	Lastera, en la company	1. 1 ² 1 ² 1
Nitroglycerin	6.229	6.492	6.361	6.394	6.361	6.307	0.132
PETN	11.224	12.052	11.638	11.772	11.638	11.496	0.414
1-Nitronaphthalene	14.734	15.941	15.337	15.544	15.337	15.142	0.603

Default Minimum Window=+/- 0.030 minutes

DataChem Laboratories LIMS - Sample Master System Analysis Group Report

ate: 3-OCT-2001 10:32 ser: VAY0

nalysis Run Name: G019200D

amples: 14

os	Laboratory Sample Name	Field Sample Name 1	Field Sample Name 2	Laboratory Sample ID	Laboratory Group Name	Accnt. Number
05 1 2 3 4 5 6 7	BL-188054-1 QC-188054-1 01E01959 01E01960 01E01962 01E01963 01E01964	BL-188054-1 QC-188054-1 7-13086 7-13087 3-SPRING 4-RESERVOIR 6-13101		S018B04L S018B04M S01860BQ S01860BR S01860BS S01860BT S01860BV	01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03	08001 08001 08001 08001 08001 08001 08001
8 9 10 11 12 13 14	01E01965 01E01966 01E01966MS 01E01966MSD 01E01967 01E01970 01E01972	6-13102 5-13098 5-13098 5-13098 DUP 1 LAKE COE 5-13197		S01860BW S01860BX S01860BZ S01860C2 S01860C1 S01860C2	01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03 01E-0300-03	08001 08001 08001 08001 08001 08001

---- END OF LISTING -----

Page: 1 RLIMS15-V1.2

Group ID: G019200D

thod C:\HPCHEM\1\METHODS\N1001PR3.M

Calibration Table ___________________________________ SW8332 FOR NG & PETN Calib. Data Modified : 10/3/01 9:10:21 AM External Standard : Calculate Peak Area Based on Rel. Reference Window :5.000 %Abs. Reference Window :0.000 minRel. Non-ref. Window :11.000 %Abs. Non-ref. Window :0.000 minUncalibrated Peaks :not reportedPartial Calibration :Yes, identified peaks are recalibratedCorrect All Ret. Times:No, only for identified peaks Linear Curve Type Ignored Origin Equal : Weight Recalibration Settings: Average Response : Average all calibrations Average Retention Time: Floating Average New 75% Calibration Report Options : Printout of recalibrations within a sequence: Calibration Table after Recalibration Normal_Report_after Recalibration If the sequence is done with bracketing: Results of first cycle (ending previous bracket) Signal 1: VWD1 A, Wavelength=214 nm RetTime Lvl Amount Area Amt/Area Ref Grp Name [min] Sig [ug/ml] 6.383 1 1 5.00000e-2 8.57728e-1 5.82936e-2 Nitroglycerin 2 2.00000e-1 7.51861 2.66007e-2

 3
 1.00000
 34.82499
 2.87150e-2

 4
 5.00000
 193.03348
 2.59022e-2

 5
 20.00000
 753.46344
 2.65441e-2

 11.829
 1
 5.00000e-2
 1.93993
 2.57742e-2

 2-2.00000e-1
 8.55474
 2.33788e-2

 PETN 2-2.00000e-1 8.55474 2.33788e-2 3 1.00000 36.47713 2.74144e-2 4 5.00000 207.62694 2.40817e-2 5 20.00000 804.61414 2.48566e-2 15.515 1 1 5.00000e-2 27.30221 1.83135e-3 1-Nitronaphthalene 2 2.00000e-1 104.47498 1.91433e-3 3 1.00000 474.37860 2.10802e-3 5.00000 2593.93872 1.92757e-3 4 5 20.00000 1.01168e4 1.97691e-3 Peak Sum Table ____________________________________ ***No Entries in table*** 024 Page 1 of 2

Instrument 1 10/3/01 9:10:59 AM

--- 025 Page 2 of 2

strument 1 10/3/01 9:10:59 AM

Datafile: 31001-18.D

Analyte	RT Low	RT High	ICV RT	Amount	Target	%Rec	RT?	Rec?
Nitroglycerin	6.229	6.492	6.375	19.6668	20.000	98.3	pass	pass
PETN	11.224	12.052	11.702	21.1487	20.000	105.7	pass	pass
1-Nitronaphthalene	14.734	15.941	15.458	19.5027	20.000	97.5	pass	pass

ICV Recovery Criteria is +/- 25.%

ICV RT Criteria is within 72 RT window from Mid Point Std.

CCV1	Datafile: 31001-20,D							
Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
Nitroglycerin PETN	6.229 11.224	6.492 12.052	6.361 11.638	20.124 20.205	20.000 20.000	100.6 101.0	pass	pass pass
1-Nitronaphthalene	14.734	15.941	15.337	20.149	20.000	100.7	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

CCV1	Datafile: 31001-21.D							
Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
Nitroglycerin	6.229	6.492	6.352	20.593	20.000	103.0	pass	pass
PETN	11.224	12.052	11.621	20.358	20.000	101.8	pass	pass
1-Nitronaphthalene	14.734	15.941	15.315	20.342	20.000	101.7	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

CCV1

Datafile: 31001-22.D

Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
a a					ı T			ľ
Nitroglycerin	6.229	6.492	6.313	20.433	20.000	102.2	pass	pass
PETN	11.224	12.052	11.575	20.620	20.000	103.1	pass	pass
1-Nitronaphthalene	14.734	15.941	15.285	20.429	20.000	102.1	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

CCV2

Datafile: 31001-28.D

Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
Nitroglycerin	6.229	6.492	6.318	20.506	20.000	102.5	pass	pass
PETN	11.224	12.052	11.572	20.901	20.000	104.5	pass	pass
1-Nitronaphthalene	14.734	15.941	15.257	20.491	20.000	102.5	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

CCV3	Datafile: 31001-39.D							
Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
Nitroglycerin	6.229	6.492	6.288	20.504	20.000	102.5	pass	pass
PETN	11.224	12.052	11.449	20.999	20.000	105.0	pass	pass
1-Nitronaphthalene	14.734	15.941	15.098	20.475	20.000	102.4	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

--- 031

---- --

CCV4

Datafile: 31001-44.D

Analyte	RT Low	RT High	CCV RT	Amount	Target	%Rec	RT?	Rec?
2								
Nitroglycerin	6.229	6.492	6.307	, 20.501	20.000	102.5	pass	pass
PETN	11.224	12.052	11.496	20.587	20.000	102.9	pass	pass
1-Nitronaphthalene	14.734	15.941	15.142	20.508	20.000	102.5	pass	pass

CCV Recovery Criteria is +/- 15.%

Advisory CCV RT Criteria is within 72 RT window centered on CCV1

CHAIN-OF-CUSTODY

Results due by: 28-Sep-2001

			<u> </u>		D + C + L	D. 01E 0300 *	Repo	ting Group	03			#
Project/Job/	Task: P0186001		Split:		Root Set I	D: 01E-0300 *			t P			В
Client: Nort	th Dakota State Wa	ter Commission				Account: 08001			by			o t
Comments:								Analysis	EP/N			t
Verified:	5 9/2/01								G in W A 8332			e s
Date Sampled	Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2		<u> </u>		_	 	 2
5-Sep-2001	7-13086	01E01959			WATER			<u> </u>	+÷+-			-1
5-Sep-2001	7-13087	01E01960			WATER						 	 1
5-Sep-2001	3-SPRING	01E01962			WATER			<u> </u>			 	 1
5-Sep-2001	4-RESERVOIR	01E01963			WATER						 	1
5-Sep-2001	6-13101	01E01964			WATER			<u> </u>			 	 1
5-Sep-2001	6-13102	01E01965			WATER							 1
4-Sep-2001	5-13098	01E01966			WATER				X		 	
4-Sep-2001	5-13098	01E01966MS		MS	WATER				- X	_	 	 -++
4-Sep-2001	5-13098	01E01966MSD		MSD	WATER			<u></u>		_	 	 <u>+</u>
4-Sep-2001	DUP 1	01E01967			WATER			<u> </u>	X			

ORIGIN	AL FIELD SAM	PLE CHAIN-OF-CUSTO	DY	SAMPLE PREPARATION / ANALYSIS CHAIN-OF-CUSTODY Sample Prep/Analysis for: Lab Notebook No.: Prepared/Analyzed by: Date/Time:						
Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location			
Walk-in/ Room/Shelf/ Fridge	style 1600	R-33-1 5x	Labeling/Shelving							
N 33- (mord	03-11-01	Walk-in/ Room/ Shelf/ Fridge	Storage: 8732							
		0			· · · · · · · · · · · · · · · · · · ·	а				
						2 				
						2				

Check box if there is a continuation page

Printed 9/7/2001 16:07

DataChem Laboratories CHAIN-OF-CUSTODY

Page 2 of 2

Results due by: 28-Sep-2001

Project/Job	/Task: P0186001	eng daga (1997)	Split:		Root Set	ID: 01E-0300 *	Repo	rting Group	03				 #
Client: Nor	th Dakota State W	ater Commission		a 		Account: 08001	 		PET ter b				B
Comments:								Analysis	Y ET	Ì			t
Verified:	s 9/2/01						 		G in V A 833				l e
Date Sampled	Field ID Number	DCL Sample Name	DCL Sample ID	QC	Matrix	Customer ID 2	1		Na- 32				
4-Sep-2001	LAKE COE	01E01970			WATER			<u> </u>	X				 1
4-Sep-2001	5-13197	01E01972			WATER		 		X				 1
					1								
				1.1.1.1									
							 1						
					1		 3						

ORIGIN	AL FIELD SAM	PLE CHAIN-OF-CUSTO	DY	SAMPLE PREPARATION / ANALYSIS CHAIN-OF-CUSTODY Sample Prep/Analysis for: Lab Notebook No.: Prepared/Analyzed by: Date/Time:						
Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location	Relinquished By: (Signature)	Date/Time	Received By: (Signature)	Reason for Transfer/ Storage Location			
Walk-in/ Room/Shelf/ Fridge	9/7/01 1600	R-33-1, 24	Labeling/Shelving							
R.33-1 Wort	1019-11-01	Walk-in/ Room/ Shelf/ Fridge	Storage: 8332							
C		F				5 .				
2.										
		-	r.							
			2	а.						
					2-0-2	8				
						8 1000				

Check box if there is a continuation page \Box

Form: COFC1.01-SWV2.30

Printed 9/7/2001 16:07

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission	North Dakota State Water Commission
900 East Boulevard	900 East Boulevard
Bismarck, ND 58505	Bismarck, ND 58505
Dates Sampled:	By:
Change of Custody: Date 7/7	By:
Change of Custody: Date	By:
Date Shipped:	By:By:
Carrier D. Trant	
FPAYX	
Analysis Requested:	8260B 8270 8330 8332

	No	Location	No. Bottles	Sample Date	2	Test	For		Comments	
					8260 B	8270	8330	8332		
59	1	108 13086	312				11	12	INTOR	1-6
			3-404	0	3400	7				
	2									
	2	······································								
	-	7-								
;0	4	1308/	21-1				IL	IC		
			3 1/01	e i	40					
	5									
	6									
1	7	Dupz	21-2	4	21-1		12	11		
	0	/	BY YOU	f	B/YOK	1				
	-						1			
	9	· · · · · · · · · · · · · · · · · · ·								
3		TUIN Black								
	10									
	11									
	12									
	10			<u> </u>						
	13			·						
	14									
							L			

Blank Temperature at time of shipping_____

01E-0300

:	Samp	les To: DATA CHE 960 WEST SALT LAK TEL. (801	EM LABORATOR LEVOY DRIVE E CITY, UTAH 8	IES 4123-2	547							
		North Dakota State 900 East Boulevar Bismarck, ND 585 Dates Sampled: Change of Custor Change of Custor Date Shipped:	e Water Commissi rd 605 9/5 dy: Date dy: Date Analysis Requ	Z Z Jested:	No 90 Bi 	orth Da 0 Easi smarch	kota S Boule ND	state Wevard 58805	ater Co	ommission - -		
í	No	Location	No.	Sa	mple		Test	For		Com	nments]
			Bottle			8260	8270	8330	8332			
				91		B	$\overline{}$	1	7	IXJ	narik	boyle
:01962	1	3-5pr.n.	340	A G	15	3						4
63	2	4- R= 540	· 2010 46	- 9	5		4	1	1	<u></u>		-
1			3 40	4 7	(5-	63			+	<u></u>		$1 \times$
	3	7 7 62							+	12	extra	Book,
		06-13101										
	4									•		-
	5											-
										-		
	6						_					
	7											-
	⊢́−											-
	8											1
]
	9			_								_
	10											-
	<u> </u>											
	11									<u> </u>		
	10	<u></u>		-+-	<u></u>							
	12	1										-
	13											-
							<u> </u>					
	14					<u> </u>]
						L		1				

Blank Temperature at time of shipping_____

01E-0300

DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801 Samples To:

North Dakota State V 900 East Boulevard Bismarck, ND 5850 Dates Sampled: Change of Custody Date Shipped: Carrier	Vater Commission 5 q/5 7 Date 9/5 7 Date 9/5 7 Date 9/6	Nor 900 Bisr By: By: By: By:	th Dako East B narck	ta State oulevarc 5850 m (1) 5850 m (1) 5850	
	Analysia Requested	8260B	8270	8330	8332

Analysis Requested: 8330 8260B 8270

No	Location	No. Bottles	Sample Date		Ies	POr		Oonmento	
-+				8260 B	8270	8330	8332	ALLA	
┯╋	16-13/01 (BODIL	915		X	X	Y	anditional	1 das
		3/gonl	9/5	X	1	X	X		1501110
$\frac{2}{2}$	6-131-	3/400	915	x					Shipt
3	Dut	A	- A. P						, PIUND
	Faip Blanc	104	one						coor
-					ļ	<u> </u>			(1310)
5			<u> </u>		+				
6									
			1			+			
7									
8							+		
-									
3									
10			+		+	+			1
11									4
						+	-		
12									-
13							+		-
					+]
14									2

Blank Temperature at time of shipping_

01E-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State W 900 East Boulevard Bismarck, ND 58505 Dates Sampled: Change of Custody: Change of Custody: Date Shipped: Carrier	Pater Commission 9/4 Date 9/7 Date 9/9 6 By Feder	North Dakota State 900 East Bouleva Bismarck, ND 58 By: By: By:	Water Commission 'd '05
	Analysis Requested: 82	60B 8270 8330	8332

	No	Location	No. Bottles	Sample Date		Test	For		Comments	
			Dottioo		8260 B	8270	8330	8332		
966	1	5-13098	3	914		1	1	1		
100			3	914	1					
: 	2		90000		<u> </u>	— ,			7 JULLE	uotl
60	3	5-13078	- 1-		Ø	++			El a ypt = 1	< 00C
	4	phister AS				[
678	5	Dural	3	914		\overline{I}		T		
R	Ŭ.	papi	3	9/4	3				-	
	6									
	7				+				· · · · · · · · · · · · · · · · · · ·	
	8									
			<u> </u>	-						1
	9									-
	10								,	1
	11				1	<u> </u>			<u>`</u>	
	12		<u></u>	<u> </u>						d
		· · · · · · · · · · · · · · · · · · ·								1
	13									
	14		1							- · · ·

Blank Temperature at time of shipping_____

OIE-0300

Samples To: DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 TEL. (801

North Dakota State Water Commission	North Dakota State Water Commission
900 Fast Boulevard	900 East Boulevard
Bismarck, ND 58505	Bismarete, ND 58305
Dates Sampled:	By:
Change of Custody: Date 97	By:
Change of Custody: Date	By:
Date Shipped:	By:By:
Carrier	

Analysis Requested: 8260B 8270 8330 8332

	No	Location	No. Bottles	Sample Date		Test	For		Comments	
					8260 B	8270	8330	8332	<	×
'4	1	5-13.98	3	914		x	×	X	ER IL EX	ra &
3		MSMSD		6.11	1/2					on
	2	7	3	914	13					all a
1	3	134900								ere
		+07-0	a			011			11 1/100	<u>ک</u>
8	4	1-1310 7	d						TEXAM	
1	5									
									IL PUTIO	
9	6	En (-13/04	10-			XI	•		IL CIMU	
	7									
								<u></u>		
	8		<u> </u>	<u> </u>		<u> </u>		+		
	9]
			<u> </u>						- 1945. <u>19</u> -1 - 1975. 19	
	10					<u> </u>				
	11									
	Ē					ļ			· · · · · · · · · · · · · · · · · · ·	
	12		<u> </u>		1					-
	13]
	Ľ									4
	14		× *			-				-
				1	L.	1	<u> </u>			-

Blank Temperature at time of shipping_____

DATA CHEM LABORATORIES 960 WEST LEVOY DRIVE SALT LAKE CITY, UTAH 84123-2547 2-13/07 TEL. (801 Samples To: Jorth Dakota State Water Commission North Dakota State Water Commission 900 East Boulevard 900 East Boulevard Bismarck, ND 58505 Bismarck, ND 58505 By: Dates Sampled: Change of Custody: Date By: Change of Custody: Date By: By: Date Shipped: __ 0 Carrier 8332 8330 8260B 8270 Analysis Requested: Comments Test For Sample No. Location No Bottles Date 8260 8270 8330 8332 C В K 3 11 11 TOR ak 1 970 3 1000 Ø 2 9/4 3 71 4 11 16 10 3 914 72 5 Z 40K Gly 2 6 40mL TO'P Blank 73 7 8 9 10 11

Blank Temperature at time of shipping_____

12

13

APPENDIX C: RESIDUES OF HERBICIDES, PESTICIDES, AND PETROLEUM

Laboratory results, and quality control report.

Includes:

Herbicides - picloram, prometon, 2,4-D Insectide - malathion

Petroleum Residues

- DRO (Diesel Range Organics)
- GRO (Gasoline Range Organics)

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

× ·	
BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION	Report Date: 3 Oct 01 Lab Number: 01-A26321 Work Order #:22-0368
900 EAST BOULEVARD BISMARCK ND 58505	Account #: 00203 3 Sample Matrix: GROUNDWATER
	Date Sampled: 4 Sep 01 Date Received: 7 Sep 01
	DE AVE DESE DESE PEDER CONTRIBUTE DES DES RECEPCIÓNES DE LA CONTRIBUTE DE LA CONTRIBUTE DE LA CONTRIBUTE DE LA

Sample Description: SITE 1 - WELL 13103

Temperature at Receipt: ON ICE

	As Received Result		∜ethod RL	Method Reference	Date Analyzed	Analyst
Date Ext / KDA List I		······································			13 Sep 01	SP
FOR DDA Extraction					13 Sep 01	SP
COC (TOU)			100 ID 100 ID		10 Sep 01	JF
ακυ (ΙΡΗ)	Ç 0.2	mg/L	0.200	80158/0A1	13 Sep 01	ΚE
DRO (TEH)	(0.3	mg/l	0.30	8015B/0A2	26 Sep 01	H D U
Mələthion	(0.5	ppb	0.5	3510	13 Sep 81	PR
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Mod	18 Sep ©1	RB
BTEX/GRO Sample pH (2						
BTEX/GRO SURROGATE RECOVER	Y . 108 2					

BTEX/GRO SURROGATE RECOVERY: 108 % BTEX/GRO SURROGATE2 RECOVERY: 95 % DRO SURROGATE RECOVERY: 90 %

Approved by Dan O'Connell, Organic Laboratory Manager Hew Ulm, MH

RL = Reporting Limit

Elevated "Less Than Result" ((): <u>R</u> = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: NN LAB & 027-015-125 WI LAB & 999447680 HD NICRO & 1013-N HD WW/DW & R-040 IA LAB &: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

BILL SCHUH

900 EAST BOULEVARD

BISMARCK ND 58505

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

Report Date: 3 Oct 01 Lab Number: 01-A26322 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDUATER Date Sampled: 4 Sep 01 Date Received: 7 Sep 01

Sample Description: SITE 1 - WELL 13104

NORTH DAKOTA STATE WATER COMMISSION

Temperature at Receipt: ON ICE

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Date Ext / KDA List I	<u></u>	·····			13 Sep 01	SP
Date Ext / Org-P					13 Sep 01	SP
EPA DRO Extraction					10 Sep 01	JF
GRO (TPH)	(0.2	mg/L	0.200	80158/0A1	13 Sep 01	KΕ
DRO (TEH)	(0.3	ag/L	0.30	8015B/0A2	26 Sep 01	KDW
Malathion	(0.5	ppb	0.5	3510	13 Sep 01	R B
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Kod	18 Sep 01	R 8
	15		56			

BTEX/GRO Sample pH (2 BTEX/GRO SURROGATE RECOVERY: 107 % BTEX/GRO SURROGATE2 RECOVERY: 95 % DRO SURROGATE RECOVERY: 92 %

Approved by Dan O'Connell, Organic Laboratory Manager New Ulm, NN

RL = Reporting Limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KN LAB ± 027-015-125 WI LAB ± 999447680 ND KICRO ± 1013-K ND WW/DW ± R-040 IA LAB ±: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A26323
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDUATER
	Date Sampled: 5 Sep 01
	Date Received: 7 Sep 01
Sample Description: SITE 4 - WELL-RESERVOIR	

Temperature at Receipt: ON ICE

	As Received Result		Nethod RL	Nethod Reference	Date Analyzed	Analyst
Date Ext / MDA list I					13 Sep 01	SP
Date Ext / Org-P					13 Sep 01	SP
EPA DRO Extraction					10 Sep 01	JF
GRO (TPH)	(0.2	mg/t	0.200	8015B/0A1	13 Sep 01	X E
DRO (TEH)	(0.3	mq/L	0.30	80158/0A2	26 Sep 01	KOW
Malathion	(0.5	ppb	0.5	3510	13 Sep 01	88
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Kod	18 Sep 01	RB

BTEX/GRO Sample pH (2 BTEX/GRO SURROGATE RECOVERY: 105 % BTEX/GRO SURROGATE2 RECOVERY: 95 % DRO SURROGATE RECOVERY: 95 %

Approved by Dan O'Connell, Organic Laboratory Manager New Ulm, MM

RL = Reporting limit

Elevated "Less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration + = Due to extract volume

CERTIFICATION: NH LAB & 027-015-125 WI LAB & 999447680 ND NICRO & 1013-N ND WW/DW & R-040 IA LAB &: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION 900 EAST BOULEVARD BISMARCK ND 58505 Report Date: 3 Oct 01 Lab Number: 01-A26324 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 4 Sep 01 Date Received: 7 Sep 01

Sample Description: SITE 5 - L/ELL 13097

Temperature at Receipt: ON ICE

	As Recei Result	ved	Method Rl	Nethod Reference	Date Analyzed	Analyst SP
Date Ext / MDA List I					13 Sep 01	
Date Ext / Org-P					13 Sep 01	SP
Kalathion ·	(0.5	ppb	0.5	3510	13 Sep 01	RB
Prometon (Pramitol)	(0.5	ug/l	0.5	3510/8270 Nod	18 Sep 01	R 8

Approved by: Dan O'Connell, Organic

Laboratory Kanager New Ulm, KK

RL = Reporting limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: WH LAB & 027-015-125 WI LAB & 999447680 HD HICRO & 1013-M HD WW/DW & R-040 IA LAB &: 132

MVTL guarances the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions ot extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A26325
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BUSMARCK ND 58505	Sample Matrix: GROUNDIJATER
	Date Sampled: 4 Sep 01
	Date Received: 7 Sep 01

Sample Description: SITE 5 - WELL 13098

Temperature at Receipt: ON ICE

	As Received Result		∦ethod Rl	Nethod Reference	Date Analyzed	Analyst
Date Ext / MDA List I		······································			13 Sep 01	SP
Date Ext / Org-P					13 Sep 01	SP
EPA DRO Extraction					10 Sep 01	J F
GRO (TPH)	(0.2	mg/l	0.200	8015B/0A1	13 Sep 01	XE
DRO (TEH)	(0.3	mg/L	0.30	8015B/0A2	26 Sep 01	KOW
Malathion	(0.5	ppb	0.5	3510	13 Sep 01	R 8
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Kod	18 Sep 01	RB
					Get	

BTEX/GRO Sample pH (2 BTEX/GRO SURROGATE RECOVERY: 106 % BTEX/GRO SURROGATE2 RECOVERY: 93 % DRO SURROGATE RECOVERY: 89 %

Approved by: Dan O'Connell, Organic Laboratory Manager New Ulm, MM

RL = Reporting limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KN LAB & 027-015-125 WI LAB & 999447680 HD KICRO & 1013-K HD WW/DW & R-040 IA LAB &: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION 900 EAST BOULEVARD BISMARCK ND 58505 Report Date: 3 Oct 01 Lab Number: 01-A26326 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 4 Sep 01 Date Received: 7 Sep 01

Sample Description: DUP 1

Temperature at Receipt: ON ICE

	As Received Result		ved	Nethod Hethod RL Reference		Date Analyzed	Analyst
Date Ext / MDA List I				·····		13 Sep 01	S P
Date Ext / Org-P						13 Sep 01	SP
EPA DRO Extraction						10 Sep 01	JF
GRO (TPH)	()	.2	mg/l	0.200	80158/0A1	13 Sep 01	KE
DRO (TEH)	(0	. 6	mq/L	0.30	8015B/0A2	26 Sep 01	KDW
Malathion	()).5	ppb	0.5	3510	13 Sep 01	RB
Prometon (Pramitol)	(0	. 5	ug/L	0.5	3510/8270 Kod	18 Sep 01	RB
BTEX/GRO Sample pH (2							
BTEX/GRO SURROGATE RECOVER	RY: 106 %						
ADDALL REPORTED IN ALL ADDALLS OF REPORTED AND IN ADDALLS ADDALLS ADDALLS ADDALLS ADDALLS							

BTEX/GRO SURROGATE2 RECOVERY: 94 % DRO SURROGATE RECOVERY: 84 %

Approved by: Dan O'Connell, Organic Laboratory Manager New Ulm, MN

RL = Reporting Limit

Elevated "Less Than Result" ((): <u>E</u> = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: WH LAB # 027-015-125 HI LAB # 999447680 ND MICRO # 1013-W HD WW/DW # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

		Report Date: 3 Oct 01
	BILL SCHUH	Lab Number: 01-A26327
	NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
	900 EAST BOULEVARD	Account #: 002033
	BISMARCK ND 58505	Sample Matrix: GROUNDJATER
		Date Sampled: 4 Sep 01
Sample	Description: MS-MSD	Date Received: 7 Sep 01
		Temperature at Receipt: ON ICE

Date Ext / MDA List I	As Recei Result	As Received Result		Method Reference	Date Analyzed	Analyst
					13 Sep 01	SP
Date Ext / Org-P					13 Sep \$1	SP
EPA DRO Extraction .					10 Sep 01	JF
GRO (TPH)	(0.2	mg/l	9.200	8015B/0A1	13 Sep \$1	KE
DRO (TEH)	(0.99	mg/L	¢.30	80158/0A2	26 Sep 01	KDW
Malathion	(0.5	ppb	0.5	3510	13 Sep 01	RR
Prometon (Pramitol)	(0.5	ug/l	0.5	3510/8270 Hod	18 Sep 01	RB
BTEX/GRO Sample pH (2	e					
RTEV/COO CHODOCATE DECOVED	V. 1AC .					

BTEX/GRO SURROGATE RECOVERY: 106 % BTEX/GRO SURROGATE2 RECOVERY: 95 % DRO SURROGATE RECOVERY: 87 %

Approved by Dan O'Connell, Organic laboratory Manager New Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ((): 8 = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration + = Due to extract volume

CERTIFICATION: NN LAB # 027-015-125 WI LAB # 999447680 ND KICRO # 1013-K ND WW/DU # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	× 2 1	6 R		Report Date:	3 Oct 01	
	BILL SCHUH	a ⁹⁶	10	Lab Number: 0:	-A26328	
	NORTH DAKOTA STA	ATE WATER COMMISSION		Work Order #:2	2-0368	
	900 EAST BOULEV	ARD		Account #: 002	2033	
	BISMARCK ND 58	3505		Sample Matrix:	GROUNDUATER	
				Date Sampled:	5 Sep 01	
				Date Received:	7 Sep 01	
Sample	e Description: SI	TE 6 - WELL 13102			-	
				Temperature at	Receipt: ON	ICE
		As Received	Nethod	Nethod	Date	
		Result	R L	Reference	Analyzed	Analyst
Date Ext	/ MDA List II				14 Sep 61	SP
2,4-0	6	(0.5 vg/t	0.5	SW8151-Mod I	21 Sep 01	RB
Picloram		(0.1 ug/t	0.1	SW8151-Kod I	21 Sep 01	RB

Approved by Dan O'Connell, Organic

Laboratory Manager Neu Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ((): g = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration + = Due to extract volume

CERTIFICATION: NN LAB & 027-015-125 WI LAB # 999447680 KD MICRO € 1013-K HD WW/DW + R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	As Received Result	×	Nethod Rl	Nethod Reference	Date Analyzed	Analyst
				Temperature at	Receipt: ON	ICE
Sample	Description: SITE 7 - WELL	13087		Date Sampled: Date Received:	4 Sep 01 7 Sep 01	
	BISMARCK ND 58505			Sample Matrix:	GROUNDUATER	
	NORTH DAKOTA STATE WATER CO 900 EAST BOULEVARD	OMMISSION		Work Order #:22 Account #: 00 2	2-0368 033	
	BILL SCHUH			Report Date: : Lab Number: 01	3 Oct 01 -A26329	*

Date Ext / MDA List II					14 Sep 01	SP
EPA DRO Extraction					10 Sep 01	JF
GRO (TPH) .	(0.2	mg/l	C.20C	8015B/0A1	13 Sep 01	KE
DRO (TEH)	(0.3	mg/l	0.30	8015B/0A2	26 Sep 01	MOW
2,4-0	(0.5	ug/L	0.5	SW8151-Kod I	21 Sep 01	RB
Picloram	(0.1	ug/L	0.1	SW8151-Mod I	21 Sep 01	88

BTEX/GRO Sample pH { 2 BTEX/GRO SURROGATE RECOVERY: 105 % BTEX/GRO SURROGATE2 RECOVERY: 94 % DRO SURROGATE RECOVERY: 91 %

Approved by: Dan O'Connell, Organic Laboratory Kanager New Ulm, KN

RL = Reporting limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity CERTIFICATION: NN LAB & 027-015-125 WI LAB & 999447680 ND KICRO & 1013-N ND WW/DW & R-040 IA LAB &: 132

MVTL guarantees the accuracy of the analysis done or. the sample submitted for testing, It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION 900 EAST BOULEVARD BISMARCK ND 58505 Report Date: 3 Oct 01 Lab Number: 01-A27036 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 11 Sep 01 Date Received: 14 Sep 01

Sample Description: SITE 8 - 13106

Temperature at Receipt: ON ICE

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Date Ext / MDA List I					19 Sep 01	SP
Date Ext / MDA list II					20 Sep 01	SP
Date Ext / Org-P					19 Sep 01	SP
DRO Extraction					17 Sep 01	ARH
Sample Concentration For GRO	(0.03	ppm	¢.¢3	GRO WILUST	17 Sep 01	ΧE
Sample Concentration For DRO	0.041	ppm	0.035	DRO WILUST	26 Sep 01	HOU
Kalathion	(0.5	ppb	0.5	3510	19 Sep 01	R B
2,4-0	(0.5	vg/l	0.5	SW8151-Nod I	27 Sep 01	RB
Picloram	(0.1	ug/L	0.1	SW8151-Kod I	27 Sep 01	R 8
Prometon (Pramitol)	(0.5	ug/l	0.5	3510/8270 Hod	24 Sep 01	88

BTEX/GRO Sample pH { 2 DRO Sample pH { 2 BTEX/GRO SURROGATE RECOVERY: 100 %

Approved by: Dan O'Connell, Organic Laboratory Manager Neu Ulm, MM

RL = Reporting limit

Elevated "less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: NH LAB & 027-015-125 WI LAB & 999447680 ND NICRO & 1013-N NO WW/DW & R-040 IA LAB &: 132

NVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A27037
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDWATER
	Date Sampled: 11 Sep 01
	Date Received: 14 Sep 01
Sample Description: SITE 9 - 13089	

Temperature at Receipt: ON ICE

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst
Date Ext / HDA list I					19 Sep ©1	SP
Date Ext / MDA list II					20 Sep 01	SP
Date Ext / Org-P					19 Sep 01	SP
DRO Extraction					17 Sep 01	ARH
Sample Concentration For GRO	(0.03	ppm	0.03	GRO WILUST	17 Sep 01	KΕ
Sample Concentration For DRO	0.048	ppm	0.035	DRO WILUST	26 Sep 01	MOW
Kalathion	(0.5	ppb	0.5	3510	19 Sep 01	RB
2.4-0	(0.5	uq/L	0.5	SW8151-Mod I	27 Sep 01	RB
Picloram	(0.1	ug/L	¢.1	SW8151-Kod I	27 Sep ©1	R B
Prometon (Pramitol)	(0.5	ug/l	0.5	3510/8270 Hod	24 Sep 01	RB

BTEX/GRO Sample pH { 2 DRO Sample pH { 2 BTEX/GRO SURROGATE RECOVERY: 100 %

Approved by: Dan O'Connell, Organic

Laboratory Manager New Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KH LAB 🛊 027-015-125 WI LAB 🛊 999447680 ND KICRO 🛊 1013-K ND WW/DW 🛊 R-040 IA LAB 🛊: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION 900 EAST BOULEVARD BISMARCK ND 58505 Report Date: 3 Oct 01 Lab Number: 01-A27038 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 11 Sep 01 Date Received: 14 Sep 01

Sample Description: SITE 10 - 13093

Temperature at Receipt: ON ICE

	As Received Result		∦ethod Ri	Method Reference	Date Analyzed	Analyst
Date Ext / MDA List II	<u> </u>				20 Sep 01	SP
DRO Extraction					17 Sep 01	ARH
Sample Concentration For GRO	(0.03	ppm	0.03	GRO WILUST	17 Sep 01	ΚE
Sample Concentration For DRO	0.070	ppm	0.035	DRO WILUST	26 Sep 01	HOU
2,4-D	(0.5	ug/L	¢.5	SW8151-Kod I	27 Sep 01	8 B
Picloram	(0.1	ug/l	0.1	SW8151-Nod I	27 Sep 01	RB
DTEVICED CLEER AND						

BTEX/GRO Sample pH { 2 DRO Sample pH { 2 BTEX/GRO SURROGATE RECOVERY: 99 %

Approved by Dan O'Connell, Organic

Laboratory Manager Hew Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ({): & = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: WN LAB ± 027-015-125 WI LAB ± 999447680 ND HICRO ± 1013-N ND WW/DW ± R-040 IA LAB ±: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

3	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A27039
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDWATER
	Date Sampled: 12 Sep 01
	Date Received: 14 Sep 01

Sample Description: SITE 11 - SW LAKE

Temperature at Receipt: ON ICE

	As Received Result		Method RL	Method Reference	Date Analyzed	Analyst	
Date Ext / KDA List I					19 Sep 01	SP	
Date Ext / MDA List II					20 Sep 01	SP	
Date Ext / Org-P					19 Sep 01	SP	
DRO Extraction					17 Sep 01	ARH	
Sample Concentration For GRO	(0.03	ppm	0.03	GRO WILUST	17 Sep ©1	KΕ	
Sample Concentration For DRO	(0.035 1	ppm	0.035	DRO WILUST	26 Sep 01	NDW	
Kalathion	(0.5	ppb	0.5	3510	19 Sep 01	RB	
2,4-D	(0.5	ug/L	0.5	SW8151-Nod I	27 Sep 01	RB	
Picloram	(0.1	ug/L	0.1	SW8151-Kod I	27 Sep ©1	RB	
Prometon (Pramitol)	(0.5	ug/l	0.5	3510/8270 Hod	24 Sep 01	RB	

BTEX/GRO Sample pH { 2 DRO Sample pH { 2 BTEX/GRO SURROGATE RECOVERY: 98 %

Approved by Dan O'Connell, Organic

laboratory Manager New Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KH LAB 1 027-015-125 WI LAB 1 999447680 HD HICRO 1 1013-K HD WW/DW 1 R-040 IA LAB 1 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHUH NORTH DAKOTA STATE WATER COMMISSION 900 EAST BOULEVARD BISMARCK ND 58505				Report Date: 3 Oct 01 Lab Number: 01-A27040 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 12 Sep 01 Date Received: 14 Sep 01			
Sample	Description: SIT	E 12 - 13085		Temperature	at Receipt: ON	ICE	
		As Received Result	Nethod RL	Method Reference	Date Analyzed	Analyst	
Date Ext	/ MDA List II		i na marana a	The second statement of the same time	28 Sep 01	SP	
2,4-0		(0 .5 ug/l	0.5	SW8151-Nod I	27 Sep \$1	R B	
Picloram		(0.1 ug/L	0.1	SW8151-Kod I	27 Sep 01	R 8	

Approved by: Dan O'Connell, Organic

Laboratory Manager New Ulm, MM

RL = Reporting Limit

Elevated "Less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity

1 = Due to sample concentration + = Due to extract volume

CERTIFICATION: NH LAB & 027-015-125 VI LAB & 999447680 ND NICRO & 1013-N ND WW/DW & R-040 IA LAB &: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

2 A A	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A27041
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDWATER
	Date Sampled: 12 Sep 01
	Date Received: 14 Sep 01
Sample Description: SITE 13 - 13100	

Temperature at Receipt: ON ICE

	As Received Result		Nethod RL	Method Reference	Date Analyzed	Analyst
Date Ext / MDA List I	····		 		19 Sep 01	SP
Date Ext / NDA list II					20 Sep 01	SP
Date Ext / Org-P .					19 Sep 01	SP
Malathion	(0.5	ppb	0.5	3510	19 Sep 01	R 8
2,4-D	(0.5	ug/L	0.5	SW8151-Kod I	27 Sep 01	RB
Picloram	(0.1	ug/L	0.1	SW8151-Mod I	27 Sep \$1	RB
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Mod	24 Sep \$1	RB

Approved by: Dan O'Connell, Organic Laboratory Manager New Ulm, MM

RL = Reporting limit

Elevated "Less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KN LAB 1 027-015-125 WI LAB 1 999447680 ND HICRO 1 1013-K HD WW/DW 1 R-040 IA LAB 1 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHU	ΗI			
NORTH DAK	OTA	STATE	WATER	COMMISSION
900 EAST	BOU	EVARD		
BISMARCK	ND	58505	5	

Report Date: 3 Oct 01 Lab Number: 01-A26330 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDWATER Date Sampled: 5 Sep 01 Date Received: 7 Sep 01

Sample Description: SITE 15 - WELL -LAKE COE

Temperature at Receipt: ON ICE

	As Received Result		Nethod RL	Nethod Reference	Date Analyzed	Analyst	
Date Ext / MDA List II				ō	14 Sep \$1	SP	
EPA DRO Extraction					10 Sep 01	JF	
GRO (TPH)	(0.2	mg/t	0.200	8015B/0A1	13 Sep 01	ΚE	
DRO (TEH)	(0.3	mg/l	0.30	8015B/0A2	26 Sep 01	NDW	
2,4-D	(0.5	ug/L	0.5	SW8151-Kod I	21 Sep 01	R B	
Picloram	(0.1	ug/t	9.1	. SW8151-Nod I	21 Sep 01	R 8	
STEV/GDD Samala ny / 2							

BTEX/GRU Sample pH (2 BTEX/GRO SURROGATE RECOVERY: 105 % BTEX/GRO SURROGATE2 RECOVERY: 95 % DRO SURROGATE RECOVERY: 80 %

Approved by Dan O'Connell, Organic

Laboratory Manager New Ulm, KK

Rl = Reporting limit

Elevated "less Than Result" ((): e = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KK LAB # 027-015-125 WI LAB # 999447680 KD KICRO # 1013-K ND WU/DW # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 710 S. 14th St. ~ Grand Forks, ND 58201 ~ 800-272-7645 ~ Fax 701-772-0028 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

Page: 1 of 1

	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A27042
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDUATER
	Date Sampled: 11 Sep 01
	Date Received: 14 Sep 01
Sample Description: SITE 16 - N. SPRING	
	Temperature at Receipt: ON ICE

	As Received Result	1	Nethod RL	Nethod Reference	Date Analyzed	Analyst
Date Ext / KDA list II	2				20 Sep 01	SP
DRO Extraction					17 Sep 01	ARH
Sample Concentration For GRO	(0.03	ppm	0.03	GRO WILUST	17 Sep 01	KE
Sample Concentration For DRO	(0.038 !	ppm	0.035	DRO WILUST	26 Sep 01	NDW
2,4-D	(0.5	uq/L	0.5	SW8151-Kod I	27 Sep 01	R B
Picloram	(0.1	ug/L	0.1	SW8151-Mod I	27 Sep 01	R B
BTEX/GRO Sample pH { 2						
DRO Sample pH (2						
BTEX/GRO SURROGATE RECOVERY: 9	9 %					

Approved by Dan O'Connell, Organic

Laboratory Manager Hew Ulm, MM

RL = Reporting limit

Elevated "Less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity # = Due to sample concentration
+ = Due to extract volume

CERTIFICATION: KH LAB # 027-015-125 WI LAB # 999447680 HD HICRO # 1013-K HD WW/DW # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

	Report Date: 3 Oct 01
BILL SCHUH	Lab Number: 01-A27043
NORTH DAKOTA STATE WATER COMMISSION	Work Order #:22-0368
900 EAST BOULEVARD	Account #: 002033
BISMARCK ND 58505	Sample Matrix: GROUNDWATER
	Date Sampled: 11 Sep 01
	Date Received: 14 Sep 01
	03-40 85-0190 84-0190 84-40 825 825 848 848-0585

Sample Description: SITE 20 - 13094

Temperature at Receipt: ON ICE

	As Received Result		Method RL	Nethod Reference	Date Analyzed	Analyst	
Date Ext / MDA List I	· · · · · · · · · · · · · · · · · · ·				19 Sep 01	SP	
Date Ext / MOA List II					20 Sep 01	SP	
Date Ext / Org-P					19 Sep 01	SP	
Malathion	(0.5	ppb	0.5	3510	19 Sep \$1	RB	
2,4-D	(0.5	ug/L	0.5	SW8151-Kod I	27 Seo 01	R 8	
Picloram	(0.1	ug/l	0.1	SW8151-Mod I	27 Sep 01	R 8	
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Kod	24 Sep 01	RB	

Approved by O'Connell, Organic Dan

Laboratory Manager Hew Ulm, MM

RL = Reporting Limit

Elevated "less Than Result" ((): g = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration + = Due to extract volume

CERTIFICATION: MN LAB # 027-015-125 WI LAB # 999447680 HD MICRO # 1013-M ND WW/DW # R-040 IA LA8 1: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

				Report Date	e: 3 Oct 01	
BILL SCHUH				Lab Number	: 01-A26331	*
NORTH DAKOTA	STATE WATER	COMMISSION	1	Work Order	#:22-0368	
900 EAST BOU	EVARD			Account #:	002033	
BISMARCK ND	58505			Sample Mate	ix: GROUNDWATER	
				Date Sample	ed: 5 Sep 01	
				Date Receiv	ved: 7 Sep 01	
Sample Description:	TRIP BLANK				•	
н н				Temperature	e at Receipt: ON	ICE
	As Recei	ved	Nethod	Method	Date	
	Result		RL	Reference	Analyzed	Analyst
GRO (TPH)	{ 0.2	mg/L	0.200	80158/0A1	13 Sep 01	KE
BTEX/GRO Sample pH (2						
BTEX/GRO SURROGATE RECOVER	Y: 104 %					
BTEX/GRO SURROGATE2 RECOV	ERY: 95 %					

Approved by Dan O'Connell, Organic Laboratory Manager Kew Ulm, KK

RL = Reporting limit

Elevated "less Than Result" ((): & = Due to sample matrix ! = Due to sample quantity Due to sample concentration
+ = Due to extract volume

CERTIFICATION: NH LAB ± 027-015-125 WI LAB ± 999447680 ND HICRO ± 1013-H ND WW/DW ± R-040 IA LAB ±: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. - New Ulm, MN 56073 - 800-782-3557 - Fax 507-359-2890 1411 S. 12th St. - Bismarck, ND 58502 - 800-279-6885 - Fax 701-258-9724 710 S. 14th St. - Grand Forks, ND 58201 - 800-272-7645 - Fax 701-772-0028 35 W. Lincoln Way - Nevada, IA 50201 - 800-362-0855 - Fax 515-382-3885

Page: 1 of 1

BILL SCHU	JΗ				
NORTH DAK	OTA	STATE	WATER	COMMISSION	
900 EAST	BOUL	EVARD			
BISMARCK	ND	58505			

Report Date: 3 Oct 01 Lab Number: 01-A27044 Work Order #:22-0368 Account #: 002033 Sample Matrix: GROUNDUATER Date Sampled: 11 Sep 01 Date Received: 14 Sep 01

Sample Description: DUP 3

Temperature at Receipt: ON ICE

	As Receive Result	10	fethod RL	Method Reference	Date Analyzed	Analyst
Date Ext / MDA List I					19 Sep 01	SP
Date Ext / MDA List II					20 Sep 01	SP
Date Ext / Org-P				18	19 Sep 01	SP
DRO Extraction					17 Sep 01	ARH
Sample Concentration For GRO	(0.03	ppm	0.03	GRO NILUST	17 Sep 01	KΕ
Sample Concentration For DRO	(0.035 !	ppm	0.035	ORO WILUST	26 Sep 01	NOU
Kalathion	(0.5	ppb	0.5	3510	19 Sep 01	R B
. 2,4-D	(0.5	ug/L	0.5	SW8151-Hod I	27 Sep 01	88
Picloram	(0.1	ug/L	0.1	SW8151-Kod I	27 Seo 01	8 B
Prometon (Pramitol)	(0.5	ug/L	0.5	3510/8270 Mod	24 Sep 01	RB

BTEX/GRO Sample pH (2 DRO Sample pH (2 BTEX/GRO SURROGATE RECOVERY: 99 %

Approved by Dan O'Connell, Organic Laboratory Manager New Ulm, NH

RL = Reporting Limit

Elevated "Less Than Result" ((): E = Due to sample matrix ! = Due to sample quantity

= Due to sample concentration
+ = Due to extract volume

CERTIFICATION: HN LAB # 027-015-125 WI LAB # 999447680 HD HICRO # 1013-H HD WW/DW # R-040 IA LAB #: 132

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

e felo e de solet es asoleticas

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 710 S 14th St. ~ Grand Forks, ND 58201 ~ 800-272-7645 ~ Fax 701-772-0028 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

Work Order #: 200122-0368 Lab #: 01-A26321 through 01-A26327 **Date Reported:** 24 September 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
Pramitol	1.00	1.00	100	ND

ND = None Detected

MVTL METHOD I.D. REVISION **REFERENCE METHOD** B15323 1.8 US EPA SW 846-8081 8141A-3510

P

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

 Work Order #:
 200122-0368

 Lab #:
 01-A2736 through 01-A27044

 Date Reported:
 01 October 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
Pramitol	1.00	1.04	104	ND

ND = None Detected

MVTL METHOD I.D. B15323 **REVISION**

1.8

REFERENCE METHOD

US EPA SW-846-8081-8141A-3510

R

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

 Work Order #:
 200122-0368

 Lab #:
 01-A27036 through 01-A27044

 Date Reported:
 01 October 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
2,4-D	1.00	1.08	108	ND
Picloram	1.00	0.77	77	ND

ND = None Detected

MVTL METHOD I.D.REVISIONREFERENCE METHODT005232.0US EPA SW-846,
Method 8151 (Modified)RImage: Constraint of the second second

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 710 S 14th St. ~ Grand Forks, ND 58201 ~ 800-272-7645 ~ Fax 701-772-0028 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

 Work Order #:
 200122-0368

 Lab #:
 01-A26321 through 01-A26327

 Date Reported:
 24 September 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
Malathion	1.00	1.15	115	ND

ND = None Detected

MVTL METHOD I.D. P11523 **REVISION**

REFERENCE METHOD

1.4

EPA SW-846 Methods 3510, 8141, and 8081

RI

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 710 S 14th St. ~ Grand Forks, ND 58201 ~ 800-272-7645 ~ Fax 701-772-0028 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

Work Order #:200122-0368Lab #:01-A26328 through 01-A26330Date Reported:24 September 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
2,4-D	1.00	1.15	115	ND
Picloram	1.00	0.87	87	ND

ND = None Detected

<u>MVTL METHOD I.D.</u> T00523 **REVISION**

2.0

REFERENCE METHOD

US EPA SW-846, Method 8151 (Modified)

2

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done or: the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval. AN EQUAL OPPORTUNITY EMPLOYER

1126 N. Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 1411 S. 12th St. ~ Bismarck, ND 58502 ~ 800-279-6885 ~ Fax 701-258-9724 35 W. Lincoln Way ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885

MVTL

QUALITY CONTROL REPORT

 Work Order #:
 200122-0368

 Lab #:
 01-A27036 through 01-A27044

 Date Reported:
 01 October 2001

Analyte	Spike (ppb)	Recovered (ppb)	% Recovery	QC Blank Analyte Concentrations
Malathion	1.08	1.00	93	ND

ND = None Detected

MVTL METHOD I.D. P11523 **REVISION**

REFERENCE METHOD

1.4

EPA SW-846 Methods 3510, 8141, and 8081

BI

Quality control data reviewed and approved by R. Dan O'Connell, Organics Laboratory Manager By and for Minnesota Valley Testing Laboratories, Inc.

MVTL guarantees the accuracy of the analysis done on the sample submitted for testing. It is not possible for MVTL to guarantee that a test result obtained on a particular sample will be the same on any other sample unless all conditions affecting the sample are the same, including sampling by MVTL. As a mutual protection to clients, the public and ourselves, all reports are submitted as the confidential property of clients, and authorization for publication of statements, conclusions or extracts from or regarding our reports is reserved pending our written approval.