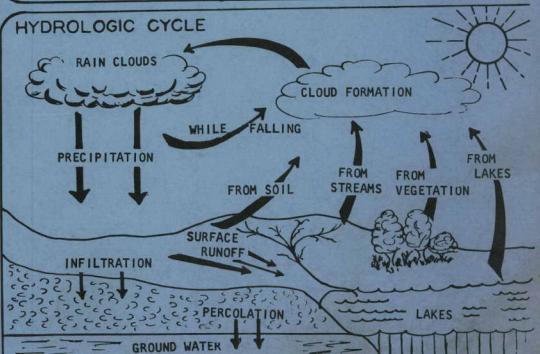


"BUY NORTH DAKOTA PRODUCTS"

GROUND WATER RESOURCES IN THE LAKOTA AREA NELSON COUNTY, NORTH DAKOTA


By J. E. Powell and S. L. Jones Geological Survey United States Department of the Interior

NORTH DAKOTA GROUND WATER STUDIES

Prepared by the United States Geological Survey in cooperation with the North Dakota State Water Conservation Commission, and the North Dakota Geological Survey

PUBLISHED BY NORTH DAKOTA STATE WATER CONSERVATION COMMISSION 1301 STATE CAPITOL, BISMARCK, NORTH DAKOTA

- 1962 -

GROUND WATER RESOURCES IN THE LAKOTA AREA

NELSON COUNTY, NORTH DAKOTA

By J. E. Powell and S. L. Jones Geological Survey United States Department of the Interior

North Dakota Ground-Water Studies No. 48

Prepared by the United States Geological Survey in cooperation with the North Dakota State Water Conservation Commission, and the North Dakota Geological Survey

> Published by North Dakota State Water Conservation Commission 1301 State Capitol, Bismarck, North Dakota

> > - 1962 -

1

CONTENTS

Abstract		
Introduction		
Location and general features of the area	4	
Purpose and scope of the investigation	5	
Physiographic features	6	
Well-numbering system	7	
Present water supply and future needs of Lakota	8	
Previous investigations and acknowledgments	10	
Geology	11	
Stratigraphic relations	11	
Recent deposits	12	
Pleistocene deposits	13	
Morainic deposits	14	
Ice-contact deposits	15	
Spillway deposits	16	
Buried valley deposits	17	
Lake deposits	18	
Bedrock formations	19	
Pierre Shale	19	
Group of Hansen (1955)	20	
Late Quaternary geologic history	20	
Ground-water resources	21	
Occurrence of ground water	21	
General principles	21	

CONTENTS -- Continued

Page

Ground-water resources (Cont.)			
Occurrence of ground water (Cont.)			
Water-bearing characteristics of aquifers	25		
Sand and gravel deposits enclosed in glacial			
till	25		
Ice-contact deposits	26		
Spillway deposits	26		
Buried valley deposits	27		
Pierre Shale	28		
Older rocks	29		
Recharge	29		
Discharge	32		
Quality of the ground water	33		
Summary of ground-water conditions	39		
References	6 7		

ILLUSTRATIONS

Figure 1	•	Map showing physiographic provinces in North Dakota and location of the Lakota area	4
2	2.	System of numbering wells and test holes	7
3	8.	Map showing location of wells, depth of wells, and depth to water in wells in the Lakota area	10
4	4.	Map showing location of wells in Lakota	10
5	5.	Map showing glacial geology and location of test holes and geologic section in the Lakota area	12
6	6.	Geologic section in the Lakota area	17

TABLES

Table	1.	Chemical analyses of ground water	41
	2.	Records of wells and test holes	42
	3.	Logs of wells and test holes	52

Page

GROUND-WATER RESOURCES IN THE LAKOTA AREA NELSON COUNTY, NORTH DAKOTA

By J. E. Powell and S. L. Jones

ABSTRACT

The Lakota area includes 126 square miles within the Devils Lake interior drainage basin of the Drift Prairie physiographic province in Nelson County, N. Dak. The surface deposits of glacial drift are underlain by Pierre Shale, which crops out around Stump Lake in the southwestern part of the area. Gently rolling ground moraine covers most of the Lakota area but end moraine occurs locally in the northcentral, southeast, and northwest. The topography consists of low relief and poorly developed drainage that results in many undrained depressions and swamps. Two glacial spillways trend southward in meandering courses across the area and drain into Stump Lake.

A buried, steep-sided channel deposit of sand and gravel about half a mile wide was discovered by test drilling east of Lakota. The channel is about 1 mile east of the city and trends southwestward for a distance of at least 1 1/4 miles. The city of Lakota has developed a producing water well, Lakota No. 6(153-60-26acb4) in this deposit; an estimated 70 gpm (gallons per minute) for a period of about 6 hours a day is pumped from the well. This well, together with Lakota well No. 2 (153-60-26acb1), a shallow dug well in an esker deposit; furnishes the water supply for the city.

- 1 -

The surficial deposits in the Lakota area are mostly glacial drift that was deposited during the last major ice sheet advance. Most of the drift consists of till but lenses of stratified sand and gravel enclosed within the till occur at some places. The drift also includes ice-contact deposits such as eskers and kames, spillway or channel deposits, buried valley deposits, and lake deposits. Cretaceous bedrock formations underlie the glacial drift in the report area.

Glacial drift is a source of ground water in many parts of the Lakota area. Many wells yield water from sand and gravel lenses associated with the till; some wells obtain water from ice-contact deposits. Also, it may be possible to develop ground-water sources from spillway deposits; about 2 miles east of Lakota 90 feet of saturated sand and gravel was found in a test hole. Small supplies of ground water are obtained from the wells drilled into a bedrock formation, the Pierre Shale of Late Cretaceous age. Probably the water occurs in cracks or fractures in the upper few feet of the shale. Rocks older than the Pierre Shale are not used as aquifers in the report area, but in adjacent areas, the Dakota Group of Hansen (1955) of Early Cretaceous age, yields water to wells.

A short pumping test of 24 hours and 23 minutes duration was made on a well, Lakota No. 6. The drawdown after pumping was 24.25 feet. The coefficient of transmissibility was calculated to be about 12,000 gpd/ft (gallons per day per foot) and the coefficient of storage was calculated to be 0.0007. The magnitude of the coefficient of storage indicates an artesian aquifer.

- 2 -

Recharge in the Lakota area is by downward percolation of rain water and water from melted snow. Shallow aquifers in the glacial drift receive recharge faster than deep aquifers; thus sand and gravel deposits at the surface in spillways or ice-contact deposits are favorable areas for recharge. Ground water is discharged by direct evapotranspiration in low areas, especially during the growing season. The regional direction of ground-water movement is probably southwestward toward Stump Lake.

Chemical analyses of ground water in the report area indicate that the dissolved-solids content is high. Recommended maximum concentrations of various constituents are exceeded in water from a number of the wells sampled.

INTRODUCTION

Location and General Features of the Area

The Lakota area comprises 126 square miles in the western part of Nelson County, North Dakota (fig. 1). Lakota, population 1,066 (1960 census), located in the central part of the area, is the county seat of Nelson County and is situated at the intersection of U.S. Highway 2 and State Highway 1. Lakota is served also by the main line and a branch line of the Great Northern Railway.

According to the U.S. Weather Bureau, the temperature in the area ranges from a January average of about $2^{\circ}F$. to a July average of about $67^{\circ}F$.; however, maximum and minimum temperatures of above $100^{\circ}F$. and below $-30^{\circ}F$. are common. The average annual precipitation is about 18 inches, most of which falls during the 120-day growing season.

The principal occupation in the Lakota area is farming; wheat, flax, oats, barley, and hay are the main crops, and cattle and hogs are the main livestock.

- 4 -

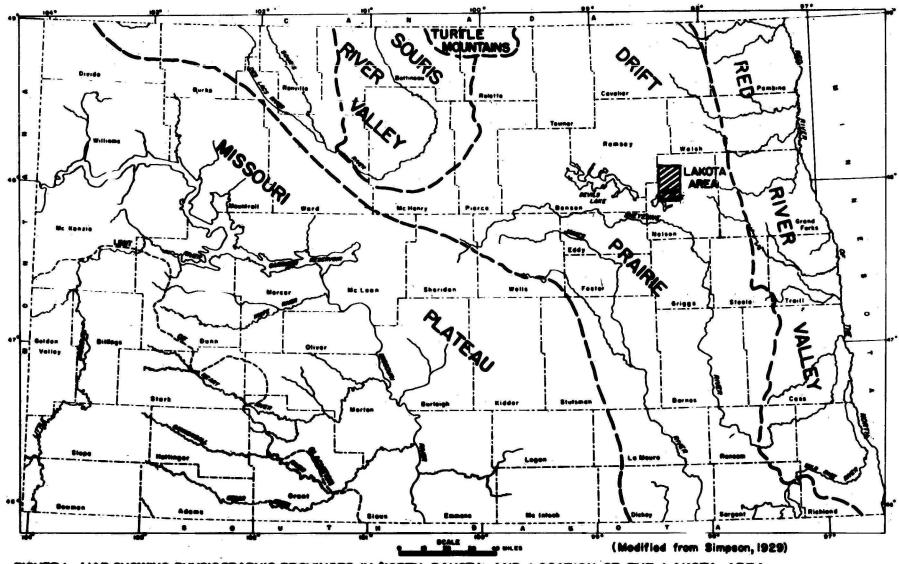


FIGURE I - MAP SHOWING PHYSIOGRAPHIC PROVINCES IN NORTH DAKOTA AND LOCATION OF THE LAKOTA AREA

Purpose and Scope of the Investigation

This report presents the results of an investigation of the geology and occurrence and quality of ground-water resources in the Lakota area. The investigation was made by the U.S. Geological Survey in cooperation with the North Dakota State Water Conservation Commission and the North Dakota Geological Survey. The purpose of the study is to evaluate the availability of ground water particularly for municipal use, but for other uses as well.

During this study, data were collected on about 300 wells including measurements of depths and water levels where possible; 33 test holes ranging in depth from 18 to 165 feet and totaling about 2,700 feet were drilled; altitudes of the test holes were determined; water samples were collected from selected wells and test holes; and a study was made of the surface geology. The test holes were drilled with a hydraulic rotary drilling rig owned by the North Dakota State Water Conservation Commission.

Physiographic Features

The Lakota area is in that part of the Central Lowland physiographic province (Fenneman, 1938, p. 559-588) that Simpson (1929, p. 4) called the Drift Prairie (fig. 1). The Drift Prairie is bordered by the Missouri Plateau on the west and by the Red River Valley on the east. The area is within the Devils Lake interior drainage basin (Babcock, 1902, p. 208), which extends from the southern part of the Turtle Mountains and the Canadian boundary southward to the drainage divide between the Sheyenne and James Rivers. The basin is bounded on the east by the edge of the Red River Valley and on the west by the Souris basin.

Drainage units within the basin are poorly integrated as a result of glaciation and consist mainly of intermittent streams, undrained depressions, small ponds and swamps, and a few lakes. Areally, the most prominent drainage units are Devils Lake and Stump Lake, both of which formerly drained southward to the Sheyenne River.

The topographic features of the area have resulted from the action of glacial ice and melt water. Gently rolling terrain called ground moraine constitutes most of the surface except for several tracts of high, rough terrain called end moraine in the northwest, southeast, and southwest corners of the area. Glacial features known as kames and eskers constitute local topographic features as do wave-cut benches around Stump Lake.

- 6 -

Well-Numbering System

The well-numbering system used in this report, illustrated in figure 2, based upon the location of the well in the federal system of rectangular surveys of the public lands. The first numeral denotes the township north of the base line, the second numeral denotes the range west of the fifth principal meridian, and the third numeral denotes the section in which the well is located. The letters a, b, c, and d designate respectively the northeast, northwest, southwest, and southeast quarter sections (10-acre tracts). To distinguish between two or more wells situated within the same tract, consecutive numbers, beginning with 1, are added as a suffix to each well number. Well 153-60-26acb4, Lakota No. 5A, is the fourth well described in the N¹³/4SW1/4NE1/4 sec. 26, T. 153 N., R 60 W. The method of designating the location of wells is shown on figure 2.

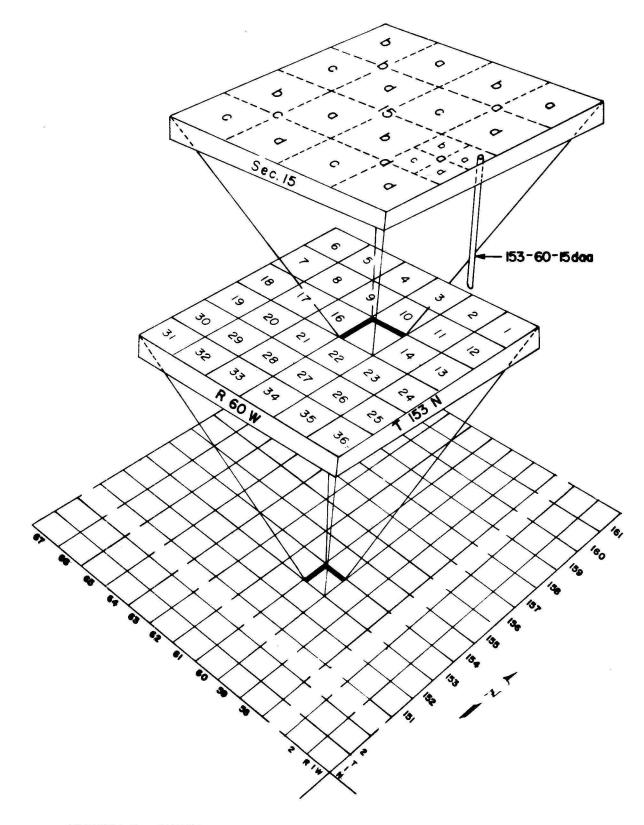
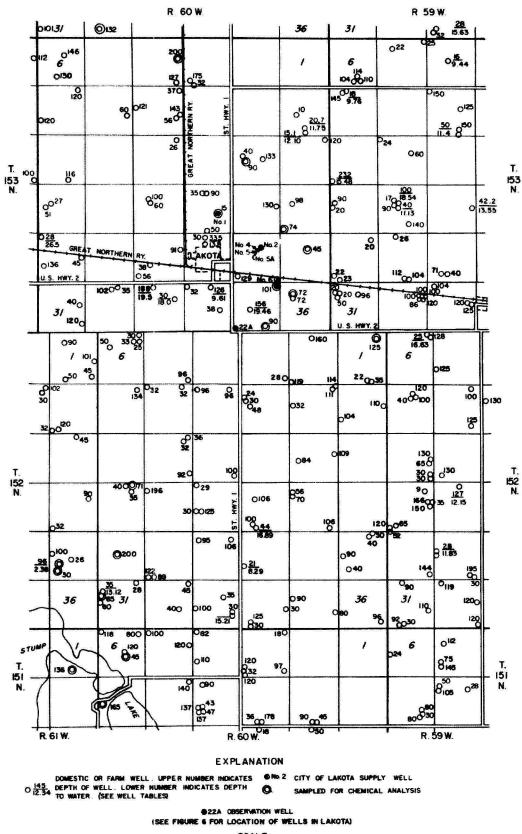


FIGURE 2--SYSTEM OF NUMBERING WELLS AND TEST HOLES.

Present Water Supply and Future Needs of Lakota

Many years ago water for domestic use in the city of Lakota was furnished by numerous privately-owned wells. In 1919, the city constructed a municipal system that consisted of two shallow wells (Lakota No. 1, 153-60-22dba, and Lakota No. 2, 153-60-26acb1), 15 and 20 feet deep and 20 and 18 feet in diameter respectively. The two wells produced hard but potable water from a deposits of glacial drift known as an esker. The wells yielded sufficient water for municipal needs except during the drought years (1930-1940).

The decline of water levels during the drought years made it necessary for the city to drill additional wells in 1937 and 1938. The wells penetrated the Pierre Shale and furnished small individual supplies (3 to 4 gpm) of water. Three of the shale wells, Lakota No. 4 (153-60-26acb2), No. 5 (153-60-26acb3), and No. 5A (153-60-26acb4), were drilled to depths of 120 feet near well No. 2. Eight additional wells in the Pierre Shale that ranged in depth from 90 to 280 feet were drilled within the city limits prior to 1949 but were not connected to the city system: however, Lakota No, 7 (153-60-27aca), No. 8 (153-60-27adc2), and No. 9 (153-60-27bcd1) were equipped with hand pumps and have been used by residents who live nearby. Lakota No. 12 (153-60-27bdd) at the swimming pool, was used to furnish part of the water necessary for the operation of the mool. Two of the shale wells, No. 10 (153-60-27bdal), and No. 11 (153-60-27bdc4) have not been used because they yielded extremely corrosive water. Chemical analyses of water from several of these wells are listed in table 1.


- 8 -

In the late 1940's, an increase in per capita water consumption and the resultant enlargement of the municipal water system without a corresponding increase in the available supply of water created a supply problem for the city of Lakota. Additional water to augment the city's supply was obtained from a new well (No. 6, 153-60-26ddd), which was drilled in 1952. Generally the well is numbed about 6 hours per day in the winter and 10 hours per day in the summer at a rate of about 70 gpm. The shallow east well, Lakota No. 2, pumps 15,000 gpd (gallons per day) and is used to supplement the supply from the No. 6 well.

The rate of decline of water level in Lakota No. 6 may be judged by the water-level fluctuations recorded from observation well 101 (153-60-35aaa), which is adjacent to the city well. The highest water level recorded in observation well 101 was 10.25 feet below 1and surface on June 12, 1951. The lowest was more than 33.00 feet below land surface on November 14, 1961. Records of water-level fluctuations in this well from 1949 to 1955 are available in the following U.S. Geological Survey Water Supply Papers: 1158, 1167, 1193, 1223, 1267, 1323, and 1406. Records for the period 1956 to present (1962) will be published in a forthcoming U.S. Geological Survey Water Supply Paper and are now available from the U.S. Geological Survey, Ground Water Branch, District Office, Grand Forks, North Dakota.

In 1961 the rate of water consumption in the city was estimated to be 60,000 gpd during the summer and 40,000 gpd during the winter. If the population increases significantly, additional wells will be needed.

- 9 -

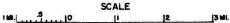


FIGURE 3.- MAP SHOWING LOCATION OF WELLS, DEPTH OF WELLS, AND DEPTH TO WATER IN WELLS IN THE LAKOTA AREA

Thirty-four wells within the city limits of Lakota range in depth from less than 10 feet to a maximum of 280 feet. Records of wells in the report area are given in table 2, and their locations are shown on figure 3 and figure 4.

Previous Investigations and Acknowledgments

Unham (1896, p. 595-598) outlined the general features of the glacial and bedrock geology and the glacial history of the Devils Lake-Stump Lake region. Babcock (1902, p. 208-250) reported on the Devils Lake area but had few references to the related Stump Lake basin. Simpson (1912, p. 109-156) presented a detailed description of the physiography of the Devils Lake-Stump Lake region and in a later report (1929, p. 177-181) included general information on the geology and ground water of Nelson County and detailed data for wells in the city of Lakota. Swenson and Colby (1955) discussed the quality of the water in Stump and Coon Lakes in relation to surface waters in the Devils Lake basin. Records of wells were obtained by the county assessors as wart of a statewide well inventory under the Works Projects Administration in 1939.

Work was facilitated by the cooperation of the townsneople and farmers in the area and particularly by L. D. Purdy, former water superintendent, and by other city officials.

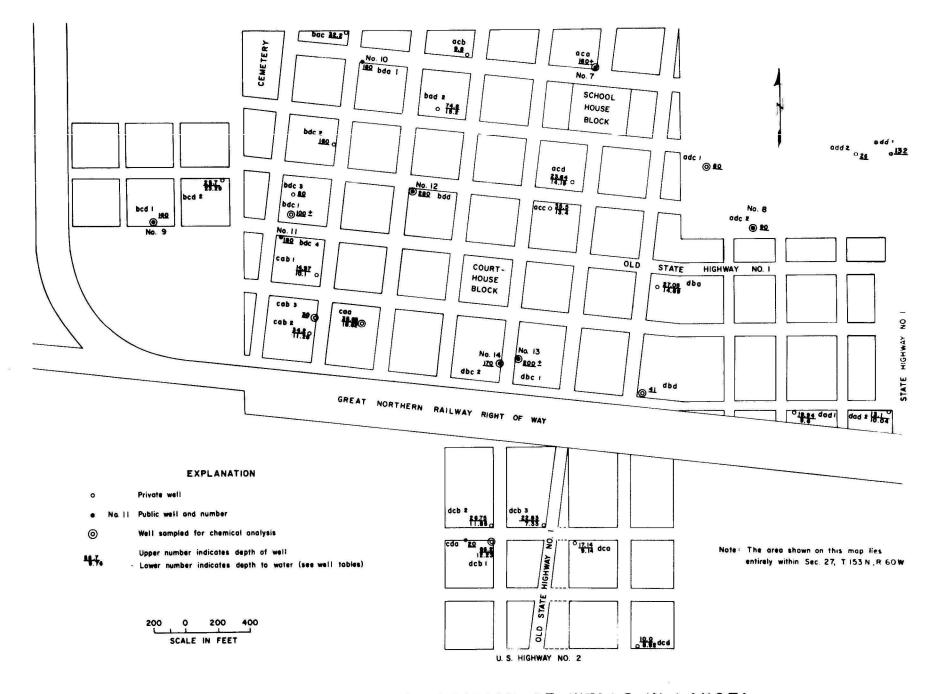


FIGURE 4 -- MAP SHOWING LOCATION OF WELLS IN LAKOTA

GEOLOGY

Stratigraphic Relations

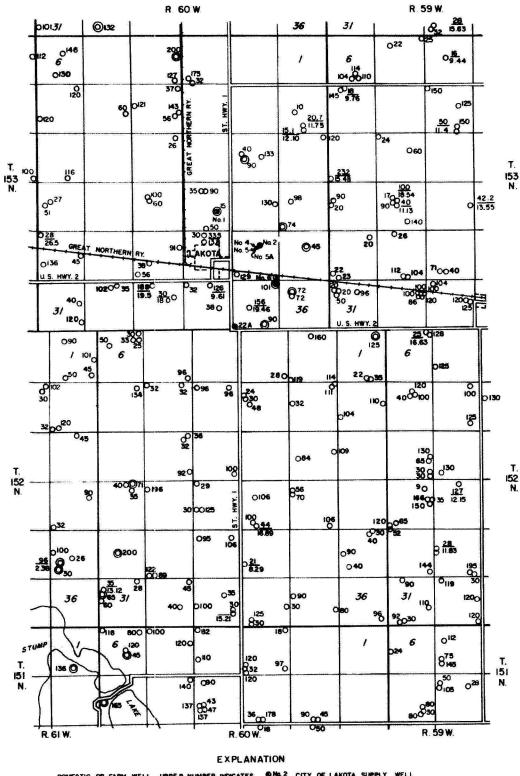
The stratigraphic section for the Lakota area is summarized in the following table: Cenozoic Quaternary System Recent Series Alluvium Pleistocene Series

Wisconsin Glaciation Mankato Stade

Mesozoic Cretaceous System Upper Cretaceous Series Pierre Shale Niobrara Formation Greenhorn Limestone Lower Cretaceous Series Dakota Group of Hansen (1955) Jurassic System

Paleozoic Silurian System Ordovician System

Precambrian


The stratigraphy of the glacial drift was determined from a study of samples from 33 test holes drilled in the area, by hand augering, and by observations at road and railway excavations. Information concerning the depth of, occurrence, thickness, and lithology of Cretaceous and older rocks was obtained primarily from the published logs of oil-test wells. The most reliable of these logs is from the Louis and Alvina Bryl #1 well (Garske, 1958), which was drilled 2 miles south of Lakota in the NW1/4NW1/4SE1/4 sec. 5, T. 152 N., R. 60 W. Additional information on the Dakota Group of Hansen (1955) was obtained from the log of a municipal-supply well in the city of Devils Lake, 28 miles west-northwest of the city of Lakota.

Recent Deposits

The soil is composed of dark-brown to black clayey loam that is calcareous locally. The top soil is silty and clayey throughout most of the area and is generally heavy in texture.

Recent deposits of alluvium and slopewash are in the valleys of Coon Lake and East Bay spillways (fig. 5). Generally the alluvium is thin and discontinuous and is composed of varying proportions of clay, sand, and gravel.

- 12 -

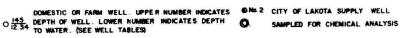


FIGURE 3.- MAP SHOWING LOCATION OF WELLS, DEPTH OF WELLS, AND DEPTH TO WATER IN WELLS IN THE LAKOTA AREA The surficial deposits are mostly glacial drift that was deposited during the last major ice sheet advance, or Wisconsin Glaciation, of the Pleistocene Epoch. Drift deposits older than the youngest or probably Mankato(?) Stade of the Wisconsin Glaciation have not been identified in the area. The Wisconsin Drift consists mainly of unstratified glacial till, but associated with the till are deposits of sand and gravel, most of which are stratified.

Deposits of glacial till cover about 97 mercent of the area. The till is a heterogeneous mixture of materials that range in size from clay to boulders. It was deposited directly from the melting glacial ice or was pushed out along the margins of the advancing glacier. In either method of deposition, the till is subjected to little or no sorting or stratification and consequently voids between the larger particles are usually filled with fine materials.

Till in the Lakota area is yellowish brown where it is oxidized and gray to bluish gray where it is unoxidized. The oxidized zone ranges from as little as 1 foot to approximately 30 feet in thickness. The till is predominantly clay, together with varying amounts of sand, gravel, and coarser fragments; locally it contains small, platy crystals of gypsum. About half of the pebbles in the till are limestone or dolomite, probably derived from Silurian and Ordovician formations in Manitoba, Canada; about a quarter are Pierre Shale of local origin, and the other quarter are mainly Precambrian granite, greenstone, and gneiss (Russell, 1950). Lignite fragments were identified in the till in test holes 112 (153-60-27cdd), 114 (153-60-28cdd), 177 (153-60-26dab), and 179 (153-60-25cab), and in the sand in test hole 180 (153-60-26dda).

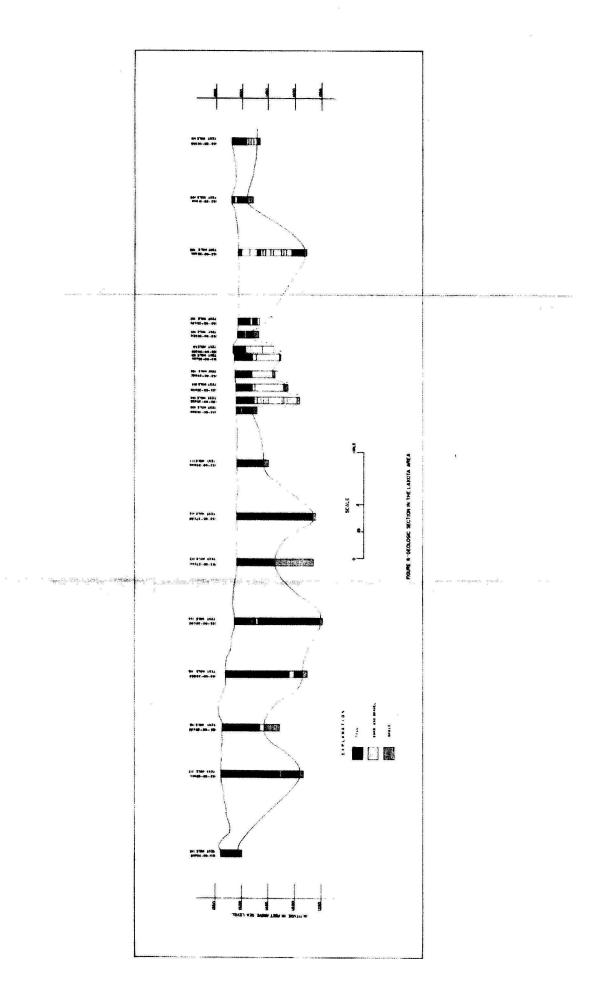
- 13 -

Morainic deposits.--Two types of glacial moraine, ground moraine and end moraine are in the report area. Both types are composed primarily of glacial till but differ in origin and topographic form. Ground moraine was deposited from the main body of the ice as it melted and in this area is characterized by gentle slopes and moderately rolling surfaces. End moraine was accumulated at the margins of the glacier by thrusting action of the active ice. In this area it is characterized by moderately steep slopes, hummocks, and closed depressions.

Ground moraine occupies about 90 percent of the Lakota area and end moraine about 7 percent (fig. 5).

- 14 -

Ice-contact demosits .-- Ice-contact features such as eskers and kames are bodies of stratified drift that were demosited in contact with melting glacier ice. Eskers are sinuous, steep-sided, low ridges -composed mainly of stratified sand and gravel -- that were deposited by streams of glacial melt water within or beneath the glacial ice. They are the most prevalent ice-contact features in the Lakota area; they range in length from a fraction of a mile to about 5 miles. They have low relief, ranging from 10 to 35 feet, and irregular surfaces that generally trend in a north-south direction. However, some of them, such as the esker in which wells, Lakota No. 1 and No. 2 (153-60-22dba and 153-60-26acb1) are situated, trend in an east-west direction. Most of the eskers are located on low ground and commonly have shallow depressions on one or both sides. Some of them have minor tributary branches. Their sides are steen and have slopes that approximate the angle of repose of the sand and gravel of which they are composed. The gravel, which consists mainly of igneous rock, limestone, dolomite. and shale fragments, is poorly sorted at some places and well sorted at others. Crossbedding, intermixed till, layers of silt, minor faults, and other types of deformation were observed in many of the eskers.


Kames are steep-sided hills of poorly sorted glacial debris. They were deposited by melt water at or near the margin of the glacier. Several hills in the northeastern and northwestern parts of the area (153-59-16, 153-60-17, 18, 20) have tentatively been identified as kames (fig. 5). A group of low, rounded hills in secs. 11 and 14, T. 153 N., R. 60 W. probably are tops of partially buried kames.

- 15 -

<u>Buried valley deposits</u>.--A buried valley or channel that contains sand and gravel, probably a glacial feature, was discovered by test drilling along section A-A' (figs. 5 and 6). The valley, which has no surface expression is partly filled with water-bearing sand and gravel that ranges in thickness from 25 to 82 feet. The glacial origin of this sand and gravel is indicated by its similarity to sand and gravel in East Bay spillway; both consist of approximately equal proportions of igneous, sedimentary, and metamorphic rocks. In addition, the proximity of the buried valley to East Bay and Coon Lake spillways, its parallel alignment with the spillways, and its relative altitude (fig. 6), all suggest that it has a glacial origin.

Information from test drilling indicates that the valley extends southwestward from about the center of sec. 25, T. 153 N., R. 60 W. for a known distance of 1 1/4 miles. At section A-A' it is about half a mile wide but its width south of the section is unknown. A large difference in the thickness of the drift within a relatively short distance indicates that the sides of the valley are very steep. Depth to Pierre Shale on the west boundary of the valley ranges from 31 feet in test hole 105 (153-60-35baa) to 114 feet in test hole 104 (153-60-35abb) about 0.2 mile east; on the east boundary it ranges from more than 77 feet in test hole 1A (153-60-36bbb) to 28 feet in test hole 106 (153-60-36bba) about 0.1 mile east (fig. 6). Test hole 28A (152-60-3bbc), the southernmost test hole in the buried valley, penetrated 58 feet of saturated sand and gravel. Additional test drilling will be necessary to determine the full extent of the valley.

- 17 -

In order to further investigate the distribution of sand and gravel along section A-A', the city of Lakota test-drilled in the vicinity of test hole 101 (153-60-35aaal). One of the test holes penetrated 18 feet of till, 67 feet of sand and gravel, and 3 feet of gravelly clay. This test hole was developed as a production well and was designated Lakota No. 6 (153-60-26dd).

Lake deposits.--Beach deposits and wave-cut benches mark the various lake levels around Stump Lake (fig. 5). The higher benches are in glacial till and the lower in Pierre Shale. The present beaches and shoreline deposits are principally sand, gravel, and shale pebbles. According to Swenson and Colby (1955, p. 48, 50) the bed sediments of Stump Lake are clayey silt.

Bedrock Formations

Tops of Cretaceous formations and pre-Cretaceous systems in feet below land surface are listed in the log of the Louis and Alvina Bryl No. 1 oil-test well (Garske, 1958) as shown in the tabulation below:

Cretaceous System Pierre Shale Niobrara Formation Greenhorn Formation Dakota Group of Hansen (1955)	46 465 872 1,188
Jurassic System	1,514
Silurian System	1,565
Ordovician System	1,827
Precambrian System	2,743

Of the bedrock formations in the Lakota area, only the Pierre Shale and the Dakota are considered as practical sources of ground water; consequently, the other units are listed but not discussed.

<u>Pierre Shale.--The Pierre Shale crops out only in the hills around</u> Stump Lake where it is thinly bedded, closely jointed, and locally has iron stain on some weathered surfaces. In North Dakota, fossils in the Pierre Shale are generally poorly preserved and are not common. No fossils were found in exposures in the Lakota area, consequently identification of the shale was made on the basis of its physical characteristics rather than fossil evidence.

- 19 -

Dakota Group of Hansen (1955).--The Dakota Group of Hansen (1955) is 1,188 feet below land surface and 326 feet thick at the oil-test well site 2 miles south of the city of Lakota (Garske, 1958). In other test wells within a radius of about 40 miles from the one described above, the Dakota ranged from 166 to 270 feet thick. It consists of alternating layers of quartzose sand, fine-grained sandstone, dense shale, and clayey limestone.

Late Quaternary Geologic History

The number of advances and retreats of ice in the Lakota area during and prior to the Wisconsin Glaciation of the Pleistocene Enoch have not been determined. The surface drift is believed to have been deposited during the last or Mankato(?) Stade of the Wisconsin Glaciation.

The absence of a conspicuous end moraine in the area indicates that the ice had no prolonged halting place. However, the prominence of Coon Lake and East Bay spillways indicate that the ice front may have been relatively stationary to the north and northeast for a prolonged period during the latter part of the Mankato(?) Stade.

Stump Lake in the report area and Devils Lake just west of the area occupy a partly filled pre-glacial valley that trends southeastward (Simpson, 1929, p. 178). As the ice retreated, the lakes were formed and melt water began to overflow from Devils Lake to Stump Lake and from Stump Lake south to the Sheyenne River. Flow from Stump Lake to the Sheyenne River ceased when the lake level fell below 1,460 feet below sea level. The lake levels were first recorded in 1867; prior to that time, when the level of Devils Lake declined to 1,450 feet below sea level, it ceased to drain into Stump Lake.

- 20 -

GROUND-WATER RESOURCES

Occurrence of Ground Mater

General Principles

Practically all ground water is derived from precipitation. Rain and melt water from snow enter the ground by direct percolation or by percolation from streams and lakes that lie above the general water table. Ground water generally moves downward and laterally from areas of recharge to areas of natural discharge.

Ground water is discharged through transpiration by plants and evaporation from the soil in areas where the ground-water level is near the land surface, by seepage into surface-water bodies, by pumping from wells, and by springs.

Any rock formation or stratum that will yield water in sufficient quantity to be important as a source of supply is called an aquifer (Meinzer, 1923, p. 52). Water moving in an aquifer from recharge areas to discharge areas may be considered to be in transient storage.

The amount of water that a rock can hold is determined by its porosity. Unconsolidated materials, such as clay, sand, and gravel, generally are more porous than consolidated rocks, such as sandstone and limestone; however, some consolidated rocks are very porous.

- 21 -

The ability of an aquifer to yield water by gravity drainage may be much less than is indicated by its porosity because part of the water is held in the pore spaces by molecular attraction between the water and the rock particles; the smaller the pores, the greater the proportion of the water that will be held. The amount of water, expressed as a fraction of a cubic foot, that will drain by gravity from 1 cubic foot of an aquifer, is called the specific yield of an aquifer.

If the water in an aquifer is not confined by an overlying impermeable stratum, the water is said to be under water-table conditions. Under these conditions, the water can be obtained from the aquifer by gravity drainage -- that is, by lowering the water level, as by pumping from a well.

Mater is said to be under artesian conditions if it is confined in the aquifer by an overlying impermeable stratum. Under artesian conditions, hydrostatic pressure will raise the water in a well, or other conduit that penetrates the aquifer, above the top of the aquifer, and water is yielded by the aquifer as the water level in the well is lowered. However, the aquifer remains saturated as the water is yielded because the water expands and because the aquifer is compressed and the head is decreased. Gravity drainage does not occur under normal artesian conditions. The water-yielding ability of an artesian aquifer is called the coefficient of storage, and is generally much smaller than the specific yield of the same material under water-table conditions. The coefficient of storage of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface.

- 22 -

The water released from or taken into storage in a water-table aquifer in response to a change in head is attributed partly to gravity drainage or refilling of the zone through which the water moves, and partly to compressibility of the water and of the material in the saturated zone. However, the volume of water attributable to compressibility is a negligible part of the total volume of water released from or taken into storage and can be disregarded. Thus, for a water-table aquifer, the coefficient of storage is essentially equal to the specific yield.

The frictional resistance to the movement of water through pore spaces that are relatively large, such as those in coarse gravel, is not great and the material is said to be highly permeable. However, the resistance to the movement of water through small pore spaces, such as those in clay or shale, may be very great and the material is said to be relatively impermeable or to have low permeability. The coefficient of permeability is expressed quantitatively for field use as the number of gallons of water per day that will pass through a cross-sectional area of 1 square foot under unit hydraulic gradient at the local temperature of ground water

The coefficient of transmissibility is convenient to use in groundwater studies because it indicates a characteristic of the whole aquifer rather than of a small part. It is the average field permeability of the aquifer multiplied by its thickness, in feet.

- 23 -

The suitability of an aquifer as a source of water is governed by its permeability, its volume, and its capacity to store and ability to release water. Recharge to the aquifer must be adequate if the watersupply development is to continue indefinitely, because even a small rate of withdrawal will ultimately deplete the water in storage unless there is equal or greater recharge. Aquifers that are highly permeable but small in areal extent, and surrounded by relatively impermeable material such as glacial till, can be pumped dry in a comparatively short time. The high initial yield of a well may give the erroneous impression that a large volume of water is available indefinitelv from the aquifer. Thus, before any substantial ground-water development is made, sufficient test drilling, aquifer tests, and related studies should be made to determine the physical characteristics of, and the available recharge to, the aquifer.

Water-bearing Characteristics of Aquifers

<u>Sand and gravel denosits enclosed in glacial till</u>.--Many wells in the area produce water from sand and gravel lenses that are completely surrounded by till. Generally these aquifers have no surface expression and can be located only by subsurface exploration, ordinarily test drilling. The yields of wells that penetrate these deposits depend upon the permeability of the surrounding till and upon the areal extent of the aquifers. Initially the yield of a well that produces from a sand and gravel lens may be large, giving an erroneous impression of abundant water. However, recharge to such aquifers from the surrounding till is usually slow and the aquifers may be rapidly dewatered by sustained pumping. Before large investments are made in wells that produce from sand lenses in the till, aquifer tests should be made to determine the aquifer characteristics.

A total of 99 wells in the area are known to tan aquifers in the glacial till; many others for which exact information is lacking are presumed to do so. The wells range from 15 to 200 feet in depth; their locations and other information may be found on fig. 3.

- 25 -

<u>Ice-contact deposits</u>.--The principal water supply for the city of Lakota for many years was obtained from two wells, Lakota Nos. 1 and 2, which were completed in an esker deposit. Lakota No. 1 penetrates 12 feet of sand and gravel; Lakota No. 2 penetrates 18 feet of sand and gravel. Test hole 24A (153-60-22acc) and 177 (153-60-26adb) also penetrated esker deposits of sand and gravel. The material in test hole 24A was 16 feet of fairly clean very coarse sand, and in test hole 177 it was 19 feet of clean sandy gravel.

Ten farm wells in the area obtain their water from ice-contact deposits. All are dug wells and about half of them were dug prior to 1920; many others have been abandoned.

Most of the ice-contact deposits in the remort area -- including those penetrated by Lakota city wells Nos. 1 and 2 -- are above the water table or have relatively thin saturated zones. Aquifers in the deposits are drained when the water table is lowered naturally; therefore, the aquifers are not ordinarily good permanent sources of water.

<u>Spillway deposits</u>.--Aquifers in spillway deposits, though not used extensively at present (1962), are potentially productive aquifers in the Lakota area. In the East Bay spillway about 2 miles east of the city, test hole 108 (153-60-36aaa) was drilled through 90 feet of saturated sand and gravel. No test holes were drilled into the surface spillways elsewhere in the area but it is probable that they contain saturated sand and gravel at other locations.

- 26 -

Buried valley deposits, -- The sand and gravel deposit contained in the buried valley discovered by test drilling during this investigation is the largest known aquifer in the area. It was penetrated by five test holes along section A-A' (fig. 5) and is used by Lakota city well No. 6. On August 29, 1952, a short numning or aquifer test was made at Lakota city well No. 6. When the test began the static water level was 16.31 feet below land surface. After numning at a rate of 150 grm for 24 hours and 23 minutes, the water level was 40.56 feet below land surface (a drawdown of 24.25 feet). Recovery of the water level was almost complete by 1:00 p.m., September 3. The coefficient of transmissibility of the aquifer was calculated to be 12,260 gallons per day per foot and the coefficient of storage was calculated to be .0007. The magnitude of the coefficient of storage indicates that water in the aquifer occurs under artesian conditions. This is confirmed by test drilling and water-level measurements.

There is a possibility that the lower sand and gravel deposit (40 to 100 feet below the surface) penetrated in test hole No. 108 (153-60-36aaa) may be hydraulically connected to the aquifer tapped by city well No. 6. Additional test holes between test hole 107 (153-60-25cdc) and test hole 108, and pumping tests are necessary to establish whether or not such a connection exists.

- 27 -

<u>Pierre Shale</u>.--The Pierre Shale is a source of water in the report area. However, the hydrologic characteristics of the aquifers in the Pierre have not been determined. Simpson (1929, p. 30) suggests that the aquifers are in weathered or creviced parts of the shale or in interbedded sandstone layers. The possibility of percolation of water through fractures is suggested by the appearance of the shale in exposures near the Sheyenne River and near Stump Lake. Here, in addition to horizontal breaks along bedding and lamination planes, the weathered surfaces have numerous vertical joints that approximate polygonal patterns. Where a supply of water is not available from overlying rocks, well drillers in the Lakota area and in other parts of North Dakota, occasionally complete wells in the upper few feet of the Pierre Shale. At these locations, systems of cracks, fractures, and joints are probably interconnected and function as aquifers.

A total of 86 wells in the Lakota area for which records were obtained during this investigation produce small supplies of water from the Pierre Shale. The wells range from 32 to 280 feet in depth.

- 28 -

<u>Older rocks</u>.--Rocks older than the Pierre Shale are not used as aquifers in the Lakota area. However, some information is available on the water-bearing characteristics of the Dakota Group of Hansen (1955) at the city of Devils Lake, 28 miles northwest of Lakota. Three municipal wells in Devils Lake tap the Dakota and are pumped at a rate of about 300 gpm; the wells flow when they are not pumped. According to Simpson (1929, pl. 1) wells to the Dakota would flow in approximately the southwestern one-quarter of the Lakota area. However, because water is usually available from the glacial drift or the Pierre Shale, the great depth to the Dakota renders its use for individual farm and ranch supplies impractical.

Some of the Mesozoic and Paleozoic formations between the Dakota Group of Hansen (1955) and the Precambrian basement rocks may be sufficiently permeable to yield considerable quantities of highly mineralized water to wells. However, the formations are too deep to be considered as sources of supply in the Lakota area.

Recharge

Recharge to the various aquifers in the glacial drift is principally by downward percolation of rain water and water from melted snow. To a much lesser extent recharge is accomplished by lateral migration of ground water from adjacent areas. The configuration of the land surface directly influences the amount of recharge available to underlying aquifers. In poorly drained areas such as those occuried by kettles, potholes, or other depressions, water remains ponded and is available for recharge. In well drained areas, runoff is rapid and very little water is available for recharge unless the soil and subsoil zones are very permeable.

The shallow sand and gravel deposits in the glacial spillways are the best situated aquifers in the area to receive recharge by direct penetration of precipitation. In years of heavy snowfall, a considerable amount of water runs into the spillways from adjacent areas when the accumulated snow melts in the spring. This runoff water produces large surface flows in the spillways, part of which percolates underground into the spillway deposits.

The aquifers that receive the least recharge are those that are surrounded by glacial till. Water that recharges these aquifers must percolate downward and laterally through a till cover of low permeability. Consequently the movement of water into the aquifers is very slow.

Shallow aquifers in the till receive recharge faster than the deep aquifers. The water level in wells that penetrate shallow till aquifers rises sharply in the spring in response to the infiltration of melted snow. Water levels also rise after rains in the fall, but they generally decline during the winter months when the ground is frozen.

- 30 -

Water levels in deep till aquifers show little indication of the immediate effects of recharge from spring snowmelt; generally the water level is lowest in late fall and rises during the winter. The rise in the water level continues until spring or early summer, after which it declines until late fall. The small magnitude of the changes in water level probably indicate a slow rate of recharge to the deep till aquifers.

Evapotranspiration has an important effect upon ground-water recharge. During the summer and early fall, evanotranspiration rates are high and water that enters the ground from light rains probably is used by vegetation before it can contribute to ground-water storage. In the late fall and early spring, evapotranspiration losses are considerably lower and rains contribute significantly to ground-water storage. Heavy or sustained rains may contribute to ground-water storage at any season of the year. Most of the precipitation in the area occurs as rain during the late spring and early summer months when evapotranspiration rates are low. Therefore, most of the water that percolates into the ground is available for recharge to the glacial drift aquifers.

1

Discharge

The mechanics of ground-water discharge in the area cannot be fully understood until the nature of the relationship between the various glacial-drift aquifers is known. However, it is possible that in places the aquifers are hydraulically connected. The ice-contact deposits, for example, may intersect, overlie, or otherwise contact sand and gravel deposits of different origin in the till, which in turn overlie fractured zones in the Pierre Shale. At 9 of the 35 test holes, sand and gravel deposits are in contact with the Pierre. These contacts could permit relatively free movement of water between the aquifers so that all would function essentially as a unit. Even where two bodies of sand and gravel are separated by till, there may be a significant movement of water between them, especially where the intervening till is thin or somewhat permeable.

The regional direction of ground-water movement probably is to the southwest toward Stump Lake. Sand and gravel deposits in the glacial spillways form relatively permeable, though shallow troughs, through which water percolates readily. Ground water moves laterally from adjacent areas to the spillways, where a considerable part of it is probably returned to the atmosphere by evapotranspiration. The balance presumably percolates slowly downslope toward Stump Lake through the lower sandy lenses of the drift that overlie the Pierre Shale.

- 32 -

Discharge from aquifers in the Pierre Shale in the Lakota area is by pumping from wells. The fractured and cracked zones in the upper surface of the shale are probably confined to scattered local areas and it is doubtful that they contribute significantly to regional groundwater migration. In general, the surface of the Pierre is an impermeable barrier along which ground water migrates to areas of natural discharge.

A large amount of water is probably stored in aquifers in the glacial drift in the Lakota area. However, the quantitative data necessary to make an accurate estimate of the storage are not available.

QUALITY OF THE GROUND WATER

Water dissolves part of the mineral constituents of the rock through which it moves. The amount of mineral constituents dissolved depends on the chemical changes which the water undergoes as it percolates through the carbon dioxide-rich soil, on the characteristics of the rocks through which water percolates toward the aquifer, and on the characteristics of the minerals in the aquifer and the length of time that the water is in contact with them. Therefore, in a homogeneous aquifer that has a homogeneous recharge area, water that has been stored underground a long time or has traveled a long distance from the recharge area is more highly mineralized than water that has been stored a short time and recovered relatively near the recharge area.

- 33 -

The quality of water for public supply and domestic use commonly is evaluated in relation to standards of the U.S. Public Health Service for drinking water. The standards, adopted in 1914 to protect the health of the traveling public, were revised several times in subsequent years. The latest revisions by the U.S. Public Health Service (1961), approved by the Secretary of Health, Education, and Welfare, are, in part, as follows:

Constituent	Maximum concentration
	maa
Iron (Fe)	0.3
Manganese (Mn)	.05
Sulfate (SO ₄)	250
Chloride (C1)	250
Fluoride (F)	1.7 $\underline{a}/$
Nitrate (NO ₃)	45
Dissolved solids	500 <u>b</u> /

<u>a</u>/Based on annual average of maximum daily air temperature at Petersburg. <u>b</u>/Dissolved solids of 1,000 ppm permitted if water of better quality is not available.

The chemical quality of the ground water was determined from the analyses of water from 35 wells in the Lakota area. Fifteen of the wells produce water from the Pierre Shale and 20 produce from the glacial drift. Results of the chemical analyses are shown in table 1.

- 34 -

The chemical analyses show that the ground water in the report area contains a high dissolved-solids content. Recommended maximum concentrations of chloride and nitrate are exceeded in water from some of the wells sampled; of iron and sulfate in water from most of the wells sampled; and of total dissolved solids in water from all of the wells sampled. However, water that contains more than the recommended limits of certain chemical constituents has been used in some areas of North Dakota for many years without reported ill effects.

Nearly all ground water contains some hardness-causing constituents. Hardness of water is caused principally by calcium and magnesium and to a lesser extent by iron, aluminum, strontium, barium, zinc, and free acid. Hard water is undesirable, especially if the water is used for laundering because it causes increased soap consumption as well as soap scum. Water that has a hardness of 100 ppm as CaCO₃ is generally considered to be moderately hard; water that has a hardness of 200 ppm or more is considered very hard. Water from nearly all the wells listed in table 1 is very hard and would require softening to be satisfactory for many uses. Hardness of water from most of the wells sampled ranged from 200 to 1,600 ppm as CaCO₃; that of water from one well, however, was 2,000 ppm. The average hardness of water from the Pierre Shale was 541 ppm and that of water from the glacial drift was 678 ppm.

- 35 -

High concentrations of nitrate in well water may be due to decaying organic matter and may, therefore, indicate that the water is being polluted. High concentrations may also be due to nitrates derived from high-analysis or concentrated commercial fertilizers. Water that contains more than about 44 ppm of nitrate may cause cyanosis in infants when used in feeding formulas and for drinking (Comly, 1945; Silverman, 1949). Water from three of the wells sampled contained concentrations of nitrate in excess of 44 ppm.(See table 1.)

The consumption of water that contains fluoride in concentrations of about 1 ppm by children during calcification of teeth, reportedly lessens the incidence of tooth decay. However, the consumption of water that contains concentrations higher than about 1.5 ppm (probably about 1.7 in the report area) may cause mottling of tooth enamel (Dean, 1936). Fluoride in excess of the recommended limit was not present in water from any of the wells that were sampled.

In general, ground water in the report area may be used for most domestic needs but would require softening to avoid excessive soap consumption when used for laundering. However, samples of water from new or unused wells should be submitted to the State Department of Health for analysis before the water is used for drinking.

- 36 -

Water that is satisfactory for certain domestic and industrial uses such as laundering, may be unsatisfactory for irrigating crops. Irrigating with water that has a high dissolved-solids content may cause salts to accumulate in the root zone of the soil and may eventually cause the soil to become unproductive. The specific conductance of water is dependent on the dissolved-solids content of the water and is a measure of the soluble salts that the water contains. According to the U.S. Salinity Laboratory Staff, 1954, p. 70, "Nearly all irrigation waters that have been used successfully for a considerable time have conductivity values (specific conductance) of less than 2,250 micromhos per centimeter (equivalent to a dissolved-solids content of about 1,500 ppm). Waters of higher conductivity are used occasionally, but cron production, except in unusual situations, has not been satisfactory." Although the specific conductance of the samples are not given in table 1, the conductance can be approximated by dividing the dissolved-solids content by 0.65. For most of the samples the approximation probably would be accurate within 10 percent.

On the basis of the above approximation the average specific conductance of water from wells that were sampled in the renort area is about 3,700 micromhos per centimeter.

- 37 -

Irrigating with water that has a high percent sodium may cause the soil to become impermeable. The percent sodium is calculated as follows:

Percent sodium = $\frac{\text{Na x 100}}{\text{Ca + Mg + Na + K}}$

where all concentrations are in equivalents per million. The continued use of irrigation water in which the percent sodium is in excess of 50 may cause the soil to become less productive. However, the extent of productivity loss that will result from the continued use of a particular type of water also depends on other factors, such as salinity of the water, porosity and permeability of the soil, drainage, irrigation practices, and crop management. In general, the higher the percent sodium, the less suitable the water is for irrigation.

The chemical analyses indicate that water from most of the wells sampled is of unsuitable quality for irrigation because the percent sodium was greater than 50 and the specific conductance (computed) was greater than 2,250 micromhos per centimeter.

- 38 -

SUMMARY OF GROUND-WATER CONDITIONS

Small supplies of ground water sufficient for domestic and farm use can usually be found in the report area. When drilling for individual farm and ranch supplies, an attempt is usually made by the well contractor to obtain a water supply from the glacial drift. However, many residents prefer wells in the Pierre Shale because the water is somewhat softer and because the wells do not go dry after long droughts. In some instances, rural residents find it necessary to construct two wells, one in the Pierre Shale and one in the glacial drift, or two in either formation, in order to obtain sufficient water.

The most productive aquifer that is known in the area was discovered by drilling test holes along section A-A' east of the city of Lakota. The aquifer is in a buried valley that is probably glacial in origin. The valley is partly filled with saturated sand and gravel that ranges in thickness from 25 to 82 feet. Along section A-A', the center of the aquifer is about one-quarter of a mile west of the southeast corner of sec. 26, T. 153 N., R. 60. It extends southwestward for a distance of at least 1 1/4 miles to a point where it contains 58 feet of saturated sand and gravel. Lakota city well No. 6 penetrates this aquifer and furnishes most of the municipal supply. The aquifer is capable of supporting additional wells but should be investigated further by test drilling and aquifer tests before permanent well sites are chosen.

- 39 -

Additional water for municipal and (or) other use probably is available two miles east of Lakota where test hole 108 (153-60-36aaa) was drilled through 90 feet of sand and gravel. However, this aquifer should also be explored by test drilling and aquifer tests prior to construction of permanent wells.

Ground water from wells in the Lakota area has a high dissolvedsolids content. Recommended maximum limits of one or more constituents are exceeded in the wells sampled during this investigation.

Abbreviations: G, gravel; S, sand; Sh, Pierre Shale; T, glacial till

Analyses made by the North Dakota State Department of Health, Bismarck, North Dakota

North	Dakota					tors to an electronic because	
Location No.	Owner or name	Date of collection	Aquifer	Depth of well (feet)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)
<u>151-60</u> 6dbb 7cbb 9cbc1	Jake Geritz Wishart Sisters Mrs. H. Durnell	9-24-49 9-24-49 9-20-49	Sh Sh	45 165 137	1.4 .3 1.4	48 184 57	20 66 67
<u>151-61</u> lcda	Orville Engel	9-26-49	G	136	•4	7	2
<u>152-60</u> laab 19abal 30bdd 31bcb	W. W. Brooker William Winer Karl Jonson Harry Saunders	9-19-49 9-21-49 9-28-49 9- 5-49	Sh G Sh	125 71 200 65	1.5 3.8 1.1	26 140 400 25	12 94 228 12
<u>152-61</u> 25cbàl 25cbd2	William Saunders do	9- 5-49 9- 5-49	••	30 96	.6 1	128 77	89 46
27bcdl 27bdcl 27bdd 27caa 27cab4 27dbcl 27dbc2 27dbd 27dcbl 35aaa 35abb 35dcd 36bacl	Lakota No. 8 Lakota No. 9 The Grant House Lakota No. 12 Lester Purdy A. H. Kaufman Lakota No. 13 Lakota No. 14 Lakota Creamery Alfred Howen Test hole 101 Test hole 104 Charles Stein George McHugh	9-19-49 9-27-49 9-9-49 9-15-49 9-15-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49 9-25-49	SS,GG S,GG S,GG SSS SSS SSS SSSS SSS SSS	$\begin{array}{c} 200 \\ 90 \\ 15 \\ 74 \\ 45 \\ 100 \\ 20.6 \\ 160 \\ 80 \\ 90 \\ 160 \\ 280 \\ 35.6 \\ 30 \\ 200 \\ 170 \\ 41 \\ 86.2 \\ 87 \\ 120 \\ 90 \\ 72 \end{array}$.4 .9 .29 .3.3 .4.37 .52.5 1.3 1.3 1.3 1.28 .77.5	$\begin{array}{c} 101\\ 48\\ 120\\ 326\\ 274\\ 943\\ 148\\ 205\\ 142\\ 52\\ 188\\ 248\\ 1252\\ 188\\ 248\\ 1222\\ 174\\ 248\\ 174\\ 248\\ 174\\ 221\\ 221\\ 221\\ 221\\ 221\\ 221\\ 221\\ 22$	$\begin{array}{c} 65\\ 41\\ 89\\ 160\\ 190\\ 182\\ 40\\ 48\\ 41\\ 52\\ 8\\ 33\\ 20\\ 64\\ 99\\ 47\\ 93\\ 56\\ 146\end{array}$
154-60 32cdb	Charles Turner	9-20-49	Sh - 41a	132	.2	55	118

Results	in	parts	per	million	except	as	indicated
---------	----	-------	-----	---------	--------	----	-----------

Sodium (Na)	Bicarbonate (HCO ₃)	Carbonate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Fluoride (F)	Nitrate (NO ₃)	Dissolved solids (calculated)	Hardness as CaCO3	Percent sodium
741 313 615	545 478 689	••• 34	1,298 935 458	50 32 510	••	2.1 8.6	2,705 2,008 2,448	200 730 417	89 48 75
749	945	••	665	135	.2	4.3	2.508	28	98
1,210 347 746	766 495 547 277	•••	1,118 140 1,669	1,310 27 372 192	.2 .2 .2	122 3,040 86.7	2,447 2,224 4,728 3,233	100 735 2,000 635	95 48 ••
228 290	420 316	••	708 670	65 38	.2	2.1	1,641 1,438	686 380	42 61
568 19 324 270 99 723 17 5430 575 207 745 207 745 6659 646 633 314 127 236 401	439 5739 5532 5532 5769 570 6710 5090 438 439 209 509 509 509 509 509 509 509 509 509 5	29 29 36	1,215 117 600 1,480 1,110 2,475 146 754 499 865 642 1,118 8 1,719 724 505 964 1,641 754 696 1,013 726 1,262	91 78 20 34 107 38 14 32 15 124 20 3,000 157 236 269 134 261 267 76 263	······································	$ \begin{array}{r} 6.5 \\ 4.3 \\ 17.3 \\ 4.3 \\ 8.7 \\ 4.3 \\ \\ 4.3 \\ \\ 4.3 \\ \\ 26 \\ 39 \\ \\ 39 \\ \\ 17.3 \\ \\ 17.3 \\ 4.3 \\ \\ 17.3 \\ $	2,486 881 1,501 2,767 2,444 4,232 643 2,116 1,542 2,347 1,718 2,347 1,718 2,589 2,370 2,163 2,502 3,539 1,563 2,123	519 287 688 1,424 1,596 1,440 399 314 52 346 736 72 915 972 212 73 384 810 590 1,000 703	70 1 2 1 9 1 5 8 7 9 7 8 5 3 3 8 9 8 9 7 6 5 2 3 4 5
1,175	877	• •		1,750 - 411	.2	6.5	3,996	622	80

Depth of well: Measured depths are in feet, tenths and (or) hundredths; reported depths in feet.

Type: Dr, drilled; Du, dug.

3

- Geologic source: Qg, gravel; Qs, sand; Kp, Pierre Shale; Qt; glacial till.
- Depth to water: Measured depths are in feet, tenths, and (or) hundredths; reported depths in feet.
- Use: D, domestic; M, municipal; O, observation, S, stock; T, test hole; U, unused.

Location No.	Cwner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
12 1					-
151-59					
5c1	Martin Flom	75	24	Dr	1900
5c2	P. M. Severson	145	6	Dr	1913
5bed	H. Miller	112	5号)	Dr	1949
6cbb	Wm. Franzen	24	24 x 24	Du	1900
7dbd	Charles Wolford	80	5	Dr	1946
7dcal 7dca2	do	30	24	Dr	1928
acaz 8abd	do Olaf Sieverson	80 28	26 26	••	-1900
8b	Mrs. A. Lier	20 50	36 x 36	Du	a1890
8ъсъ	Frank Franzen	105	6 6	Dr Dr	1920
0000		10)	0	IU	1920
151-60			2		
3a -	G. Ensrud	18	4	Du	1935
3c1	A. I. Ferry	120	6	Dr	1934
302	do	32	24	Dr	1894
Зсер	do	120	6	Dr	1945
3d.	S. W. Ludburgh	97	5 5 6	Dr	1937
4b	M. Rogness	82	5	Dr	1937
4cbc	Lawrence Johnson	110	6	Dr	1920
5ada. 50	Mrs. Hattie Durnell Federal Land Bank	120	6	Dr	1920
50 ба	Merchants Bank	100 80	6 6 5 6	Dr Dr	1917
6acc	Jake Geritz	120	5	Dr Dr	1906 1917
бъ	Merchants Bank	118	6	Dr	1918
6dbb	Jake Geritz	45	ě	Dr	1890

Remarks: C, see chemical analysis in table 1; L, test hole refilled; log in Table 3; Wad, water supply reported to be adequate; Wal, water reported to have alkaline taste; Wc, water reported to be corrosive; Wh, water reported to be hard; Wi, water reported to contain iron; Win, water supply reported to be inadequate; Wio, water reported to contain iodine; Ws, water reported to be soft; Wst, water reported to have salty taste; Wu, water unfit for domestic use; Sh-90, shale at 90 feet (number indicates depth at which shale was penetrated).

Year completed or measured: a, approximate.

Geologic Source	e Depth to water below land surface (feet)	Year measured	Use	Remarks
Qs Kp Qg Qs Kp	45 15 20 10 23 15	1938 1949 1946 1949 1949 1920	S D D,S D S U D,S D,S D,S	Ws Wi Ws Ws, Wst Wh, Wi Ws
Kp Kp Kp Qs,Qg Qg Kp Kp	2 20 25 47 20 80 70 25 25 30 120 35	1938 1938 1945 1945 1938 1938 1949 1938 1938 1938 1949 1938	S D,S D,S D,S D,S D,S D,S D,S D,S D,S D,	Ws Wh Ws Wh, Wio, Wst C

- 426 -

Location No.	Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
	Continued)				
7cbb	Wishart Sisters	165	••	Dr	
8aaa	Lawrence Johnson	140	6	Dr	1946
9Ъ	L. Foster	90	6 6 4	Dr	1916
9cbcl	Mrs. Hattie Durnell	137	4	Dr	1949
9със2	do	137	6	Dr	a1915
9cbdl	do	47	26	Dr	
9cbd2	do	43	26	Dr	1901
10cdc	Close Bros.	36	24 x 24	Du	1948
lOcdd	do	178	6	Dr	1915
lleddl	Wm. Robson	90	6	Dr	1918
llcdd2	ob	45	36 x 36	Du	1941
14baa	do	50	36	Dr	1912
15bab	Close Bros.	18	24	Du	
17baa	Bruce and Sidney				
	Unglesbee	65	••	Dr	a1925
	-	-			
<u>151-61</u>					
lcda	Orville Engel	136	6	Dr	1926
152-59					
5cbc	Albert Olson	125	6	Dr	1917
6aaal	Myron Ensrud	128	6	Dr	1918
6aaa2	do	25	16	Du	1912
7abcl	Ed Nelson	120	6	Dr	1938
7abc2	do	100	6 6	Dr	1947
7abc3	do	40	16	Du	1938
8aab	Hans Moberg	100	6	Dr	1919
8a.	K. Elvick, Jr.	125	6 6	Dr	1915
9ъсъ	Tony Foley	130	6	Dr	1940
17c	Axel Anderson	130	••	Dr	1909
18a1	do	30	18	Dr	1908
1895	•.do	30	18	Dr	1934
18daal		130		Dr	1940
18daa2	do	65	5 · · 18	Dr	1938
19a	John Tierney, Jr.	9	144 x 96	Du	••••
19add1	John Tierney	166	7	Dr	1928
19add2	do	150	4	Dr	1908
					-,

source water below land surface (feet) measured Kp D,S C Kp 20 1946 S Wh Qg,Kp 50 1938 D,S Kh Kp 70 1949 D,S C Kp 40 1938 D Wh U Wh,Win U Wh,Win 25 D Wh Qs 30 U Wh Wp U Wh Qg 16 U Wh Kp U Wh Kp Qg 16 S Wh U Wh Kp Qg 16 S Wh Kp S Ms Kp Qg 10	Geologic	Depth to	Year	Use	Remarks
kp 201946 \dot{s} Wh gg, Kp 501938 D, S C kp 401938 D Wh Kp 25 D, S Ws Qg 16 \dots S Wh Kp 251949 D, S C Kp 251949 D, S Ws Kp 201947 D, S Ws Kp 20 1947 D Ws Kp 20 1947 D Ws Kp 101938 U Wh Kp 101938 U Kp 181949 D, S Wa Kp 181949 D, S Win Kp 1938 S $Sh - 20$ \dots \dots \dots \dots \dots Kp 151938 S $Sh - 25$ Win G S Win Min G S Ws Min G G G Min G G G Min G G G Min G		water below land surface			
kp 201946 \dot{s} Wh gg, Kp 501938 D, S C kp 401938 D Wh Kp 25 D, S Ws Qg 16 \dots S Wh Kp 251949 D, S C Kp 251949 D, S Ws Kp 201947 D, S Ws Kp 20 1947 D Ws Kp 20 1947 D Ws Kp 101938 U Wh Kp 101938 U Kp 181949 D, S Wa Kp 181949 D, S Win Kp 1938 S $Sh - 20$ \dots \dots \dots \dots \dots Kp 151938 S $Sh - 25$ Win G S Win Min G S Ws Min G G G Min G G G Min G G G Min G				D 0	0
Qg, Kp501938D,SKp701949D,SCKp401938DWhUWh,WinUWh,Win25DQs30D,SWsQs30UQs30UQs30UQs30UQs30UQs30UQs30UQs30UQs30UQs30UMaxUQs16Qg501949D,SKp251938D,SKp16.631947DKp101938UKp181949D,SKp101938UKp181949D,SWinQt61938Qt241938Qt251938Qt241938Qt251938Qt251938Qt241938Qt251949Qt251949Qt241938Qt251949Qt201947Qt251					
K_p T_0 1949 D,S C K_p 40 1938 D Wh W_1 W_1 W_1 W_1 W_1 W_1 W_1 W_1 W_1 W_2 W_1 W_1 Qs 30 W_1 W_1 Qg 16 W_1 W_1 Qg 16 1949 D,S Ws Qg 50 1949 D,S Ws Qg 20 1947 D,S Ws Kp 20 1947 D,S Ws Kp 10 1938 W Wh Kp 18 1949 D,S Wal Kp 18 1949 D,S Wal Kp 16 1938 S $Sh-90$ Win Win Win Win Qt 6 1938 S Min Qt 24 1938 D,S Min Qt 22 1947 D,S Win Min Qt 22 1949 D,S Win Min <tr< td=""><td></td><td></td><td></td><td></td><td>WII</td></tr<>					WII
Kp 40 1938 p Wh Wh Wh , Win 25 D Qs 30 D,S Qs 30 D,S Qs 30 D,S Ws Wh Mp Wh Kp Wh Kp 16 Qg 50 1949 D,S Qg 50 1949 D,S Qg 50 1949 D,S Rp 25 1938 D,S Kp 20 1947 D,S Kp 20 1948 U Kp 20 1947 D Kp 10 1938 U Kp 10 1938 Wh Kp 18 1949 D,S Kp 18 1949 D,S Min Min Qt 6 1938 S Qt 24 1938 D,S Kp 15 1947 D,S Win Min Qt 22 1949 D,S Kp 15 1949 D,S Min Qg 20 1949 D,S Kp 15 1949 D,S Kp 1047 D,S Min Min Min Min Min </td <td></td> <td></td> <td></td> <td></td> <td>С</td>					С
UWh, Win25DWhQs30D,SWsQs30UWhQs16UWhUWhKpUQg16SMg251949D,SWs, WstQg501949D,SCKp251938D,SWs, WuKp201947D,SWsKp20SWsKp201947DWsKp101938UWhKp101938UWhKp181949D,SWal, Ws, WstKp251938SSh - 90D,SWinKp151947D,SWinQt61938SQt201947D,SWinQt201949D,SWhKp151947D,SWinQt201949D,SWhQt201949D,SWhQt201949SWsQt201949SWsQt201949SWsQt201949SWsQt201949SWs					
UWh, Win Qs 30D,SWs Qs 30D,SWsUWhKpUWhKpUWhQg16SWh251949D,SWs, WstQg501949D,SCKp251938D,SWs, WuKp201947D,SWsKp201947D,SWsKp201947DWsKp201947DWsKp201947DWsKp201947DWsKp101938UWhKp181949D,SWal, Ws, WstKp251938SSh - 90D,SWinQt61938SSh-25, WsQt241938D,SKhQt61947D,SWhMinQt61938SQt201949D,SWhQt61938SQt201949D,SWhQt61938SQt5 <td< td=""><td>2.5</td><td></td><td>201 Distant</td><td></td><td></td></td<>	2.5		201 Distant		
Qs30 D_sS WsUWhKpUWhKpUQg16SQg501949D,SWs, WstQg501949D,SCKp251938D,SWs, WuKp201947D,SWsKp201947D,SWsKp201947DSKp16.631948UKp20SKp101938UKp101938UKp181949D,SKp251938SSh - 90TMuQt61938SQt241938Qs201949Qs201949MuNNoN<				U	
UWhKpUWhQg16SWh251949D,SWs, WstQg501949D,SCKp251938D,SWs, WuKp201947D,SWsKp201947D,SWsKp20SWsKp201947DWsKp201947DWsKp201947DWsKp101938UWhKp181949D,SWal, Ws, WstKp181949D,SWin, Ws, WstD,SWin, Ws, WstD,SWinQt61938SSh-25, WsKp151949D,SWhQt201949D,SWinKp151949D,SWinQt61938SQt201949D,SWh		25			
UWhKpUWhQg16SWh251949D,SWs, WstQg501949D,SCKp251938D,SWs, WuKp201947D,SWsKp201947D,SWsKp201947DWsKp20SWsKp201947DWsKp201947DWsKp201947DWsKp201947DWsKp101938UWhKp181949D,SWal, Ws, WstKp251938SSh - 90751949D,SWio, Ws, WstD,SWinQt61938SQt241938D,SKp151947D,SSh-25, WsQs201949D,SWh51938SKp501949SWsKp501949NWs	Qs	30			Ws
KpU Qg 16SWh251949D,SWs, Wst Qg 501949D,SCKp251938D,SWs, WuKp201947D,SWsKp201947D,SWsKp20SWsKp201947DWsKp201947DWsKp201947DWsKp101938UWhKp101938SSh - 90Kp181949D,SWio, Ws, WstKp251938SSh - 90D,SWio, Ws, WstMinQt61938SQt61938SSh - 25, WsQt241938D,SKinQt251949D,SWhQt61938SQt241938D,SKp151947D,SSh - 25, WsQs201949D,SWhQt51938SKp151949D,SWhQs201949SWh					
Q_g 16SWh251949D,SWs, Wst Q_g 501949D,SC Kp 251938D,SWs, Wu Kp 201947D,SWs Kp 201947D,SWs Kp 201947DWs Kp 20SWs Kp 201947DWs Kp 201947DWs Kp 101938UWh Kp 101938SSh - 90751949D,SWio, Ws, Wst Kp 251938SSh - 90751949D,SWio, Ws, Wst Min Qt61938S Qt 241938D,SKin Qt 241938D,SKin Qt 201949D,SWh Min $Ging$ $Ging$ Min					лw
k_{S} 12 1949 D,S Ws,Wst Qg 50 1949 D,S C Kp 25 1938 D,S Ws,Wu Kp 20 1947 D,S Ws Kp 16.63 1948 U Kp 20 1.947 D Kp 10 1.938 U Kp 10 1.938 U Kp 15 1.949 D,S Min $0,S$ $Sh - 90$ \dots 75 1.949 D,S \dots 75 1.949 D,S Min $0,S$ Min Qt 6 1938 S Qt 24 1.938 D,S Kp 15 1.947 D,S Mh S $Sh - 25, Ws$ Qs 20 1.949 S Wh S $Sh - 25, Ws$ Mh $Sh - 25, Ws$ $Sh - 25, Ws$ Mh $Sh - 2$					Wh
Qg 50 1949 D,SCKp 25 1938 D,SWs, WuKp 20 1947 D,SWsKp 16.63 1948 UKp 20 \dots SWsKp 20 \dots SWsKp 20 1947 DWsKp 20 1947 DWsKp 10 1938 UWhKp 10 1938 SSh - 90 75 1949 D,SWio, Ws, Wst 75 1949 D,SWio, Ws, Wst 15 1947 D,SWinQt 6 1938 SQt 24 1938 D,SKp 15 1947 D,SSh-25, WsQs 20 1949 D,SWh 5 1938 SKp 15 1947 D,SWh 5 1938 SKp 50 1949 SWs	ଧ୍ୟ	TO		G	WIL .
Kp251938D,SWs, WuKp201947D,SWsKp16.631948UKp20 \dots SWsKp201947DWsKp101938UWhKp181949D,SWal, Ws, WstKp251938SSh - 90 \dots 751949D,SWio, Ws, WstQt61938SQt61938SQt61938SQt61938SQt61938SQs201949D,SWh \dots 51938SKp151947D,SSh-25, WsQs201949D,SWh \dots 51938SKp501949SWs	••••	25	1949	D,S	Ws, Wst
Kp251938D,SWs, WuKp201947D,SWsKp16.631948UKp20 \dots SWsKp201947DWsKp101938UWhKp181949D,SWal, Ws, WstKp251938SSh - 90 \dots 751949D,SWio, Ws, WstQt61938SQt61938SQt61938SQt61938SQt61938SQs201949D,SWh \dots 51938SKp151947D,SSh-25, WsQs201949D,SWh \dots 51938SKp501949SWs	Gø	50	1949	D.S	С
Kp201947D,SWs Kp 16.631948U Kp 20SWs Kp 201947DWs Kp 101938UWh Kp 101938SSh - 90 Kp 251938SSh - 90 Kp 251938SSh - 90751949D,SWio, Ws, WstD,SWin Qt 61938S Qt 241938D,S Kp 151947D,SSh - 25, Ws Qs 201949D,SWh51938S Kp 501949SWs	46		-2.2	-,-	
Kp201947D,SWs Kp 16.631948U Kp 20SWs Kp 201947DWs Kp 101938UWh Kp 101938SSh - 90 Kp 251938SSh - 90 Kp 251938SSh - 90751949D,SWio, Ws, WstD,SWin Qt 61938S Qt 241938D,S Kp 151947D,SSh - 25, Ws Qs 201949D,SWh51938S Kp 501949SWs	Kn	25	1938	D,S	Ws, Wu
Kp 16.63 1948 U Kp 20 S Ws Kp 20 1947 D Ws Kp 10 1938 U Wh Kp 18 1949 D,S Wal, Ws, Wst Kp 25 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst 75 1949 D,S Win Qt 6 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst 75 1949 D,S Win Qt 6 1938 S Sh - 25, Ws Qt 20 1947 D,S Sh - 25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 D,S Wh 5 1938 S Kp 50 1949 S Ws					
Kp 20 S Ws Kp 10 1947 D Ws Kp 10 1938 U Wh Kp 18 1949 D,S Wal, Ws, Wst Kp 25 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst D,S Win Qt 6 1938 S Qt 6 1938 S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp Kp 50 1949 S Ws Kp 50 1949 S Ws				U	
Kp 10 1938 U Wh Kp 18 1949 D,S Wal, Ws, Wst Kp 25 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst Qt 6 1938 S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 D,S Wh		20			
Kp 18 1949 D,S Wal, Ws, Wst Kp 25 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst Qt 6 1938 S Qt 6 1938 D,S Qt 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 15 1947 D,S Wh 5 1938 S Kp 50 1949 D,S Wh	Kp				
Kp 25 1938 S Sh - 90 75 1949 D,S Wio, Ws, Wst 75 1949 D,S Wio, Ws, Wst 0,S Win Win Qt 6 1938 S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 D,S Wh					
Np 75 1949 D,S Wio, Ws, Wst Qt 6 1938 S Qt 24 1938 D,S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 D,S Wh					
Qt 6 1938 S Qt 24 1938 D,S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 S Ws Kp 50 1949 S Vs	Kp	25	1930		
Qt 6 1938 S Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 S Kp 50 1949 S					
Qt 24 1938 D,S Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 S Ws	••••				
Kp 15 1947 D,S Sh-25, Ws Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 S Ws Value 1949 S Ws					
Qs 20 1949 D,S Wh 5 1938 S Kp 50 1949 S Ws					Sh-25, Ws
5 1938 S Kp 50 1949 S Ws			1949	D,S	Wh
Kp 50 1949 S Ws		5	1938	S	
Kp 50 1949 S ws, wst		50	1949		
	Kp	50	1949	2	WS, WSU

•

TABLE	2Records	of	wells
-------	----------	----	-------

Location	Owner or name	Depth (feet)	Diameter or siz e (inches)	Туре	Year completed
152-59 (0	continued)				
19add3	John Tierney	35	18	Dr	1904
19c	Pete Schuh	65	18	Dr	1934
19cccl	•••do••••	52	48	Du	1910
19ccc2	do	120	6	Dr	1940
20abb	E. Elvick, Jr.	127	6	Dr	1914
29bccl	Wm. Faahey	28	48 x 48	Du	1946
29bcc2	do	42	48 x 48	Du	1938
29ddc1	J. E. Burgees	195	· · · · ·	Dr	1947
29ddc2	do	30	48 x 48	Du	1900
30d	W. H. Johnson	144	6	Dr	1913
31bab	Hans Severson	90	6	Dr	1920
3lcdcl	Paul Franzen	92		Dr	1944
3lcdc2	do	30	36 x 36	• • D	1050
31da	Clifford Sateren	110	5	Dr	1952
32add	Sever Klaragard	120	•••	Dr	1912
32bba	John Faahey	119	6 6	Dr Dr	1920 1915
32ddd	Iver Hanson	120	0	Dr	TAT
152-60					
laab	W. W. Brooker	125	6	Dr	1909
ldccl	Joseph Schuh	22	40 x 40	Du	1948
ldcc2	ob	35	42 x 42	Du	1919
2baa	C. Loften	160	4	Dr	1937
2ccc	Andrew Bolken	119	6	Dr	1923
3bbc	Test hole 28A	110	5	Dr	1948
3 d dd	Andrew Bolken	28	36 x 36	Du	1915
5ddd	Miles Schindele	96	6	Dr	
6al	National Life Ins.		12	Dr	
6a2	do	25	36 x 36	Du	
6aaa	Jacob Beck	30	40 x 40	Du	1938
6ъ	John Kutzman	50	••	Dr	1933
7aab	P. A. Pogatshnik	134	4	Dr	1927
Saab	Richard J. Harper	32	18	Dr	1898
gage agage	Henry Geritz	32	24	Du	1918
9aaa	Josepth Ettl	96 96	6	Dr	1928
9666 10665	D. C. Keisacker	96 21	0 24	Dr	1909
10bcb1	Carl Noss	24	48 x 48	Dr Du	1919 1936
10bcb2	do	30	40 X 40	Du	1900

× •

and test holes -- Continued

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
Qg Qt Qt Kp Qt Kp Qs,Qg Kp Kp	30 25 40 40 12.15 11.83 15 30 80 20 45 40	1938 1934 1949 1949 1949 1949 1949 1949 1938 1938 1949 1938 1949	D D,S D,S U U D U S S S S S S S S S S S S S S S	Wh, Wi Win Wal, Wh Ws, Wst Wh, Wu Wh Wst Win Win, Ws, Wst Ws Ws, Wu Wh Ws,Wst Ws,Wst Ws,Wst Ws,Wst
Kp Qs Qt Kp Kp Qs Qt Kp Qs Qs Qs	6 15 33 20 40 26 70 30 22 30 5 29 20 80 7 20 80 7 20 26	1946 1949 1938 1938 1949 1938 1938 1938 1949 1949 1949 1938 1938 1938 1938 1938 1938	s D,S U S D S D S S S S S S D S D S S S D S S D S	C Wh Win Wio, Wh, Wst Ws L Wh Win Wh Win Wh, Wi Wh, Wi Wh, Wi Wal, Ws Wh, Wi

Location No.	n Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
152-60 (Continued)	<u></u>			
10bcd	Carl Noss	48	18	Dr	1945
llaaal	Ed Nelson	111	6	Dr	
11aaa2	do	114	. 6	Dr	1949
11b	Ollie Kiesacker	32	48 x 48	Du	
12add	Chas. Bazal	110	6	Dr	1937
12cbc	R. W. Dougherty	104	6	Dr	1922
14add	Claude Arneson	109	6	Dr	1935
14cba	Leo Welch	84	6	Dr	1927
16aaa	Eddie Rosenberger	100	6	Dr	
17a	Albert Schindele	32	36 x 36	Du	
17aaa	•••do••••	36	48 x 48	Du	1905
17dda	D. Durnell	92	6	Dr	1915
19abal	Wm. Winer	71	6	Dr	1943
19aba2	do	40	48 x 48	Du	1929
19aba3	do	35	• •	Dr	
20bbc	Harold Anseth	196	5	Dr	1926
216661	Harold Johnson	29	24	Dr	1948
21c1	Jake Geritz	125	6	Dr	1916
21c2	do	30	60 x 60	Du	1903
22bdb	E. D. Beckman	106	6	Dr	
22cddl	Katherine Schuh	100	6	Dr	1941
22cdd2	do	44	28 x 28	Du	1903
23Ъ	Jake Geritz	56	6	Dr	1905
23bcb	do	70	5	Dr	1916
23ddc	Henry Fossen	106	6	Dr	1920
25abal	Hugh Anderson	30	36	Dr	
25aba2	do	40	48 x 48	Du	1913
25c	Wm. McFadden	40	48 x 48	Du	1935
25съ	Bill Saunders	90	5 18	Dr	1934
27cbc	Gertrude Carlson	21		Dr	1924
28a	Bert Sturtevant	106	5	Dr	1915
28ъ	do	95	5	Dr	
29ccc	Fantus Olson	122	5 5 2 6	Du,Dr	al 890
29ccd	do	89		Du	1925
30bdd	Karl Jonson	200	6	Dr	1931
3laab	Fantus Olson	28	36 x 36	Du	1904
31bbc	Harry Saunders	35	36	Dr	1908
31bcb	do	65 60	6	Dr	1949
31bcc	do	60	••	Dr	1944

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
ସ୍ଟ,ସ୍ଟ	32	1949	D,S	Wal, Wh
Кр	30	1938	D,S	Ws
Kp	• • • •	1009	D	Ws
Qs	28	1938 1938	D,S D,S	Ws, Wst
Kp Ko	22 40	1950	D,S	Ws
Kp	15	1935	D,S	Ws
Kp Kp	85	1949	D,S	Ws
••••	20	1948	D,S	Ws
Qg				Win
Qs,Qg	25	1949	D,S	Wh, Wi
Kp	25	1938	D,S	Ws, Wst
ର୍ୱ	21	1943	D,S	C
Qt	17	1949	U D	Wh Win
ବୃନ୍ତ	33	1938 1938	S	Wio, Ws, Wst, Wu
Kp	30	1930	D,S	Wh
Qs Kp	40	1938	D,S	
Qg	25	1938	Ď	
Kp			D,S	Ws
			D,S	Ws
	16.89	1948	U	Wh
	5 5	1938	D,S	17-
	5	1949	D,S	Ws Ws, Wst
Kp	40	1938	D,S D,S	Wh
****	7	1938	•••	1111
	29	1938	D,S	
ର୍ ଞ ,ର୍ଟ୍ର	Flow	1952	S	Wh
ପ୍ ଞ ,ସ୍ଥ	8.29	1948	S	Wh
Кр	60	1938	d,S	Win
Kp	60	1938	D,S	Win
Kp	38		D,S	Wh Wal Wh
Qt	20	1938	D,S	Wal, Wh
Kp	8	193 1	D,S S	C Wh
ର୍ଷ୍ଣ Kr	13.12	1949	U U	Wal, Wh, Wi
Kp	20	1949	D,S	C, Sh-16
Kp Qs	20	1944	U	Ws

.

Location No.	Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
152-60 (0 32a 32dba 33acd 33cbb 33dac1 33dac2 34c 34c 34ca 34c 34ca 34d 35bcc 35dad 36d	Continued) Fred Reimer Jacob Geritz M. L. Munson Harold Gutting Harry Belyea do Federal Land Bank M. L. Munson Hans Lien Winford Close Sever Klaragard Gronna Investment	45 40 35 100 30 30 125 30 90 80 96	48 x 48 24 48 x 48 6 48 x 48 30 x 30 24 5 48 8 6 6	Du Dr Du Dr Du Du Du Dr Dr Dr Dr	1900 1925 1937 1936 1939 1936 1918 al910
152-61 Ibac Icdc Id Idaa Ila Ilaaa I2cc I2ccd I3abb 24adb 24ccc 25bcc 25cca 25cbd1 25cbd1	Jess Keitzman Henry Bagne R. H. Carlson B. W. Kietzman H. T. Metcalf do F. Dick S. B. Bagne John Beck Harold Alwin H. Saunder E. F. Groves do Wm. Saunders do	90 50 45 101 30 102 32 120 45 90 32 100 26 30 96	18 30 14 5 24 5 36 5 36 5 36 5 36 5 36 5 36 5 36 5 3	Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr	1900 1915 1905 1912 1895 a1930 1930 1934 1934 a1910 1934
153-59 4bdd 5aaa 5bac 6dcc1 6dcc2 6dcc3 7bab1 7bab2	Wm. Laity Alex Hatula Ing Orseth A. J. Miller do S. B. Bagne do	16 25 22 114 110 104 18 145	36×36 18 36×36 6 30×30 6	Du Du Dr Dr Dr Du Du	1914 1890 1934 1922 1908 1920

and test holes -- Continued

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
Qt	42	1938	D,S	Win
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•••	••••	Ŭ	Wh, Wi
	20	1949	D,S	Wh
			U	Ws
	28	1938	D,S	Wh
	15.21	1948	U	
Qs	28	1938	d,S	Win
Qs		••••	D	Wh
ନ୍ୟ	25	1938	D,S	UD
Kp	14	1938	D,S	Wh Wal, Wh
•••• V	30 20	1938 1938	D,S D,S	لما ١١ و لـ ٢٠
Кр	30	1930	2,5	
	J ^{tO}	1949	D,S	Ws
	20		D,S	Wh, Wi
Qt	20	1938	D,S	
	20		D,S	Wal, Ws
	18	1938	S	Wal, Ws
· · · ·	30	1938 1938	D,S D,S	war, wo
Qt	30	T930	D,S	Ws
Qt	28		D,S	Wal, Wh, Wi
Kp	40	1949	D,S	Wh, Wi
Qt	26	1938	Ŭ	-
Qs	30	1938	D,S	Wal, Wh, Wi
<b>ର୍</b> ଣ, ର୍ଷ୍ଣ	12		U	Wh
Qt			D,S	C
Кр	+ 2.38	1949	U	C
	9.44	1949	S	Wh, Wst
ର୍ <mark>ଟ୍</mark> ପ			S	Wh
Qs,Qg	12	1938	D,S	Wh
	25	1938	D	Ws, Wst
Qs		1000	S	Ws, Wst
••••	50	1938	D,S	Win Wh
Qs	9.76	1949	D,S S	Ws, Wst
			U U	10, 104

Location No.	Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
153-59 (0	Continued)				
9acd	Marcus Schmidt	125	5 6	Dr	<b>al</b> 930
9b	John McHugh	150	6	Dr	1917
9dccl	Floyd Fisk	150	• •	Dr	1944
9dcc2	do	50	30	Dr	1908
17a	North, Corp.	60	6	Dr	1915
17ь	do	24	· • • · · ·	Du	1890
18ccc	Olaf Thorsen	23	48 x 48	Du	1890
19bccl	Orville Davidson	90	6	Dr	1939
19bcc2	do	20	30 x 30	Du	1906
20bddl	Iland Olson	100	6	Dr	al935
20bdd2	••do••••	40	24 x 24	Du	
20bdd3	do	17	36	Du	1890
20bdd4	•••do••••	90	6	Dr	1918
20dcb	Leland Steinman	140	6	Dr	1930
21add		42.2	5	Dr	
28c1	George Noble	40		Du	1906
28c2	•••0•••	71		Dr	1923
29baa	Iland Olson	26	36	Du	1930
29dccl	Arthur Estvold	104	4	Dr	1949
29dcc2	• • do • • • •	112	5	Dr	1921
30aab	John Korstad	20	18	Du	1918
30c1	J. O. Asser	23	24	Dr	1910
30c2	A. Korolate	22	••	Du	1908
3labc	Uriell Bros.	96	6	Dr	1913
31b	Mrs. May E. Milk	20 1-0	48 x 36	Du	1922 1949
31baa	Test hole 109	40	5	Dr	1949
31bbdl	Ed Ludtke	20		Dr Du	1920
31bbd2	do	50	••		1948
32adal	Clarence Sateren	100	5 5 5 6	Dr Dr	1940
32ada2	do	100	2 F		
32ada3	••do••••	120 86	2	Dr	1918
32ada4	do			Dr Dr	1910
32ada5	do	100	••	Dr	1920
32bbb	Test hole 110	50 45	5 5 6	Dr	1949
32ddd	Test hole 20A	47 125	6	Dr	1943
33addl	Martin Fuchs	120	6	Dr	
33add2 33bb	do Clarence Sateren	104	5	Dr	1952

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
		1028	S D,S	Wi, Wst, Wu
	20	1938	D,S D,S	Ws
	11.4	1949	U,U	10
••••			S	
	24	1938	D,S	Win
	15.48	1949	D,S	Wh
	20		D,S	Wh, Wst
		1948	U	Wh
	18.54	1949	D	Ws
	11.13	1949	S	Wal, Wh, Wi
			S	
		* * * *	D	Win
ର୍ଣ୍ଣ			D,S	Wh
	13.55	1949	U	
			S	
			D,S	
	16	1938	U	Ws
	14	1949	D	Ws, Wst
Кр	40	1938	S	Wh, Wst Wh
	18	1949	D,S S	WII
		1938	D,S	
••••	20 20	1930	D,S	Wh
ବ୍ୱି	18	1938		
	TO	±,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T	L
Qs,Qg			D	Ws
••••			S	Ws
Кр	20	1948	D	Ws
	20		S	Ws
		••••	U	Ws
	25	1938	D,S	
	50	1938	D,S	-
			T	L
			T	L
	25		D,S	WS
	20		S <b>S</b>	Ws Wh
Kp			<b>U</b>	11 11

Location No.	Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
153-60					<u></u>
<u>3</u> c	Mr. Sheets	175	4	Dr	the second law
Jeed	Walter Larson	32	30 x 33	Du	1921
4add	John W. Rainsberry	200	6	Dr	a1914
4d	Minn. Fire Ins.	127	Ğ	Dr	1906
Gace	Vic Thorstenson	146	4	Dr	a1920
6c	J. W. Murphy	130		Dr	••••
7aaa	Art Goldammer	120	5	Dr	1928
7ebc	S. B. Bagne	120	5 6	Dr	
8daa	Cecelia Feeney	60	18	Dr	a1930
9a	State Land Dept.	37	48	Du	1937
9bcc	Cecelia Feeney	121	5	Dr	1934
9daal	James Fahey	143	· 6	Dr	1931
9daa2	do	56	40	Du	1937
12cab	Walter Kaliff	10	••	Du	1944
12cdd1	do	20.7	22	Dr	1937
12cdd2	do	15.i	36	Du	1900
13a	Federal Land Bank	120	48	Dr	1937
14acc	Ed Ritteman	133	4	Dr	1938
14bcdl	Wesley Davidson	40	36	Du	1900
14bcd2	ob	90	5	Dr	1937
16a	R. J. Goodheart	26	••	Du	
18dcc	Wm. Thompson	116	6	Dr	
19bcdl	do	27	24	$\mathtt{D}_{r}$	1940
19bcd2	do	51	24	Dr	
21bdb1	Ernest Rainsberry	100	· 6 ·	Dr	1948
21bdb2	do	60	48 x 48	Du	1908
22acb	Test hole 25A	18	5	Dr	1948
22acc	Test hole 24A	35	5 5	Dr	1948
22badl	Art Schroeder	35	36	Dr	1937
22bad2	do	90	18	Dr	1936
22bda	Test hole 26A	30	5	Dr	1948
22cdd	E. R. Ferguson	50	36	Du,Dr	1917
22dba	City of Lakota No. 1	15	240	Du	1919
22ddd	Test hole 23A	37	5	Dr	1948
23add	Albert Bjorge	130	4	Dr	1935
24bcd	Clarence McHugh	98	5 6	Dr	1937
24ccc	Ed. Bjorge	74		Dr	1918
25acb	Martin Sitar	45	36	Dr	1935

Geologic source	Depth to water below land surface (feet)	Year measured.	Use	Remarks
Qg Qs Kp Kp Qg Qg Qs Qs Qs	12 20 37 40  30  18 40  12.10  15 15 33  8  20	1949 1906 1942  1938  1944  1949 1949 1949 1949 1949	D D,S D,S D,S D,S D,S D,S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S S D,S D,	Wi C Wio, Ws Ws, Wst Wal, Ws, Wst Wal, Ws Wal, Wh Wal, Wh Wal, Wh Wal, Wh Wal, Wh Ws, Wst Wh C Ws, Wst Wh, Wi Wh, Wi Ws
0,5,0,g Qs,0,g Qs Kp Qs,0,g Qg	20 21 5 40 8.2 20 17 15	1937 1936 1938 1949  1949	S T D S T D,S D,S D,S U D,S	Wh, Wi L L Wh, Wi Ws, Wst, Wu L Wal, Wh C,L L Ws, Wst Wh, Wi C

Location No.	Owner or name		Depth (feet)	Diameter or size (inches)	Туре	Year completed
<u>153-60</u> (C			100			1040
25cab	Test hole 179		100	5 5 5	Dr	1949
25ebb 25ede	Test hole 178		58 40	2	Dr	1949
26acbl	Test hole 107 City of Lakota No.	9	20.65	216	Dr	1949
26acb2	City of Lakota No.		120.05		Du Dr	1027
26acb3	City of Lakota No.		120	2	Dr	1937
26acb4	City of Lakota No.			5	Dr	1937 1937
26ecc	J. B. Gunderson	JP1	120	6	Dr Dr	1957
260000 260ab	Test hole 177		85	5	Dr	1948
26dda	Test hole 180		120	5 5 5 6 5 5 5 5 10	Dr	1949
26ddc	Test hole 102		75	5	Dr	1949
26ddd	City of Lakota No.	6	85	ió	Dr	1952
27aca 1/			160		Dr	a1937
27acb 1/	-	T.	9.8	5 8	••	
27acc 1/	A. F. Goldanmer		35.5	30 to 18	••	
27acd 1/	H. J. Byrne		23.6	10	••	
	E. J. Duchesneau		80		Dr	1946
	City of Lakota No.	8	90	5 5 6	Dr	al937
27addl 1/			132	6	Dr	1949
27add2 1/			26	12	Dr	1945
27baa	Frances Johnson		30	5	Dr	
27bac 1/	Frank Dykhoff		32.2	••	Dr	1949
27bad I/	Oscar Olson		33.5	12	Dr	
	City of Lakota No.	9	160	5	Dr	a1937
27bcd2 1/	Bill Simmons		25.7	12 to 6	••	
	City of Lakota No.	10	180	5	Dr	a1937
	Jim Murphy		74.8	24	Dr	
27bdcl 1/	The Grant House		100	6		1900
27bdc2 1/	Joe Barrett		160	8	Dr	1914
27bdc3 1/	Mrs. Hughes		80	8 6 5 6 18	Dr	• • • •
27bdc4 1/	City of Lakota No.	11	180	5	Dr	1937
27bdd 1/	City of Lakota No.	12		6	Dr	a1937
	Lester Purdy		35.6		Dr	
	Oscar Lundgren		14.9	24	••	••••
	Jim Solberg		34.2	12	Dr	1919
	A. H. Kaufman		30	2	Dr	1929
27 ccc 1/	Test hole 113		145	5	Dr	1949
11 0601L	Charles Hauser		20.8	••	• •	

1/ See figure 4.

and test holes -- Continued

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
			Т	а т
			Ť	C, L L
			T	L
ର୍ <b>ଞ</b> ,ର୍ଟ୍ର	16.85		M.	Ĉ, L
Kp			U	0, 2
Kp			Ū	
Кр			Ū	
ର୍	15	1946	D,S	Ws, Wst
			T	L
			т	L
			т	L
ର୍ଟ୍ଷ			М	
Kp	23	1937	U	C
			ប	
	13.4	1949	U	Wh
	14.19	1949	U	
ର୍ଣ	20	1946	D	С
Кр			U	С
	10	1949	D	Ws
			D	Wh
	25		S	Wh, Wu
Kp	31	1949	U	Wh, Win, Wu
	13.8	1949	D,S	Wh
Kp	23	1937	U	C
• • • •	23.29	1949	U	
Kp	23	1937	U	Ws
• • • •	15.2	1949	U	~
Kp	75	1949	D	C
• • • •			U	Ws, Wst
* * * * V	••••	••••	D	Ws, Wst
Kp	23	1937	U	Wc, Ws
Kp	23	1937	M	C
ର୍ <b>s ,</b> ର୍ଟ୍ର	18.62	1949	D	С
	10.1	1949	D	
	11.28	1949	U	C
Qs,Qg			D U	L
			Ð	Wal, Wc, Wh, Wu

## TABLE 2 .-- Records of wells

				<u></u>	
Location No.	Owner or / name	Depth (feet)	Diameter or size	Туре	Year completed
1101	Lavan	(,	(inches)		
			<u> </u>	- <del>1979 - 1997 - 1</del> 997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	
And in the Context of	Continued)	149	F	Dr	1949
27cdd 1/	Test hole 112 / Alfred Kleven	19.9	5 14	101	1949
27dad2 1		13.1	8	••	
27dba 17	Chas. Travnicek	27.05	14	Du	a1910
	/ City of Lakota No.		5	Dr	1937
27dbc2 1			5	Dr	1937
27aba 17	Lakota Creamery	41	72 x 72	Du	
27dca 1/	Hugh Reynolds	17.4	12	Dr	1938
	/ Alfred Howen	86.2	5	Dr	1900
27dcb2 1	/ A. H. Swanson	26.75	12	• •	1918
27dcb3 1	/ Walter Mootz	22.83	24		
27dcd 17	C. A. Ludtke	10.0	20	Du	1937
28ada -	Leif Johnson	91	5	Dr	****
28c	J. H. Bealey	56	48	Du	1884
28caa	Oscar Bakken	38	24	Dr	
28cdd	Test hole 114	165	5 5 5	Dr	1949
29ccc	Test hole 117	155	5	Dr	1949
29cdd	Test hole 116	108	5	Dr	1949
29aaa	Test hole 115	155	5	Dr	1949
30ъ	Mr. Barnett	28	48	Du	1932
ЗОсъс	Harvey Appeman	136	6	Dr	1923
30ccd	Test hole 118	40	5 6	Dr	1949
30d.aa	Christien Beck	45		Dr	
3ladd	James Randle	40	24	Dr	1005
31dda	Jess Keitzman	120	6	Dr	1925
32abbl	Art Goldammer	102	5	Dr	al920
32abb2	do	35	26 - 26	Du	a1890
33adb	R. A. Alwin	30 188	36 x 36	Du	1928
33b 34aaa	J. C. Bealey Test hole 111	60	6	Dr Dr	1920
34aaa 34abb	test note III	126.2	2	Dr	
34200 340	Wm. Fahey	32	6 5 5 48	Dr Du	1937
34dab	Geo. Holicky	38	48	Du	1936
35aaa	Test hole 101	87	1 <u>1</u>	Dr	1949
35aba	Test hole 103	97	-4	Dr	1949
35abb	Test hole 104	120	5	Dr	1949
35baa	Test hole 105	40	5 5 5	Dr	1949
		1 and 10 7 0.		1377120030230	

1/ See figure 4.

,

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
		• • • •	U	L
	9.6		D	Wh, Wu
	10.04	1949	U	
	14.69	1949	D	Wh, Wst
Kp	23	1937	U	C
Kp	23	1937	U	C
Qs	• • • •		U	С
Qs,Qg	9.14	1949	S	Wh, Wu
ର୍ଟ ,ର୍ଟ୍ର	12.23	1949	D	C
* * * *	11.85	1949	D	Wh, Wi
	7.33	1949	U	Wu
	8.92	1949	D	Wh, Wu
	86	1947	D,S	Ws, Wst
	53	1938	D,S	
	1.6	1949	D,S	Wh
			T	L
			T	L
		••••	т	L
		••••	T	L
Qt	26.5	1938	D,S	Win
	20	1923	D,S	Ws, Wst
	••••		T	L
Qs	28		D,S	Wh, Wi
	••••		S	Wal, Wh, Wu
Kp	40		D,S	Wh, Win
			D	Wh, Wi, Wst, Wu
	••••		U	Wh
	18.0	1949	S	Wh, Wu
* * * *	19.5	1938	D,S	
	••••		T	L
••••	9.61	1949	U	
Qt	27	1938	D,S	
Qt	15	1949	D,S	Wh, Wi
ର୍ଟ ,ର୍ଟ୍ର	• • • •		т,0	С, L
ର୍ଟ , ର୍ଟ୍ର		• • • •	T	L
ର୍ଟ , ର୍ଟ୍ର		• • • •	T	C, L
			т	L

Location No.	Owner or name	Depth (feet)	Diameter or size (inches)	Туре	Year completed
153-60 (0	Continued)				
35caa	M. H. Altermatt	156	5 5 1 <del>1</del>	Dr	1936
З5сеъ	Test hole 27A	160	5	Dr	1948
35eee	Test hole 22A	100	1#	Dr	1948
35ccđ	Test hole 29	38	4	Dr	1948
35ded	Charles Stein	90	5	Dr	1920
36aaa	Test hole 108	130	5 5 4	Dr	1949
36bacl	George McHugh	72	4 4	Dr	1947
36bac2	do Test hole 106	72 40		Dr Dr	1949
36рра 36ррр	Test hole 1A	40 77	2	Dr	1948
36ada	Test hole 21A	40	5 5 5	Dr	1948
	TERT HOTE ETA	40		21	2010
153-61		110	4	Dee	1005
ladd	Herb Westensee	112 100	4	Dr Dr	1925 al930
13ddd	Raymond Thompson	100	0	Dr	81930
<u>154-59</u> 33cccl	Alex Hatula	28	40 x 40	Du	1916
•••	do	20 32	40 x 40 40 x 40	Du	1919
330002	• • UU • • • •	) <b>2</b>	40 & 40	Du	1717
154-60 31ccb	Anton Johnson	101	5	Dr	1928
32cdb	Charles Turner	132	5 4글	Dr	1938

Geologic source	Depth to water below land surface (feet)	Year measured	Use	Remarks
କ୍ଟ ବ୍ଟ୍ର୍ର୍ଟ୍ର୍ର୍ର୍୍ର୍ର୍୍ର୍ ବ୍ଟ୍ର୍ର୍୍ର୍ର୍	19.46  17	1948  1947 	S T,O T,S D,T U S F F T	Ws, Wst L L C L C Wh, Wi L L L
Qs	••••	••••	D,S D,S	Ws, Wst Ws, Wst, Wu
ପ୍ୱଞ୍ଚ ର୍ୟୁ	15.63 20	1949 1938	D S	Wh Wh
Кр Кр	18 25	1948 1938	D,S D,S	Ws C, Wal, Wio, Ws, Wst

v

# TABLE 3 .-- Logs of test holes and wells

"Till" in the following logs refers to unsorted, unconsolidated sediments consisting largely of clay and silt particles but containing also larger-sized rock particles.

> Test hole 28A 152-60-3bbc Altitude: 1,510 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Till and asso Pierre Shale:	Ciated sand and gravel deposits: Topsoil, black Till, brown, noncalcareous Till, tan Till, gray Gravel, fine; coarse sand Gravel, fine to coarse Shale, gray	3 7 37 11 47	2 5 12 49 60 107 110
	Test hole 109		

#### Test hole 109 153-59-31baa Altitude: 1,520 ft

Till and assoc	iated sand and gravel deposits: Topsoil, black	2	2 4
	Till, dark-brown, noncalcareous Sand, fine to very coarse, brown Till, brownish-gray	6	10 15
	Till, light-gray, noncalcareous	10 4	25 29
Pierre Shale:	Shale, bluish-gray, noncalcareous; limestone pebbles	11	40

Test hole 110 153-59-32bbb Altitude: 1,517 ft

Formation	Material	Thickness	and the second se
		(feet)	(feet)
Till and asso	ciated sand and gravel deposits:	,	-
	Topsoil, black		1 4
	Till, buff	-	4
	Sand, medium to coarse; fine gravel and		
	shale pebbles		7
	Till, yellowish-brown	5	12
	Till, grayish-brown	14	26
	(ravel	4	30
	Sand, coarse to very coarse	5	35
	Gravel		40
	Sand, coarse to very coarse		46
Pierre Shale:			
	Shale, light-gray, noncalcareous; angul chips, limestone pebbles		50

Test hole 20A 153-59-32ddd Altitude: 1,525 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	l
Till, yellow	13	14
Till, gray	24	38
Pierre Shale:		
Shale, gray	7	45

.

# Test hole 25A 153-60-22acb Altitude: 1,504 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits: Topsoil, black Till, grayish-tan Sand, fine to coarse; fine gravel Till, grayish-tan Till, gray; shale pebbles	3 2	1 4 6 8 18
	Test hole 24A 153-60-22acc Altitude: 1,505 ft		
Till and asso	ciated sand and gravel deposits: Topsoil, black Sand, very coarse; medium gravel Sand, very coarse, clayey, gray Till, gray Till, gray; shale pebbles Shale, gray	8 6 2	2 10 16 22 24 35
	Test hole 26A 153-60-22bda Altitude: 1,504 ft		
Till and asso	Ciated sand and gravel deposits: Topsoil, black	1 7	1 8
Pierre Shale	Sand, medium to coarse; fine gravel Till, gray Shale, gray	16	24 30
	City of Lakota (No. 1) 153-60-22dba Altitude: 1,505 ft		
Till and ass	ociated sand and gravel deposits: Sand and gravel Till	12 3	12 15

Test hole 23A 153-60-22ddd Altitude: 1,521 ft

Thickness Depth Formation Material (feet) (feet) Till and associated sand and gravel deposits: 16 16 Till, buff-----28 Till, gray-----12 Gravel, gray; shale pebbles-----2 30 Till, grayish-tan-----5 35 37 2 Sand, very coarse; fine gravel-----

## Test hole 179 153-60-25cab Altitude: 1,507 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Till, white, highly calcareous	2	3
Till, yellow	2	5 8
Sand, medium to coarse	3	8
Till, gray	5	13
Sand, very fine to coarse; shale pebbles	2	15
Till, bluish-gray; coal fragments	15	30
Till, bluish-gray; shale pebbles	11	41
Gravel, rounded	9	50
Sand; shale pebbles	15	65
Gravel; sand	32	97
Pierre (?) Shale:		
Clay, sandy, gray	3	100

Test hole	178	
153-60-250	bb	
Altitude:	1,509	ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits: Topsoil, black Till, grayish-tan Sand, fine to coarse; gravel and shale pebbles	3 1	1 4 5
	Till, yellowish-brown	16	5 9 25
	Sand, medium to coarse; gravel and shal pebbles Till, gray Till, greenish-gray	.e 2 3	27 30 37
Pierre Shale:	Shale, bluish-gray	21	58

# Test hole 107 153-60-25cdc Altitude: 1,508 ft

### Till and associated sand and gravel deposits:

Topsoil, black	1	l
Till, yellowish-brown	8	9
Till, gray	7	16
Gravel, fine to medium; shale pebbles	ż	18
Till, gray	3	21
Sand, medium to very coarse	6	27
Till, gray	9	36
IIII, gray		

City of Lakota (No. 2) 153-60-26acbl Altitude: 1,514 ft

Till and associated sand and gravel deposits:	- 0	- 0
Sand and gravel	18	18
Clay	3	21

Test hole 177 153-60-26dab Altitude: 1,521 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
	ciated sand and gravel deposits: Topsoil, black; coarse gravel Sand and gravel Gravel Till, yellow Till, gray; rock from 46 to 47 feet Till, greenish-gray; lignite fragments- Till, gray Gravel and boulders	14 2 26 20 9	1 5 19 21 47 67 76 77
Pierre Shale:	Shale, bluish-gray	8	85

# Test hole 180 153-60-26dda Altitude: 1,506 ft

Till and associated sand and gravel deposits:		
Topsoil, black	l	1
Till, tan, highly calcareous	2	3
Till, yellowish-brown, highly calcareous	10	13
Sand, gray	5	18
Till, gray	12	30
Sand, gray; lignite fragments	10	40
Till, bluish-gray; shale pebbles		55
	20	75
Till, bluish-gray		85
Sand, gray	10	
Gravel	35	120

Test hole	102	
153-60-260	lde	
Altitude:	1,513	ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits:		_
	Topsoil, black	1	1
	Till, tan	9	10
	Till, yellowish-brown		15
	Till, brownish-gray	5	20
	Till, light-gray	10	30
	Gravel	40	70
Pierre(?) Sha	ale:		
.,	Shale, gray, angular chips, clayey, san slightly calcareous; sand and fine	ndy,	
	gravel	5	75

# City of Lakota (No. 6) 153-60-26ddd

Till and associated sand and gravel deposits:		
Till	18	18
Sand and gravel	67	85
Clay, gravelly	3	88

Test hole 113 153-60-27ccc Altitude: 1,510 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Till, buff	12	13
Till, gray	9	22
Sand, coarse; fine to medium gravel	1	23
Till, gray		33
Gravel, fine to medium; shale pebbles	2	35
fill, gray	37	72
Pierre Shale:		
Shale, bluish-gray, noncalcareous	58	130
Shale, gray, calcareous; fine gravel and		10 - 20 10
whitish clay	10	140
Shale, bluish-gray, noncalcareous	5	145

Test hole 112 153-60-27edd Altitude: 1,510 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits:		
	Topsoil, black	1	1
	Till, yellowish-brown		13
	Till, gray; lignite fragments from 30 t	0	
	40 feet		40
	Till, gravel; lignite fragments	30	70
	Till, light-gray		105
	Till, bluish-gray; shale pebbles	40	145
Pierre Shale:			
	Shale, bluish-gray	4	149

Test hole 114 153-60-28edd Altitude: 1,515 ft

Till and associated sand and gravel deposits:		
Topsoil, black	- 1	1
Till, yellowish-brown		13
Till, gray		23
Sand, coarse; fine gravel and shale		
pebbles	- 1	24
Till, gray	-	32
Sand, coarse; fine to medium gravel and		
shale pebbles	- 2	34
Till, gray; lignite fragments		40
Sand and gravel	- 5	45
Till, gray; lignite fragments		125
Till, gray		162
Pierre Shale:		1.000
Shale, gray	- 3	165

Test hole 117 153-60-29ccc Altitude: 1,538 ft

Formation	Material	Thickness	Depth
		(feet)	(feet)
Till and assoc	ciated sand and gravel deposits:		-
	Topsoil, black		T
	Till, yellowish-brown		29
	Till, gray	17	29 46
	Gravel, fine to medium; shale pebbles		49
	Till, gray		110
	Gravel		115
	Till, gray, slightly calcareous	30	145
	Till, bluish-gray		149
Pierre Sh <b>ale:</b>	Shale, bluish-gray, noncalcareous	-	155

Test hole 116 153-60-29cdd Altitude: 1,536 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Sand and gravel	2	3 24
Till, tannish-brown	21	
Till, brownish-gray	21	45
Till, gray	25	70 80
Gravel and sand; shale pebbles	10	80
Pierre Shale:		
Shale, bluish-gray; noncalcareous	28	108

# Test hole 115 153-60-29ada Altitude: 1,531 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits:		
	Topsoil, black	1	1
	Till, yellowish-brown		22
	Till, gray		120
	Sand and gravel; shale pebbles		130
	Till, gray		145
Pierre Shale:	Shale, gray, noncalcareous	10	155

Test hole 118 153-60-30ccd Altitude: 1,540 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Till, yellowish-brown	24	25
Till, gray	9	34
Pierre Shale:		•
Shale, bluish-gray, noncalcareous	6	40

Test hole 111 153-60-34aaa Altitude: 1,510 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	l
Till, whitish-gray	l	2
Till, yellowish-brown	12	14
Till, gray	5	19
Sand, medium to coarse; fine gravel and		
shale pebbles	1	20
Till, gray	10	30
Sand, gray	2	32
Till, gray; shale pebbles	19	51
Pierre Shale:		
Shale, light-gray to bluish-gray, angular		
chips, noncalcareous	9	60

Test hole 101 153-60-35aaa Altitude: 1,514 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso Pierre(?) Sha	ciated sand and gravel deposits: Topsoil, black Till, yellowish-brown Sand, medium to very coarse Gravel ule: Shale, gray, calcareous; sand and grave	15 17 7 45	1 16 33 40 85 87

Test hole 103 153-60-35aba Altitude: 1,511 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Till. tannish-brown	4	5
Till, yellowish-brown	10	15
Till, gray	15	30
Sand, medium to very coarse	5	35
Gravel	15	50
Gravel, silt	40	90
Sand, coarse to very coarse	2	92
Pierre(?) Shale:		
Shale, gray, calcareous; sand and gravel	5	97

Test hole 104 153-60-35abb Altitude: 1,510 ft

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till and asso	ciated sand and gravel deposits: Topsoil, black Till, tannish-brown Till, yellowish-brown Till, light-gray to bluish-gray; shale	4	1 5 15
	pebbles Gravel; shale pebbles	6 7 5 5 4 11 15	32 38 45 55 59 70 85 90
Pierre(?) Sha	Sand, coarse to very coarse Gravel Sand, coarse to very coarse le: Shale, gray, calcareous; limestone pebbl	5 5 14	95 100 114 120
	Test hole 105 153-60-35baa Altitude: 1,511 ft		
Till and asso	ciated sand and gravel deposits: Topsoil, black Till, tannish-brown Till, yellowish-brown	3	1 4 9
Pierre Shale:	Sand, medium to coarse; fine to medium gravel and shale pebbles Till, yellowish-brown Till, grayish-brown	6 6	10 16 22 25 31
I TOTIC MULC.	Shale, bluish-gray, noncalcareous; limestone pebbles	9	40

Test hole 27A 153-60-35ccb Altitude: 1,506 ft

Formation	Material	Thickness	Depth
·····		(feet)	(feet)
Till and asso	ciated sand and gravel deposits:		
	Topsoil, black		1
	Till, buff	16	17
	Till, gray	3	20
	Sand, medium to coarse; shale pebbles	10	30
	Till, gray	126	156
Pierre Shale:			
	Shale, gray	4	160

Test hole 22A 153-60-35ccc Altitude: 1,511 ft

Till and associated sand and gravel deposits:		
Topsoil, black	1	1
Till, light-tan	18	19
Till, gray	19	38 45
Sand, very coarse; fine gravel	7	45
Gravel, fine; coarse sand	25	70
Gravel, medium to coarse	15	85
Gravel, coarse	5	90
Gravel, coarse; coarse sand	4	94
Pierre Shale:		
Shale, gray	6	100

Test hole 29 153-60-35ccd Altitude: 1,503 ft

Till and associated sand and gravel deposits:		
Till, buff	8	8
Sand, very coarse; fine gravel	12	20
Sand and gravel, clayey		25
Gravel, fine to coarse	8	33
Pierre Shale:		
Shale, gray	5	38

Test hole 108 153-60-36aaa Altitude: 1,507 ft

Formation	Material	-	Thickness (feet)	Depth (feet)
Till and asso Pierre Shale:	Topsoil, black Till, whitish- Sand, yellowis Sand, medium d Gravel Till, tannish- Gravel, gray Gravel, gray Sand, coarse d Gravel, gray Sand, gray Gravel, gray Sand, gray Till, gray; sh Till, gray; sh Shale, bluish-	d gravel deposits: -gray	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 5 \\ 15 \\ 20 \\ 35 \\ 40 \\ 45 \\ 50 \\ 60 \\ 65 \\ 80 \\ 85 \\ 90 \\ 100 \\ 115 \\ 124 \\ 130 \\ \end{array} $
Till and asso	Topsoil, black Till, tan to ; Sand, coarse; pebbles Till, yellowis Sand, medium Till, gray; sk	Test hole 106 153-60-36bba Altitude: 1,509 ft d gravel deposits: yellowish-brown	6 1 5 3	1 7 8 13 16 28
		-gray, noncalcareous; abbles	12	40

Test hole 1A 153-60-36bbb Altitude: 1,517 ft

.

Formation Material	<u>_</u>	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Till, bl	and and gravel deposits: Luish-gray, highly calcareous		3 16
gravel Till, li	edium to very coarse; fine L and shale pebbles Lght-gray		18 21
gravel Sand, co Sànd, fi Sand, co	edium to coarse; fine to medium L and shale pebbles	5 15 10	25 30 45 55 77

Test hole 21A 153-60-36ddd Altitude: 1,508 ft

Till and associated sand and gravel deposits: Sand, fine to coarse Gravel, fine to medium; coarse sand		22 38
Pierre(?) Shale: Shale, gray, coarse sand	2	40

#### REFERENCES

- Babcock, E. J., 1902, Water resources of the Devils Lake region: North Dakota Geol. Survey Second Bienn. Rept., p. 208-250.
- Comly, H. H., 1945, Cyanosis in infants caused by nitrates in well water: Am. Med. Assoc. Jour., v. 129, p. 112-116.
- Dean, H. T., 1936, Chronic endemic dental fluorosis: Am. Med. Assoc. Jour., v. 107, p. 1269-1272.
- Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill, 599 p.
- Garske, J., 1958, Summary of the Reelfoot Development Co., Inc.-Louis and Alvina Bryl No. 1, Nelson County, North Dakota: North Dakota Geol. Survey Circ. 207.
- Hansen, D. E., 1955, Subsurface correlations of the Cretaceous Greenhorn - Lakota interval in North Dakota: N. Dak. Geol. Survey Bull. 29, 46 p.
- , 1956, Summary of Oil Exploration Co. Joe W. Lamb No. 1, Nelson County, North Dakota: North Dakota Geol. Survey Circ. 143.
- Laird, W. M., 1948, Ground water in the Zeeland area, North Dakota: North Dakota Ground Water Studies 12, 38 p., 8 figs., 2 tables.
- Meinzer, O. E., 1923, The occurrence of ground water in the United States with a discussion of principles: U.S. Geol. Survey Water-Supply paper 489, 321 p.
- Russell, A. E., 1950, Pebbles in the glacial till of eastern North Dakota: A thesis submitted to the graduate faculty of the Univ. of North Dakota.
- Silverman, L. B., 1949, Methemoglobinemia: Report of two cases and clinical review: Journal-Lancet, v. 69, p. 94-97.
- Simpson, H. E., 1912, The physiography of the Devils-Stump Lake region, North Dakota: North Dakota Geol. Survey Sixth Bienn. Rept., p. 101-157.
- , 1929, Geology and ground-water resources of North Dakota with a discussion of the chemical character of the water by H. B. Riffenburg: U.S. Geol. Survey Water-Supply Paper 598, 312 p.
- , 1932, The ground waters of North Dakota: North Dakota Geol. Survey Bull. 7, Artesian Water Paper 5, 26 p.

C

# REFERENCES -- Continued

- Swenson, H. A., and Colby, B. R., 1955, Chemical quality of surface waters in Devils Lake basin, North Dakota: U.S. Geol. Survey Water-Supply Paper 1295, 82 p., 24 figs., 19 tables, 4 pls.
- Upham, Warren, 1896, The glacial Lake Agassiz: U.S. Geol. Survey Mon. 25, 658 p., 38 pls.
- U.S. Public Health Service, 1961, Drinking water standards: Am. Water Works Assoc. Jour., v. 53, no. 8, p. 935-945.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture, Agric. Handb. 60, 160 p.
- U.S. Weather Bureau, 1961, Climatological data for North Dakota, Annual Summary, v. 70, no. 13, p. 188-197.