

Ground-Water Resources Near Max, McLean and Ward Counties, North Dakota

> By C. A. ARMSTRONG Geological Survey United States Department of the Interior

NORTH DAKOTA GROUND-WATER STUDIES NO. 45

Prepared by the U.S. Geological Survey in cooperation with the North Dakota State Water Commission and the North Dakota Geological Survey

Published by NORTH DAKOTA STATE WATER CONSERVATION COMMISSION 1301 State Capitol, Bismarck, North Dakota

1963

NORTH DAKOTA STATE WATER COMMISSION

NEWS RELEASE

Water Commission Releases Groundwater Report for Max Area

November 14, 1963

Areas from which groundwater developments might be made in the Max vicinity are indicated in a report released today by the State Water Commission. Samples of the water located in the aquifers tested show the water to be of inferior quality. Chemical analyses in the report indicate the water is hard and has a relatively high concentration of iron, bicarbonate, and sulfate.

Locations and logs of the II test holes drilled, well inventory, quality analyses, along with a map of the area are included in the report. The study area includes 64 square miles primarily in McLean County. Max is 26 miles south of Minot.

The State Water Commission, State Geologist, and the United States Geological Survey cooperated with the City of Max in making the survey. C. A. Armstrong, Bismarck, U. S. Geological Survey, is author of the report, copies of which are available from the Water Commission office in Bismarck.

Distribution SWC Project #778 SWC File C6-10

NORTH DAKOTA STATE WATER COMMISSION

NEWS RELEASE

Water Commission Releases Groundwater Report for Max Area

November 14, 1963

Areas from which groundwater developments might be made in the Max vicinity are indicated in a report released today by the State Water Commission. Samples of the water located in the aquifers tested show the water to be of inferior quality. Chemical analyses in the report indicate the water is hard and has a relatively high concentration of iron, bicarbonate, and sulfate.

Locations and logs of the II test holes drilled, well inventory, quality analyses, along with a map of the area are included in the report. The study area includes 64 square miles primarily in McLean County. Max is 26 miles south of Minot.

The State Water Commission, State Geologist, and the United States Geological Survey cooperated with the City of Max in making the survey. C. A. Armstrong, Bismarck, U. S. Geological Survey, is author of the report, copies of which are available from the Water Commission office in Bismarck.

Distribution SWC Project #778 SWC File C6-10 North Dakota State Water Commission

1301 State Capitol

223-8000 Ext 41

Bismarck, North Dakota 58501

LETTER OF TRANSMITTAL

RE: Groundwater Study Reports

We are enclosing a copy of a groundwater study report published by the State Water Conservation Commission because of your interest in such reports released by this office.

Should you desire further information regarding this report, feel free to contact the State Water Conservation Commission office in Bismarck.

Sincerely yours,

Milo W. Hoisveen

Milo W. Hoisveen

MWH:hs

Mimeo #160

Einar H. Dahl Watford City Richard P. Gallagher Mandan Henry J. Steinberger Donnybrook Gordon K. Gray Valley City Math Dahl. Ex-Officio Member Comm, of Agriculture & Labor Milo W. Hoisveen, Secretary Chief Engineer & State Engineer

"BUY NORTH DAKOTA PRODUCTS"

GROUND-WATER RESOURCES NEAR MAX, MCLEAN

AND WARD COUNTIES, NORTH DAKOTA

By C. A. Armstrong Geological Survey United States Department of the Interior

North Dakota Ground-Water Studies No. 45

Prepared by the United States Geological Survey in cooperation with the North Dakota State Water Conservation Commission, and the North Dakota Geological Survey

> Published by North Dakota State Water Conservation Commission 1301 State Capitol, Bismarck, North Dakota

> > - 1963 -

CONTENTS

	Page
Introduction	1
Well-numbering system	2
Geology and ground water	3
Glacial drift	3
Bedrock formations	6
Quality of water	8
Summary of ground-water conditions	9
References	24

ILLUSTRATIONS

Figure	1.	Map showing physiographic provinces in	
		North Dakota and location of the Max area	1
	2.	System of numbering wells and test holes	2
	3.	Map of Max area showing locations of	
		selected wells and test holes	4

TABLES

Table 1.	Records of wells and test holes	10
2.	Chemical analyses of ground water	13
3.	Logs of test holes	14

GROUND WATER RESOURCES NEAR MAX, MCLEAN AND WARD COUNTIES, NORTH DAKOTA

By C. A. Armstrong

Introduction

Part of the ground-water investigation program in North Dakota consists of the study of ground-water resources available for municipal development. Ground-water investigations are made of small areas surrounding towns that have requested aid from either the North Dakota State Water Conservation Commission or the North Dakota Geological Survey.

The city council of Max requested the North Dakota State Water Conservation Commission to help locate additional water. As a result of this request an investigation of the geologic and hydrologic conditions of the area surrounding Max was made in the summer of 1958. Max, which is near the Ward County line in the north-central part of McLean County (fig. 1) has a population of about 400 (410 in the 1960 census). It is approximately 26 miles south of Minot, the principal commercial center in the northwestern part of N. Dak.

The city of Max has 3 wells -- a large-diameter dug well 20 feet deep and 2 drilled wells 130 feet deep. The quantity and quality of the ground water from the wells is unsatisfactory for the city's municipal supply.

- 1 -

FIGURE I-- MAP SHOWING PHYSIOGRAPHIC PROVINCES IN NORTH DAKOTA AND LOCATION OF THE MAX AREA.

The area investigated includes 64 square miles of which the larger part is in McLean County and the remainder in Ward County. Max is near the center of the area. The field work for the investigation included a geologic reconnaissance of the area, test drilling, well inventory (table 1), and collection of water samples for chemical analysis. The results of the chemical analyses are shown in table 2.

The average annual precipitation recorded by the United States Weather Bureau (1962, p. 190) for the 33-year period ending December 1961 was 16.79 inches. Most of the precipitation falls as rain during the growing season. The mean annual temperature for the period was 39° F.

Well-Numbering System

The well-numbering system used in this report is illustrated in figure 2 and is based on the location of the well in the federal system of rectangular surveys of the public lands. The first numeral denotes the township north of the base line, the second numeral denotes the range west of the fifth principal meridian, and the third numeral denotes the section in which the well is located. The letters a, b, c, and d designate respectively, the northeast, northwest, southwest, and southeast quarter sections, quarter-quarter sections, and quarterquarter-quarter sections (10-acre tract) as shown in figure 2. Thus well 150-83-15daa is in the NE 1/4 NE 1/4 SE 1/4 sec. 15 T. 150 N., R. 83 W.

- 2 -

FIGURE 2--SYSTEM OF NUMBERING WELLS AND TEST HOLES.

Glacial Drift

The report area is in the glaciated part of the Missouri Plateau section of the Great Plains Province (fig. 1) and lies in that part known as the Max moraine. This moraine, 15 to 20 miles wide in the Max area, was formed along the northeast side of the Missouri Plateau apparently as a result of retardation of Pleistocene glaciers by the higher elevation of the plateau. This retardation caused material in and on the glaciers to be deposited in a chaotic profusion of hills and undrained depressions. The measured thickness of the glacial drift penetrated by test holes ranges from 74 feet in test hole 1377 (150-83-10aaa) to more than 220 feet in test hole 1369 (150-83-18aaa). (See table 3.)

Most of the drift is composed of till, a relatively impermeable, heterogeneous mixture of clay, silt, sand, gravel, and boulders that yields little or no water to wells. However, some drift consists of stratified sand and gravel deposits buried within the till, and their capacity to yield water depends on their size and on the amount of replenishment or recharge they receive. If a sand and gravel deposit is completely surrounded by till, it receives recharge slowly; consequently it will not yield large quantities of water for sustained periods. Sand and gravel deposits that are only partly surrounded by till or other impermeable materials, on the other hand, may supply usable quantities of ground water indefinitely. The amount of water that such a deposits will yield depends largely upon its permeability and size.

- 3 -

Figure 3 shows the location of wells and test holes in the Max area. The logs of 4 test holes, 1369, 1370, 1379, and 1380, (table 3) show sand and gravel overlain by till and in most cases underlain by till also. The sand and gravel in holes 1369 and 1370 might be capable of yielding enough water for a small municipal water supply. Further testing will be necessary to determine the quantity and quality of water that is available at these locations. The sand in hole 1379 was fine grained and contained clay; it is probably not a source of enough water for a municipal supply. Gravel was penetrated in the basal 11 feet of the drift in hole 1380. The driller reported that the water level in the hole stood at about the top of the gravel. Unless the gravel deposit is relatively extensive, however, it also is probably inadequate as a source of supply for Max.

Other sources of small ground-water supplies are the ice-contact deposits composed of stratified silt, sand, and gravel that are scattered throughout the area. These deposits commonly form low-rounded to irregular-shaped knolls, but can best be identified by the material in them. The quantity of water that can be obtained from a particular deposit depends on its size; on its permeability; on its storage capacity, which is determined by its porosity; and on the amount of local precipitation and runoff that infiltrates into the deposit. None of the ice-contact deposits in or near Max are large enough to be depended upon for the city's water supply during prolonged periods of drouth when recharge is low, but two local ice-contact deposits are used to supplement the present Max water supply. Well 150-83-16baal is 20 feet deep; it was

- 4 -

FIGURE 3--MAP OF MAX AREA SHOWING LOCATIONS OF SELECTED WELLS AND TEST HOLES.

R. 82 W.

dug in an ice-contact deposit consisting of gravel, and it furnishes a part of the city's water supply. Well 150-83-9daa, which is 12 feet deep, was also dug in gravel. It yields only small quantities of water and is not connected to the municipal supply system, but residents of Max carry water from it for culinary use.

Other possible sources of small ground-water supplies are sand and gravel lenses or stringers at the edges of some kettles, which are depressions in the land surface also known as prairie potnoles. The sand and gravel deposits were probably formed by the sorting action of melt water from ice blocks that formerly occupied the kettles. The stringers or lenses are generally located only by digging or drilling; because they are not ordinarily exposed and are only a few yards wide; some may be fairly long. Recharge to these shallow aquifers is from local precipitation and runoff. In some deposits the ground water is maintained by water in an adjacent pothole and in some localities water in the potholes may be in part, at least, maintained by water from the shallow aquifers. Generally the deposits yield only a few gallons per minute for relatively short periods, although some of the larger ones may yield small supplies at a nearly steady rate. Wells in such deposits may yield enough water for domestic or stock purposes.

- 5 -

Bedrock Formations

Rocks of the Fort Union Formation of Tertiary age immediately underlie the glacial drift in the Max area. The uppermost beds of this formation are similar to and equivalent to the Tongue River Member as described by Lemke (1960, p. 34). They are composed of gray sandy clay beds interbedded with lignite. In the report area the beds generally dip at a very low angle from the northeast to the southwest. The lack of altitude control as well as the lack of detailed lithologic descriptions in the logs make it difficult and impractical to correlate individual beds within the Tongue River Member. Reported interference between wells in Max that obtain water from lignite beds in the Tongue River Member, however, shows that a degree of hydraulic connection exists, so there is some lateral continuity in the lignite beds at least. Wells yield small supplies from sand beds in a few other parts of the Max area, but the lignite beds are the major sources of water.

The largest part of the Max water supply comes from two drilled wells that tap one of the lignite beds. One well, 150-83-9dda, yields 18 gpm (gallons per minute), which is the maximum reported yield in the report area, and the other well, 150-83-9dba, yields 7 gpm. The yields cannot be sustained indefinitely with both wells pumping simultaneously. During the peak demand for the summer of 1962, 30,000 gallons per day was the maximum quantity of water available. Reports of abandoned wells within the city indicate that perhaps other small-capacity wells could be developed in the bedrock aquifer to supplement the supply, but wide spacing would be necessary to minimize interference between wells.

- 6 -

In parts of North Dakota the Cannonball Member of the Fort Union Formation underlies the Tongue River Member and contains water-producing sand beds, but it has not been identified in the Max area. Simpson (1929, p. 166) gives the log of the Minneapolis, St. Paul, and Sault Ste. Marie Railway well at Max; the well is 2,500 feet deep. Its log shows that shale is present in that part of the section where the Cannonball Member should be. It is probable, therefore, that the sands of this member were not deposited in the Max area. The only water reported in the deep railway well was a "small vein" at 135 feet and another at 250 feet, both of which are in the Tongue River Member. Formations below the Fort Union are either too deep or too impermeable to be considered as practical sources of ground water.

Recharge to both the glacial drift and bedrock aquifers is probably largely from downward seepage of precipitation and runoff on the moraine northeast of Max. Ground water in the Fort Union Formation percolates generally southwestward down the dip of the beds toward the Missouri River valley. This is shown in part by the discharge from springs at some of the lignite outcrops in the escarpment along the northern side of the Missouri River valley.

- 7 -

Quality of Water

Chemical analyses of water samples from 2 wells in the report area are given in table 2. Water from the shallow well (150-83-16baal) is of better quality than the water from the Fort Union Formation (well 150-83-9dda). In general, the water is probably hard and has a relatively high concentration of iron, bicarbonate, and sulfate.

Summary of Ground-Water Conditions

Wells in the Max area obtain water from either sand and gravel deposits in the glacial drift or from lignite and sand beds in the Tongue River Member of the Fort Union Formation. They supply small amounts of moderately to highly mineralized water for public supply, domestic, and farm use. Ground water occurs in formations older and deeper than the Fort Union Formation, but the formations are too deep or impermeable to be considered as practical sources.

The most promising area for the development of new ground-water supplies is in the vicinity of test holes 1369 and 1370 where probably moderate yields (enough for a small municipal or commercial water supply) can be obtained. Small additional supplies may also be obtained from lignite beds in the Tongue River Member of the Fort Union Formation underlying Max, but widely-spaced wells would be necessary to minimize interference between wells, and the quality of water is apt to be unsatisfactory. Chemical analyses of two ground-water samples suggest that water from the drift is of better quality than water from the Fort Union Formation.

Recharge to shallow aquifers in the drift is derived from water falling on or passing over the surface of the area. Recharge to the bedrock aquifers probably is derived from water percolating downward through the glacial drift in the moraine northeast of Max. The movement of ground water in the bedrock is southwestward toward the Missouri River.

- 9 -

Depth of well and depth to water: Measured depths are given in feet, tenths, and (or) hundredths; reported depths are given in feet.

Type of well: Dr, drilled; Du, dug.

Location No.	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре
	ana ang disina kana kanalan dan sana barantan diga tahun bahar dan menangkan kana sana bahar dan sana sana san			
150-82	Mott Comphonito	25	21	Dr.
baaa 19 1-	Matt Semenenko	205	24	Dr
TOCCD	Mrs. D. Filtag	297	3	Dr
19000	Otto Haui	200 +	5 Iu	Dr
30aa	Mrs. Louis Pede	185	4)1	Dr
30eca	Wilson Schmidt	201	+),	Dr
31400	Harman Lange	285	т Ц	Dr
JIDAA	Herman Lange	20)	-	51
150-83				
1994	Aleck Bauch	20	36	Du
lhec	Sam Devnich	180		Dr
loss	Mike Zaderaka		24	Dr
hdaa	Test hole 1378	126	5	Dr
5ddc	M. Philipenkoe	1.50	é	Dr
7cab	Herbert Biese	107	5	Dr
Qacc	Test hole 1367	136	5	Dr
Qeda	John Jungling	120		Dr
Qhaa	Test hole 1380	126	5	Dr
9000	Test bole 1368	105	5	Dr
9cda	Emil Torno	115	24	Dr
9daa	City of Max	12	48	Du
9dba		130	••	Dr
9dcbl	Test hole 1381	94	5	Dr
9dcb2	Municipal test hole	500	••	• •
9dda	City of Max	130	8	Dr
		0	-	D .
10aaa	Test hole 1377	84	2	Dr
10bcc	Mrs. Bertha Bevers	125	4	Dr
llbcc	Rudolph Wagner	195	4	Dr
14cca	Andrew Michalenko	105	24	Dr
15aaa	Test hole 1376	105	ゝ	Dr

Use of water: D, domestic; P, public supply; S, stock; N, none; T, test hole.

Remarks: Adequate supply means quantity reported sufficient for use indicated.

Date completed	Depth to water below land surface (feet)	Use	Aquifer	Remarks
	23	D,S	Sand	Adequate supply.
	285	D,S		Adequate supply: alkaline.
	150	D,S		Adequate supply.
		D,S		Do
	150	D,S		•.Do
1921	210	D,S	"Coal"	Do
1918	255	D,S	Sand	Inadequate supply.
••••	6	D.S	Gravel	Adequate supply
		D.S	Sand	Do
	Flow	D.S	• • 0 b • •	
9-58		T		See log.
1918	130	D.S	"Coal"	Adequate supply
1930	57	S	- 00	Down
8-58	•••	T		See log
	100	ŝ		Adequate cumplus oflar film
9-58	• • •	Ť		See log
8-58	• • •	- T		
	60	D.S	Sand	
		PS	Gravel	wardarne pabbtà.
	•••	PS	"Coal"	Reported viold 7
9-58		T		See log.
1956				• D0 • • •
1954	60	PS	••0b••	Reported vield 18 opm. see
				chemical analysis.
9-58		T		See log.
	90	N	do	
	112	D,S	Grave]	Adequate supply.
* * * *		D,S		··DO
9-58		Ť		See log.

TABLE 1.--Records of wells

Location No.	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре
150 82 (0	ont)		<u></u>	<u></u>
15aab	Clem Haettl	260	6	Dr
16ac	Minneapolis, St. Paul & Sault Ste. Marie Bailway	225		
16baal	City of May	20	84 x 84	Du
16baa2	Municipal test hole	151		Dr
16ccc	Test hole 1373	115.5	5	Dr
17aa	Aleck Vinarckai	92	24	Dr
17ccd	Test hole 1372	115.5	5	Dr
17daa	William Lee	75	24	Dr
18aaa	Test hole 1369	220	5	Dr
18bbb	Test hole 1370	146	5	Dr
18daa	John Wenger	240	4	Dr
20666	Ted Wenger	265	3	Dr
20ccc	Carl Schule	50	6	Dr
21abb	Alex Henne	190	5	Dr
21cdb	Merle Lee	240	3	Dr
23bcb	John Finkbiner	80	4	Dr
23ccd	Albert Anderson	90	6	Dr
23dab	Lloyd S. Monson	180	4	Dr
27bba	Emil Bauer	140	6	Dr
27cda	Herbert Songsted	151	4	Dr
28666	Test hole 1374	126	5	Dr
29dabl	C. A. Lindquist	48	6	Dr
29dab2	ob	56	4	Dr
30acd	Mike Kostenko	50	4	Dr
30cda	Gust Oolson	90	4	Dr
31bda	do	91	4	Dr
33abc	C. A. Lindquist	101	24-	Dr
33ррр	Test hole 1375	147	5	Dr
33dbb	Harry Olson	128	4	Dr
34съъ	Tennes Torgerson	112	4	Dr
35dbd	Victor Zence	112	4	Dr

Date completed	Depth to water below land surface (feet)	Use	Aquifer	Remarks
	•••	d,S		Adequate supply; unfit for irrigation.
	• • •	PS	Gravel	See chemical analysis.
1956		••• ጥ		
0-20	90	s	Clay	Inadequate supply.
8-58	<i>y</i> o	Ť		See log.
1954	67	D.S	Sand	Inadequate supply.
8-58	-1	ŕ		See log.
8-58		T		Do
1.930	200	D,S	"Coal"	Adequate supply.
1935	200	D,S	do	Do
->>>	Flow	ŝ	Gravel	Do
1939	1.50	D,S	Sand	Do
1922	60	D,S	do	Adequate supply; unfit for drinking.
1939		S		Inadequate supply.
		D,S	"Coal"	Adequate supply.
1940	156	D,S	do	Do
1920	118	D,S		Do
1918	21	S	Sand	•.Do
8-58		Т		See log.
	14	d,S	Gravel	Adequate supply.
	24	S	do	••DO••••
	Flow	D,S	Sand	
	25	D,S	do	Adamate cumly: vecent
	40	S	Gravel	Adequate supply, vacant
	80	D,S	Sana	Auequate puppity.
9-58		T	•••••	Dee Tog.
1930	116	D,S		Tuadednase prbbra.
1913	106	D,S	Coal	Adamata sublik.
		D,S	ao	vacdaare orthtry.

and test holes -- Continued

Location No.	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре
150-84 12aa 12ccc 13acd 13bda	Jacob Finkheiner Test hole 1371 George Day do	142 105 50 98	կ 5 կ 4	Dr Dr Dr Dr
<u>151-82</u> 30bcc 31add	Matt Gruzensky Jake Van Winkle	60 290	14 14	Dr Dr
151-83 26ccd 26ddb 27cab 28adc 28bbc1 28bbc2 29dd 30bdb 32db 3 ⁴ bcc	George Fannik Jack Fannik Ed Kabanuck Fred Strilcov John Kabanuck do Steve Bokovaa Ervin Batke Arnold Schmidt Test hole 1379	64 210 180 150 42 200 + 125 40 65 168	3 4 2.5 4 4 4 24 4 5	Dr Dr Dr Dr Dr Dr Dr Dr Dr
151-84 25ede	Ed Sambor	240	4	Dr

.

•

and test holes -- Continued

Date completed	Dapth to water below land surface (feet)	Use	Aquifer	Remarks
1940 8-58 1913	122 40 38	D,S T D,S D,S	Sand do do	Adequate supply. See log. Inadequate supply. Adequate supply.
• • • •	45 Dry	D,S D,S	do do	• • Do • • • •
1958 1925 1953 1944 1908 1900 9-58	30 75 140 135 30 120 100 30	D,S D,S D,S D,S D,S S D,S D,S T	do "Coal" Sand Clay do Sand Gravel Sand	Do Do Do Do Do Inadequate supply. Adequate supply. Do See log.
1955	70	D,S	"Coal"	Adequate supply.

Geologic source: D, drift; Tft, Tongue River Member of Fort Union Formation.

Results in parts per million except as indicated.

Location	Geologic source	Depth of well (feet)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)
150-83 9dda	መድታ	1 20	2 5 62	. 1.	0.1	05	170			
Juua	110	1.20	2-2-03	14	C. 4	95	119	311	11	940.0
16baal	D	20	2-5-63	17	0.1	89	62	27	11	435

.

Carbonate (CO ₃)	Sulfate (SO $_{\rm h}$)	Chloride (Cl)	Fluoride (F)	Nitrate (NO ₃)	Boron (B)	Dissolved solids (calculated)	Hardness as CaCO ₃	Percent sodium	Specific conductance (micromhos at 25 ⁰ C)	Hď
None	778	7.8	0.3	0	0.3	2,008.0	728	52	2,745	6.8
None	187	14	0.2	0.5	0.28	748	478	11	1,057	7.4

Analyses by State Laboratories, Bismarck, N. Dak.

TABLE 3 .-- Logs of test holes

Test hole 1378 150-83-4daa

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift			
	Soil, black	3	3
	Till; clay, yellow to light brown, a few pebbles	5°O	43
	Till; clay, gray, fine gravel, shale pebbles Gravel, fine to medium	69 3	112 115
Fort Union Fo	ormation: Clay, sandy, gray	11	126

Test hole 1367 150-83-9acc

Glacial drift:		
Soil, black	5	5
Till; clay, sandy, and pebbly, yellow to brown, oxidized Till: clay gray fine gravel, shale	17	22
pebbles	69	91
Gravel, fine to medium	1	92
Till; clay, gray, fine gravel, shale		
pebbles	37	129
Lignite	2	131
Fort Union Formation:		
Shale, gray	5	136

Test hole 1380 150-83-9baa

Glacial drift:		
Soil, black	l	l
Gravel, fine	7	8
Till, clay, yellow, fine gravel	9	17
Till; clay, gray, fine to medium		-
gravel, shale pebbles	87	104
Gravel, fine to medium, slightly in-		
durated	11	115
Fort Union Formation:		
Clay, sandy, gray, lignite	11	126

Test hole 1368 150-83-9ccc

Formation	Material	Thickness	Depth
, 		(feet)	(feet)
Glacial drift.			
diacial dialo.	Soil. black	. 2	2
	Till; clay, light-yellow gray,		
	oxidized	- 5	7
	Till; clay, grayish-brown, fine	8 	
	to medium gravel, oxidized	- 14	21
	Till; clay, gray, fine to medium	10	(0
	gravel, shale pebbles	- 42	63
	Till; clay, gray, fine gravel,	01	81
	shale peppies	- 21	04
	Till; clay, light-yellowish-gray	,	
	Tine to medium gravel, shale	10	oh
Fort Inion Forme	peoples, Oxidized	- 10	74
FOLC ONTOU FOLMS		0	06
	Lignite	- 2	90
	Shale, gray	- 9	105

Test hole 1381 150-83-9dcbl

Glacial drift:	3	2
Soll, black	5	3
Till; clay, light yellowish-gray		
to yellow, a few coarse sand		
grains	18	21
Till; clay, gray, fine gravel,		
shale pebbles	35	56
Gravel, fine to medium	2	58
Till; clay, gray, fine gravel,		
shale pebbles	10	68
Till; clay, brownish-gray, fine		
gravel, shale pebbles	18	86
Fort Union Formation:		
Clay, sandy, gray	8	94

Municipal Test hole 150-83-9dcb2 (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Formation	Material	Thickness	Depth
		(feet)	$\overline{(feet)}$
Glacial drift	:		
	Clay, gravelly, yellow and		
	rocks (till)	48	48
	Clay, sandy, blue and rocks		
	(till)	39	87
3. × × × ×	Rock	2	89
Fort Union For	rmation:	•	
	Clay or shale, gray with some		
	coal	23	112
	Clay, yellow	5	117
	Clay, gray with coal slack layers	- 83.5	200.5
	Rock layer, hard	2.5	203
	Shale, slightly sandy, gray	29	232
	Shale, light-gray	9	241
	Shale, brown, hard with coal	-	
	particles	7	248
	Shale, gray	26	274
	Shale, brown	4	278
	Shale, light-green	4	282
	Shale, slightly sandy, gray	14	296
	Hard layer	1	297
	Shale, gray with coal and hard		
	layers	12	309
	Coal	6	315
	Shale, gray with few hard layers-	60	375
	Coal	3	378
	Shale, gray	11	389
	Shale, brown, rather hard	5	394
	Shale, gray	24	418
	Coal	3	421
	Shale, gray	14	435
	Coal	6	441
	Shale, gray	13	454
	Shale, slightly sandy, gray	9	463
	Shale, gray	29	492
	Shale, sandy, gray	8	500

Test hole 1377 150-83-10aaa

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift:			
	Soil, black	4	4
	Till; clay, yellowish-gray, fine gravel	18	22
	Till; clay, dense, gray, fine to medium gravel	24	46
	Clay, light-gray	9	22
	Till; clay, gray, fine to medium gravel	19	74
Fort Union Forma	ation:	~ ~	01
	Clay, sandy, gray	10	84

Test hole 1376 150-83-15aaa

Glacial drift:		
Soil, black	2	2
Till; clay, yellowish-gray, fine to medium gravel	29	31
Till; clay, gray, fine gravel, shale pebbles	10	41
Till; clay, yellowish-gray, fine gravel, shale pebbles	6	47
Clay, sandy, light-gray	6	53
Till; clay, gray, fine gravel	•	
to cobbles	44	97
Fort Union Formation:		
Clay, sandy, gray	8	105

Municipal test hole 150-83-16bac2 (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift:			
	Clay, brown	2	2
	Clay, gravelly, yellow	3	5
	Sand and gravel, clayey	6	11
	Clay, blue, some sandy	80	91
	Clay and boulders	2	93
	Clay, very gravelly	24	117
	Chay, gravelly	9	126
Fort Union Forms	tion:		
	Shale, gray with coal flakes	25	151

Test hole 1373 150-83-16ccc

Glacial drift:		
Soil, black	1	1
Till; clay, yellow, slightly	4.	
oxidized, fine gravel	39	40
Till; clay, brownish-gray, fine		
gravel, shale pebbles	67	107
Fort Union Formation:		
Clay, sandy, gray	8.5	115.5

Test hole 1372 150-83-17ccd

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Glacial drift:	Soil, black	5	5
	Till; clay, yellowish-gray, fine to coarse gravel	11	16
	Till; clay, gray, fine to medium gravel Gravel, coarse	26 1	42 43
	Till; clay, gray, fine to medium gravel	56	99
Fort Union Form	clay, sandy, gray	16.5	115.5

•

Test hole 1369 150-83-18aaa

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift:	Soil, black	3	3
	coarse sand and a few pebbles, oxidized	19	22
	Till; clay, gray, fine to meu- ium gravel, shale pebbles, lignite fragments	68	90
	Till; clay, light-grown, coarse sand and pebbles	30	120
	Gravel, fine to medium, silty, lignite fragments	. 6	126
	Till; clay, gray, fine gravel, shale pebbles	. 11	137
	Sand, indurated lenses inter- bedded with till	. 8	145
	Till; clay, gray, fine gravel, shale pebbles	- 2	147
	Gravel, fine, large concentration of shale granules, lignite fragments	- 9	156
	shale pebbles, lignite fragments	- 16 - 2	172 174
	Till; clay, gray, fine gravel, shale pebbles and lignite fragments	- 9	183
	Till; clay, gray, fine graver consisting largely of shale granules, lignite fragments	- 5	188
	shale pebbles, and lignite	- 23	211
	Till; clay, sandy, fine gravel, shale and lignite fragments-	, 9	220

Test hole 1370 150-83-18bbb

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift:			_
New Contraction of Contract (New York, Contract) (Contract)	Soil, black	1	1
	Till: clay, yellowish-gray	8	9
	Till: clay, vellowish, fine to	10	
	medium gravel	24	33
	Till; clay, gray, fine to coarse		
	gravel	· 75	108
	Sand, coarse, fine gravel and lignite	. 15	123
	Till; clay, gray, lignite		
	fragments	• 5	128
Fort Union Forma	ation:		
	Shale, clay, sandy, gray	. 8	136
	Lignite (core)	- 10	146

Test hole 1374 150-83-28bbb

3	3
	1.1.
41	44
•	*
40	84
37	121
5	126
	3 41 40 37 5

Test hole 1375 150-83-33bbb

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Glacial drift:	Soil, black Till: clay, yellowish-gray, fine	3	3
	to medium gravel, slightly oxidized	7	10
	medium gravel, slightly oxidized	12	22
	to coarse gravel, shale pebbles	62	84
	little fine to medium gravel, slightly oxidized	18	102
	consisting of shale granules-	3	105
	Till; clay, gray, fine gravel and shale pebbles	32	137
Fort Union Form	ation: Clay, sandy, gray	10	147
	Test hole 1371 150-84-12ccc		
Glacial drift:	Soil. black	- 1	l
	Till; clay, gray, small amount of sand	6	7
	Till; clay, light-yellowish- brown. fine to medium gravel-	- 11	18
	Till; clay, gray, fine to media gravel, shale pebbles	m 67	85

Fort Union Formation:

Clay, grayish- to greenish-brown, fine to medium sand-----105 20

Test hole 1379 151-83-34bcc

Formation	Material	Thickness (feet)	Depth (feet)
Glacial drift:	Soil, black	1	l
	Till; clay, yellowish-gray and fine to medium gravel	15	16
	Till; clay, gray, and fine gravel	78 11	94 105
Fort Union Forms	Sand, fine, and clay ation: Clay, sandy, yellowish-gray	53	168
	18		

References

- Lemke, L. W., 1960, Geology of the Souris River Area, North Dakota: U.S. Geol. Survey Prof. Paper 325, 132 p.
- Simpson, H. E., 1929, Geology and ground-water resources of North Dakota, with a discussion of the chemical character of the water by H. B. Riffenburg: U.S. Geol. Survey Water-Supply Paper 598, 312 p.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Weather Bureau, 1962, Climatological data for North Dakota, annual summary, 1961, v. 70, no. 13, p. 188-197.